On completely additive functions satisfying a congruence

Attila Kovács and Bui Minh Phong *

Appeared: Annales Univ. Sci. Budapest, Sect. Comp. 19 (2000) 237-249.

Abstract

A fascinating connection was conjectured on sums of completely additive functions satisfying a congruence by Kátai. He could prove it for the case of $k=3$. The general solution of the problem is far from beeing simple. The object of the present paper is to prove this conjecture for $k=4$. Another purpose of the authors was to discuss the problem from group theoretical aspects and to describe an algorithm verifying the conjecture for finite number of functions under a certain bound.

1 Introduction

An arithmetical function $f(n)$ is said to be completely additive if the relation $f(n m)=f(n)+f(m)$ holds for every positive integer n and m. Let \mathcal{A}^{*} denote the class of all real-valued completely additive functions. Throughout this paper we apply the usual notations, i.e. \mathbb{P} denotes the set of primes, \mathbb{N} the set of positive integers, \mathbb{Q} and \mathbb{R} the fields of rational and real numbers, respectively.

Let $P(z)=1+A_{1} z+A_{2} z^{2}+\ldots+A_{k} z^{k}(k \geq 1)$ be a polynomial with real coefficients. Let E denote the operator $E z_{n}:=z_{n+1}$ in the linear space of infinite sequences. For the polynomial $P(z)$ we have

$$
P(E) f(n)=f(n)+A_{1} f(n+1)+\ldots+A_{k} f(n+k) .
$$

[^0]Conjecture I. (Kátai) If $f \in \mathcal{A}^{*}, P(z) \notin \mathbb{Q}[z]$ and $P(E) f(n) \equiv 0(\bmod 1)$ for all $n \in \mathbb{N}$ then $f(n)$ is identically zero.

This conjecture was proved for the case of $k=2$ (see [1]). Moreover, Kátai raised a more general question:
Conjecture II. (Kátai) Let $f_{j} \in \mathcal{A}^{*}(j=0,1,2, \ldots, k)$. Assume that

$$
\sum_{j=0}^{k} f_{j}(n+j) \equiv 0 \quad(\bmod 1)
$$

for all $n \in \mathbb{N}$. Then $f_{j}(n) \equiv 0(\bmod 1)$ for every $n \in \mathbb{N}$ and for every j.
In [2] Kátai proved it for the case of $k=3$. The idea can be extended to the Gaussian integers, as was done in [5, 7]. It was examined the analogy of the conjecture for three completely additive [4], as well as for two [3] and three [6] additive functions.

2 Group theoretical approach

We extend the domain of an arbitrary real valued completely additive function $f(n)$ for the set of positive rational numbers \mathbb{Q}_{*} by $f(a / b):=f(a)-f(b)$. Let us do it for $f_{0}, f_{1}, f_{2}, \ldots, f_{k}(k \in \mathbb{N})$ and let us define the set

$$
\Omega_{k}:=\left\{\left(a_{0}, a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{Q}_{*}^{k+1}: \sum_{i=0}^{k} f_{i}\left(a_{i}\right) \equiv 0 \quad(\bmod 1)\right\}
$$

Performing the multiplications component-wise it is easy to see that $\left(\mathbb{Q}_{*}^{k+1} ; \cdot\right)$ is an abelian group. Hence, it follows from the additivity that if ($a_{0}, a_{1}, \ldots, a_{k}$) $\in \Omega_{k}$ and $\left(b_{0}, b_{1}, \ldots, b_{k}\right) \in \Omega_{k}$ then $\left(a_{0} b_{0}{ }^{-1}, a_{1} b_{1}{ }^{-1}, \ldots, a_{k} b_{k}{ }^{-1}\right) \in \Omega_{k}$. Thus, the following assertion is obvious.

Assertion. ($\left.\Omega_{k} ; \cdot\right)$ is an abelian group with respect to the above defined multiplication.

In fact, we think that the next conjecture is true:
Conjecture III If (A, \cdot) is a subgroup of the group $\left(\mathbb{Q}_{*}^{h} ; \cdot\right)$, where $h \in \mathbb{N}$ and $(n, n+1, \ldots, n+h-1) \in A$ for all $n \in \mathbb{N}$, then $A=\mathbb{Q}_{*}^{h}$.

It is clear that the first conjecture follows from the second one and the second from the third one.

3 The main theorem

Theorem. Let $P(z)=1+A_{1} z+A_{2} z^{2}+A_{3} z^{3}+A_{4} z^{4}$ be a polynomial with real coefficients, $P(z) \notin \mathbb{Q}[z]$. If $f \in \mathcal{A}^{*}$ satisfies the congruence relation

$$
\begin{equation*}
L_{n}:=P(E) f(n) \equiv 0 \quad(\bmod 1) \tag{1}
\end{equation*}
$$

for every $n \in \mathbb{N}$, then $f(n)$ is identically zero.
In order to prove the theorem we shall use an induction-like method.

3.1 Induction step

Lemma 1. If (1) holds for every $n \in \mathbb{N}$ and $f(m)=0$ is satisfied for every positive integer $m \leq 23$ then $f(n)=0$ for every $n \in \mathbb{N}$.

Proof: We prove the lemma indirectly. Let

$$
\mathcal{K}_{f}:=\{n \in \mathbb{N}: f(n)=0\}
$$

Assume that $\mathcal{K}_{f} \neq \mathbb{N}$, i.e. there exist a smallest positive integer S such that

$$
\begin{equation*}
f(S) \neq 0 \tag{2}
\end{equation*}
$$

By the assumption of the lemma it is pretty obvious that

$$
\begin{equation*}
S \in \mathbb{P} \tag{3}
\end{equation*}
$$

and $S \geq 29$. First we shall prove that for each V satisfying the relations $V \in\{S+2, S+6, S+8, S+12\}$ and $V \equiv 1 \quad(\bmod 6)$ we have

$$
\begin{equation*}
f(V)=0 \text { or } f(V) \notin \mathbb{Q} \tag{4}
\end{equation*}
$$

Suppose that (4) does not hold. Then for some U for which $U \in\{S+2, S+$ $6, S+8, S+12\}$ with $U \equiv 1 \quad(\bmod 6)$, we obtain

$$
\begin{equation*}
f(U) \neq 0 \text { and } f(U) \in \mathbb{Q} . \tag{5}
\end{equation*}
$$

By the fact $U \equiv 1 \quad(\bmod 6)$ it is easily seen that

$$
\begin{equation*}
\{U \pm 1-6 k, U+2-6 k, U+3-6 k, 2 U \pm 2: k=0,1\} \subseteq \mathcal{K}_{f} . \tag{6}
\end{equation*}
$$

By using (1) and (6) we get that $L_{U-1}=A_{1} f(U) \equiv 0(\bmod 1)$, which with (5) implies that

$$
\begin{equation*}
A_{1} \in \mathbb{Q} \tag{7}
\end{equation*}
$$

Let us observe that

$$
\begin{equation*}
f(U-2) \notin \mathbb{Q} \tag{8}
\end{equation*}
$$

since in the opposite case, by using (1) and (6) we get

$$
\begin{aligned}
& L_{U-4}=A_{2} f(U-2)+A_{4} f(U) \equiv 0 \quad(\bmod 1) \\
& L_{U-3}=A_{1} f(U-2)+A_{3} f(U) \equiv 0 \quad(\bmod 1) \\
& L_{U-2}=f(U-2)+A_{2} f(U) \equiv 0 \quad(\bmod 1)
\end{aligned}
$$

which with (5) and (7) would imply that $P(z) \in \mathbb{Q}[z]$. In virtue of (5), (8) and of the equation L_{U-2} it is obvious that

$$
\begin{equation*}
A_{2} \notin \mathbb{Q} . \tag{9}
\end{equation*}
$$

Since $3 \mid(2 U+1)$ and $(2 U+1) / 3<S$, we have $f(2 U+1)=0$, hence by using (5), (6), (7), (9) and the equation

$$
L_{2 U-2}=A_{1} f(2 U-1)+A_{2} f(U) \equiv 0 \quad(\bmod 1)
$$

we obtain

$$
\begin{equation*}
A_{1} \neq 0, \quad f(2 U-1) \notin \mathbb{Q} \tag{10}
\end{equation*}
$$

Consider the equation

$$
L_{2 U-1}=f(2 U-1)+A_{1} f(U)+A_{4} f(2 U+3) \equiv 0 \quad(\bmod 1),
$$

which with (5), (7) and (10) implies that

$$
\begin{equation*}
A_{4} \neq 0, \quad A_{4} f(2 U+3) \notin \mathbb{Q} . \tag{11}
\end{equation*}
$$

By using relations (5), (8), (10) and (11) it is easy to see that $U, U-2$, $2 U-1,2 U+3 \in \mathbb{P}$, consequently $U \equiv 4 \quad(\bmod 5)$. Since $U \equiv 1 \quad(\bmod 6)$, $U \equiv 4(\bmod 5), U \leq S+12$ and $S \geq 29$ the following statements hold:

$$
3|2 U-5, \quad(2 U-5) / 3<S, \quad 5| 2 U-3, \quad(2 U-3) / 5<S
$$

It means that $f(2 U-5)=f(2 U-3)=0$. Hence, using (5), (6) and the equations

$$
\begin{gathered}
L_{2 U-6}=A_{2} f(U-2) \equiv 0 \quad(\bmod 1) \\
L_{U-4}=A_{2} f(U-2)+A_{4} f(U) \equiv 0 \quad(\bmod 1)
\end{gathered}
$$

we have

$$
\begin{equation*}
A_{4} \in \mathbb{Q} \tag{12}
\end{equation*}
$$

On the other hand, using (5), (6), (7) and (10) the equation $L_{U-7}=A_{1} f(U-$ $6) \equiv 0 \quad(\bmod 1)$ gives that $f(U-6) \in \mathbb{Q}$, which with $(11),(12)$ and by $L_{U-6}=f(U-6)+A_{4} f(U-2) \equiv 0(\bmod 1)$ implies $f(U-2) \in \mathbb{Q}$. This contradicts to (8). Thus, we have proved (4).

Now we are able to prove Lemma 1. We distinguish two cases:
(I) $\quad S \equiv 1 \quad(\bmod 6)$
(II) $S \equiv 5 \quad(\bmod 6)$.

Case (I). In this case we have
$\{S+1+6 k, S+2+6 k, S+3+6 l, S+5+6 l: k=0,1,2,3 \quad l=0,1,2\} \subseteq \mathcal{K}_{f}$,
and by virtue of the equations $L_{S-1}, L_{S-2}, L_{S-3}, L_{S-4}$ we get

$$
A_{1} f(S) \equiv A_{2} f(S) \equiv A_{3} f(S) \equiv A_{4} f(S) \equiv 0 \quad(\bmod 1)
$$

If $f(S) \in \mathbb{Q}$ then $A_{j} \in \mathbb{Q}(j=1,2,3,4)$ but this is a contradiction, since $P(z) \notin \mathbb{Q}[z]$. Then we have

$$
\begin{equation*}
f(S) \notin \mathbb{Q} \tag{14}
\end{equation*}
$$

Observe that if $A_{j} \in \mathbb{Q}$ for some $1 \leq j \leq 4$ then $A_{j}=0$. It means that

$$
\begin{equation*}
A_{j} \notin \mathbb{Q} \text { or } A_{j}=0 \quad(j=1,2,3,4) \tag{15}
\end{equation*}
$$

Let $i=0$. It follows from (14), (15) and from the equation $L_{S+6 i}=f(S+$ $6 i)+A_{4} f(S+4+6 i) \equiv 0(\bmod 1)$ that

$$
\begin{equation*}
A_{4} \notin \mathbb{Q}, \quad f(S+4+6 i) \neq 0 . \tag{16}
\end{equation*}
$$

The reader can readily verify that $f(S+6+6 i) \neq 0$ since in the opposite case using the equation $L_{S+4+6 i}=f(S+4+6 i) \equiv 0(\bmod 1)$ we get
$f(S+4+6 i) \in \mathbb{Q}$. This with (13), (15), (16) and by $L_{S+1+6 i}, L_{S+2+6 i}, L_{S+3+6 i}$ implies $A_{1}=A_{2}=A_{3}=0$. Hence the equation $L_{2 S+4+12 i}$ would infer $A_{4} f(S+4+6 i) \equiv 0 \quad(\bmod 1)$, i.e., $A_{4} \in \mathbb{Q}$ which is a contradiction. So we have $f(S+6+6 i) \neq 0$. By similar arguments for $i=1,2$ and by using (4) we obtain $f(S+4) \neq 0$ and $f(S+6 i) \neq 0 \quad(i=0,1,2,3)$. It means that $S, S+4, S+6, S+12, S+18$ are primes which is impossible since $S \geq 29$ and one of these numbers is a multiple of 5 . So we proved that Case (I) cannot occur.

Case (II). In this case it is no hard to see that
$\{S+1+6 k, S+3+6 k, S+4+6 k, S+5+6 l: k=0,1,2 \quad l=0,1\} \subseteq \mathcal{K}_{f}$.
Let $i=0$. Because of $P(z) \notin \mathbb{Q}[z]$ it is easily seen that $f(S+2+6 i) \neq 0$ and by (4) we have

$$
\begin{equation*}
f(S+2+6 i) \notin \mathbb{Q} . \tag{17}
\end{equation*}
$$

Hence by using the equation

$$
L_{S+2+6 i}=f(S+2+6 i)+A_{4} f(S+6+6 i) \equiv 0 \quad(\bmod 1)
$$

it follows $f(S+6+6 i) \neq 0$. Suppose that $f(S+8+6 i)=0$. Then from $L_{S+6+6 i}$ we get $f(S+6+6 i) \in \mathbb{Q}$, therefore by $L_{S+3+6 i}, L_{S+4+6 i}, L_{S+5+6 i}$ we infer $A_{1}, A_{2}, A_{3} \in \mathbb{Q}$. Moreover, by the equations $L_{S-1+6 i}, L_{S+1+6 i}$ and by (17) immediately follows that $A_{1}=A_{3}=0$. Since $2 S+8+12 i \in \mathcal{K}_{f}$, $2 S+10+12 i \in \mathcal{K}_{f}$, the equation

$$
L_{2 S+8+12 i}=A_{4} f(2 S+12+12 i) \equiv A_{4} f(S+6+6 i) \equiv 0 \quad(\bmod 1)
$$

gives $A_{4} \in \mathbb{Q}$ which is contradiction. So $f(S+8+6 i) \neq 0$. Similarly, for $i=1$ using (4) we obtain $S, S+2, S+6, S+8, S+14$ are primes, but this is impossible since $S \geq 29$ and one of these numbers is a multiple of 5 . The proof of Lemma 1 is finished.

The proof of the theorem will be completed by proving the following
Lemma 2. If (1) holds for every $n \in \mathbb{N}$ then $f(m)=0$ for every positive integer $m \leq 23$.

To verify this lemma we discuss the next conjecture which is a step by step approach of the second one.

3.2 Algorithm for the bounded case

Conjecture IV Let $f_{0}, f_{1}, \ldots, f_{k} \in \mathcal{A}^{*}$. Given any $e \in \mathbb{N}$ there exist a $d \in \mathbb{N}$ such that if $L_{n}:=\sum_{j=0}^{k} f_{j}(n+j) \equiv 0(\bmod 1)$ holds for every $n \leq d(n \in \mathbb{N})$ then $f_{j}(n) \equiv 0(\bmod 1)$ for every $n \leq e(j=0,1, \ldots, k)$.

We introduce some notations.
Let us denote the n-tuple $\mathcal{L}_{n}:=(n, n+1, \ldots, n+k) \in \Omega_{k}$. Let furthermore
$\Gamma_{k}:=\left\{\left(a_{0}, a_{1}, \ldots, a_{k}\right): a_{j}\right.$ are squarefree integers, $\left.a_{j}>1(0 \leq j \leq k)\right\}$.
For an arbitrary $\gamma=\left(a_{0}, a_{1}, \ldots, a_{k}\right) \in \Gamma_{k}$ we define the vector $\underline{v}=\underline{v}(\gamma)$ as follows. Let the prime decomposition of a_{j} be $a_{j}=p_{1}^{(j)} p_{2}^{(j)} \ldots p_{l_{j}}^{(j)}$, where the factors are written in ascending order. Then

$$
\begin{gathered}
\underline{v}(\gamma):=\left[f_{0}\left(p_{1}^{(0)}\right), \ldots, f_{0}\left(p_{l_{0}}^{(0)}\right), f_{1}\left(p_{1}^{(1)}\right), \ldots, f_{1}\left(p_{l_{1}}^{(1)}\right), \ldots, f_{k}\left(p_{1}^{(k)}\right), \ldots, f_{k}\left(p_{l_{k}}^{(k)}\right)\right]= \\
=\left[v_{1}, v_{2}, \ldots, v_{\mu}\right], \quad \mu=l_{0}+l_{1}+\ldots+l_{k} .
\end{gathered}
$$

Example Let $k=4, \gamma=(6,30,10,15,3)$.
Then $\underline{v}=\left[f_{0}(2), f_{0}(3), f_{1}(2), f_{1}(3), f_{1}(5), f_{2}(2), f_{2}(5), f_{3}(3), f_{3}(5), f_{4}(3)\right]$.
Let $\Delta_{\underline{v}}^{\mu}:=\left\{\left[b_{1}, b_{2}, \ldots, b_{\mu}\right]: \sum_{j=1}^{\mu} b_{j} v_{j} \equiv 0(\bmod 1), b_{i} \in \mathbb{Z}\right\}$. Let $\underline{b}=$ $\left[b_{1}, \ldots, b_{\mu}\right] \in \Delta_{\underline{v}}^{\mu}$. Then

$$
b_{1} f_{0}\left(p_{1}^{(0)}\right)+\ldots+b_{l_{0}}\left(p_{l_{0}}^{(0)}\right)+\ldots+b_{\mu} f_{k}\left(p_{l_{k}}^{(k)}\right) \equiv 0 \quad(\bmod 1)
$$

which can be rewritten as

$$
f_{0}\left(\beta_{0}\right)+f_{1}\left(\beta_{1}\right)+\ldots+f_{k}\left(\beta_{k}\right) \equiv 0 \quad(\bmod 1)
$$

where $\beta_{t}=\prod_{k=1}^{l_{t}}\left(p_{k}^{(t)}\right)^{b_{s+k}}, s=l_{0}+\ldots+l_{t-1}$. Let $\underline{\beta}(=\underline{\beta}(\underline{b}))=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)$. Clearly, $\underline{\beta} \in \mathbb{Q}_{*}^{k}$. Let $\Delta_{\underline{v}}^{k}=\left\{\underline{\beta}(\underline{b}) \quad: \quad \underline{b} \in \Delta_{\underline{v}}^{\mu}\right\}$.

Remarks

1. It follows from our construction that there is a one-to-one correspondence between $\Delta_{\underline{v}}^{\mu}$ and $\Delta_{\underline{v}}^{k}$.
2. $\Delta_{\underline{v}}^{k} \subset \Omega_{k}$.

Example Let k, γ, \underline{v} as before. Suppose that $\underline{b}=(1,2,3,1,-2,-3,1,-2,3,1)$ $\in \Delta_{\underline{v}}^{\mu}$. Then $\underline{\beta}=\left(18, \frac{24}{25}, \frac{5}{8}, \frac{125}{9}, 3\right) \in \Delta_{\underline{v}}^{k}$.

Algorithm to verify Conjecture IV. Input $\mathrm{k}, e \in \mathbb{N}$

1. Let γ be an arbitrary element from Γ_{k} and let \underline{v} be the vector generated by γ as before.
2. By using the equations $L_{1}, L_{2}, \ldots, L_{i}$ and the fact that $f_{0}, f_{1}, \ldots, f_{k} \in$ \mathcal{A}^{*} express all the possible $F_{1}, F_{2}, \ldots, F_{j} \in \Delta_{\underline{v}}^{k}$. The corresponding vectors $G_{1}, G_{2}, \ldots, G_{j} \in \Delta_{v}^{\mu}$ can be considered as rows of a matrix $M \in \mathbb{R}^{\mu \times \mu}$. Examine so many equations that the rank of the matrix M will be equal to μ.
3. Using Gaussian elimination over the integers it can be solved the linear equation $M \underline{v} \equiv 0(\bmod 1)$. If the only solution is $\underline{v} \equiv 0(\bmod 1)$ then go to the next step, otherwise go to the step 2, increase i and find a new matrix M or go to the step 1 and choose a new γ.
4. Investigate so many equations $L_{1}, L_{2}, \ldots, L_{i}, \ldots$ while all $f_{j}(p)$ can be expressed in the form $f_{j}(p) \equiv \sum_{l=1}^{\mu} b_{l} v_{l} \quad(\bmod 1)\left(p \leq e, p \in \mathbb{P}, b_{l} \in \mathbb{Z}, 0 \leq\right.$ $j \leq k$). Then the conjecture is true for k, e and d is equal to i, which is the number of the examined equations.

If the conjecture is true, the algorithm terminates.
Remark For a given k, e the d is not unique, it depends on the selection of γ.

4 Examples

Implementing this algorithm the experiments with a simple Maple ${ }^{1}$ program show the following results:
Example Let $k=4, \gamma=(210,210,210,210,2310)$.
Then we have

$$
\begin{gathered}
F_{1}=\frac{\mathcal{L}_{9}^{5} \mathcal{L}_{11}^{2} L_{12}^{4} \mathcal{L}_{14}^{5} \mathcal{L}_{17} \mathcal{L}_{21} \mathcal{L}_{23}^{2} \mathcal{L}_{30}^{2} \mathcal{L}_{32}^{2} \mathcal{L}_{33} \mathcal{L}_{37} \mathcal{L}_{45}^{2} \mathcal{L}_{54}^{3} \mathcal{L}_{58} \mathcal{L}_{62}^{4} \mathcal{L}_{91} \mathcal{L}_{141} \mathcal{L}_{143}}{\mathcal{L}_{8} \mathcal{L}_{10}^{6} \mathcal{L}_{13} \mathcal{L}_{15} \mathcal{L}_{16} \mathcal{L}_{18} \mathcal{L}_{22}^{3} \mathcal{L}_{24}^{4} \mathcal{L}_{25}^{4} \mathcal{L}_{27} \mathcal{L}_{29} \mathcal{L}_{31}^{4} \mathcal{L}_{44} \mathcal{L}_{47} \mathcal{L}_{48} \mathcal{L}_{70} \mathcal{L}_{74} \mathcal{L}_{92}^{2} \mathcal{L}_{117} \mathcal{L}_{119}}= \\
=\left(\frac{3^{19} 7^{5}}{2^{8} 5^{12}}, \frac{3^{13}}{2^{12}}, \frac{2^{33} 5^{2} 7^{5}}{3^{27}}, \frac{2^{10} 3^{3}}{7^{2}}, \frac{3^{20} 5}{2^{5} 7^{7}}\right), \\
F_{2}=\frac{\mathcal{L}_{8}^{3} \mathcal{L}_{10}^{3} \mathcal{L}_{11}^{3} \mathcal{L}_{15} \mathcal{L}_{16}^{2} \mathcal{L}_{18}^{2} \mathcal{L}_{23} \mathcal{L}_{25}^{2} \mathcal{L}_{27} \mathcal{L}_{29} \mathcal{L}_{30} \mathcal{L}_{31}^{4} \mathcal{L}_{38} \mathcal{L}_{44} \mathcal{L}_{45} \mathcal{L}_{47} \mathcal{L}_{48}^{3} \mathcal{L}_{19} \mathcal{L}_{57} \mathcal{L}_{59} \mathcal{L}_{64}^{2} \mathcal{L}_{24} \mathcal{L}_{28} \mathcal{L}_{32} \mathcal{L}_{33} \mathcal{L}_{54} \mathcal{L}_{62}^{4} \mathcal{L}_{91} \mathcal{L}_{92} \mathcal{L}_{116} \mathcal{L}_{118} \mathcal{L}_{120} \mathcal{L}_{132}^{2} \mathcal{L}_{141} \mathcal{L}_{143}}{}=
\end{gathered}
$$

[^1]\[

$$
\begin{aligned}
& =\left(\frac{5^{12}}{2^{3} 3^{4} 7^{10}}, \frac{2^{32}}{3^{4} 5^{15}}, \frac{3^{14} 5^{10}}{2^{43} 7^{4}}, \frac{2^{12} 7^{5}}{3^{13} 5^{6}}, \frac{5^{4} 7^{7}}{2^{21} 3^{8} 11}\right), \\
& F_{3}=\frac{\mathcal{L}_{9}^{2} \mathcal{L}_{13}^{2} \mathcal{L}_{14}^{4} \mathcal{L}_{19} \mathcal{L}_{21} \mathcal{L}_{22} \mathcal{L}_{23}^{2} \mathcal{L}_{24}^{2} \mathcal{L}_{32}^{3} \mathcal{L}_{34} \mathcal{L}_{37} \mathcal{L}_{55} \mathcal{L}_{56} \mathcal{L}_{58} \mathcal{L}_{62} \mathcal{L}_{91} \mathcal{L}_{92} \mathcal{L}_{132}}{\mathcal{L}_{10}^{3} \mathcal{L}_{11}^{3} \mathcal{L}_{12} \mathcal{L}_{15}^{2} \mathcal{L}_{18}^{3} \mathcal{L}_{26}^{2} \mathcal{L}_{27} \mathcal{L}_{29} \mathcal{L}_{30} \mathcal{L}_{31} \mathcal{L}_{44} \mathcal{L}_{45} \mathcal{L}_{46} \mathcal{L}_{47} \mathcal{L}_{48}^{2} \mathcal{L}_{54} \mathcal{L}_{65}} \\
& \frac{\mathcal{L}_{140} \mathcal{L}_{141} \mathcal{L}_{142} \mathcal{L}_{143} \mathcal{L}_{144}}{\mathcal{L}_{69} \mathcal{L}_{70} \mathcal{L}_{71} \mathcal{L}_{74} \mathcal{L}_{114} \mathcal{L}_{115} \mathcal{L}_{117} \mathcal{L}_{119}}=\left(\frac{2^{17} 7^{6}}{3^{13} 5^{8}}, \frac{5^{5}}{2^{14} 3^{2}}, \frac{2^{4} 3^{3} 5}{7^{6}}, \frac{5^{5}}{3^{4} 7^{4}}, \frac{2^{9} 3^{14}}{5^{5} 7^{3} 11^{5}}\right), \\
& F_{4}=\frac{\mathcal{L}_{9}^{2} \mathcal{L}_{11}^{2} \mathcal{L}_{12}^{6} \mathcal{L}_{14}^{3} \mathcal{L}_{18}^{2} \mathcal{L}_{23}^{2} \mathcal{L}_{30}^{3} \mathcal{L}_{33} \mathcal{L}_{45}^{3} \mathcal{L}_{54}^{5} \mathcal{L}_{62}^{4} \mathcal{L}_{65} \mathcal{L}_{115} \mathcal{L}_{141} \mathcal{L}_{143} \mathcal{L}_{152}}{\mathcal{L}_{8}^{2} \mathcal{L}_{10}^{6} \mathcal{L}_{13}^{2} \mathcal{L}_{16}^{2} \mathcal{L}_{19} \mathcal{L}_{22}^{3} \mathcal{L}_{24}^{4} \mathcal{L}_{25}^{6} \mathcal{L}_{28} \mathcal{L}_{31}^{4} \mathcal{L}_{47} \mathcal{L}_{56} \mathcal{L}_{70} \mathcal{L}_{92}^{3} \mathcal{L}_{132}}= \\
& =\left(\frac{3^{35}}{2^{17} 5^{11}}, \frac{3^{11} 57}{2^{10}}, \frac{2^{39} 5^{3} 7^{10}}{3^{39}}, \frac{2^{4} 3^{10}}{57^{2}}, \frac{3^{14} 11^{6}}{2^{8} 5^{4} 7^{5}}\right) \text {, } \\
& F_{5}=\frac{\mathcal{L}_{9} \mathcal{L}_{14} \mathcal{L}_{18} \mathcal{L}_{21} \mathcal{L}_{30} \mathcal{L}_{33} \mathcal{L}_{45} \mathcal{L}_{48} \mathcal{L}_{54} \mathcal{L}_{62}^{2} \mathcal{L}_{91} \mathcal{L}_{115} \mathcal{L}_{121} \mathcal{L}_{141} \mathcal{L}_{143} \mathcal{L}_{168}}{\mathcal{L}_{8} \mathcal{L}_{10}^{2} \mathcal{L}_{11} \mathcal{L}_{13} \mathcal{L}_{15} \mathcal{L}_{16} \mathcal{L}_{22}^{2} \mathcal{L}_{24} \mathcal{L}_{25}^{2} \mathcal{L}_{28} \mathcal{L}_{31}^{2} \mathcal{L}_{39} \mathcal{L}_{44} \mathcal{L}_{47} \mathcal{L}_{56} \mathcal{L}_{60} \mathcal{L}_{70} \mathcal{L}_{92}}= \\
& =\left(\frac{3^{11} 7}{2^{13} 5^{6}}, \frac{7^{3}}{2^{12} 35}, \frac{2^{7} 5^{3}}{3^{14}}, \frac{2^{6} 3^{5}}{5^{5} 7^{4}}, \frac{5^{2} 11^{3}}{2^{23} 3}\right), \\
& F_{6}=\frac{\mathcal{L}_{11}^{4} \mathcal{L}_{12}^{2} \mathcal{L}_{18}^{2} \mathcal{L}_{23}^{2} \mathcal{L}_{26} \mathcal{L}_{27} \mathcal{L}_{30}^{2} \mathcal{L}_{31}^{2} \mathcal{L}_{42} \mathcal{L}_{45}^{2} \mathcal{L}_{48}^{8} \mathcal{L}_{54}^{2} \mathcal{L}_{74} \mathcal{L}_{114} \mathcal{L}_{117} \mathcal{L}_{119} \mathcal{L}_{174}}{\mathcal{L}_{8} \mathcal{L}_{9}^{\mathcal{6}} \mathcal{L}_{10} \mathcal{L}_{13}^{2} \mathcal{L}_{14}^{10} \mathcal{L}_{19} \mathcal{L}_{22}^{3} \mathcal{L}_{24}^{3} \mathcal{L}_{25}^{2} \mathcal{L}_{32} \mathcal{L}_{37} \mathcal{L}_{55} \mathcal{L}_{56} \mathcal{L}_{58} \mathcal{L}_{62}^{2} \mathcal{L}_{85} \mathcal{L}_{92}^{2}}= \\
& =\left(\frac{2^{6} 3^{19}}{5^{3} 7^{9}}, \frac{2^{15} 7^{13}}{3^{9} 5^{15}}, \frac{5^{18} 7^{5}}{2^{31} 3^{15}}, \frac{3^{10} 7^{4}}{2^{11} 5^{7}}, \frac{5^{6} 7^{2} 11^{2}}{2^{4} 3^{15}}\right), \\
& F_{7}=\frac{\mathcal{L}_{11}^{8} \mathcal{L}_{12} \mathcal{L}_{15} \mathcal{L}_{16} \mathcal{L}_{18}^{2} \mathcal{L}_{23}^{3} \mathcal{L}_{26} \mathcal{L}_{29} \mathcal{L}_{30}^{3} \mathcal{L}_{31}^{4} \mathcal{L}_{45}^{3} \mathcal{L}_{47} \mathcal{L}_{48}^{8} \mathcal{L}_{5}^{2} \mathcal{L}_{13}^{3} \mathcal{L}_{14}^{13} \mathcal{L}_{65} \mathcal{L}_{70} \mathcal{L}_{21} \mathcal{L}_{22}^{4} \mathcal{L}_{74}^{6} \mathcal{L}_{25} \mathcal{L}_{32}^{2} \mathcal{L}_{33} \mathcal{L}_{34} \mathcal{L}_{37} \mathcal{L}_{55} \mathcal{L}_{58} \mathcal{L}_{60} \mathcal{L}_{62}^{4} \mathcal{L}_{92}^{3}}{\mathcal{L}^{3}} \\
& \frac{\mathcal{L}_{114} \mathcal{L}_{117} \mathcal{L}_{119} \mathcal{L}_{182}}{\mathcal{L}_{132} \mathcal{L}_{141} \mathcal{L}_{143}}=\left(\frac{3^{11} 5^{5}}{2^{20} 7^{11}}, \frac{2^{40} 7^{6}}{3^{14} 5^{25}}, \frac{5^{15} 7^{5}}{2^{61} 3^{8}}, \frac{27^{7}}{3^{9} 5^{14}}, \frac{5^{11} 7^{2} 11}{2^{35} 3^{17}}\right), \\
& F_{8}=\frac{\mathcal{L}_{9}^{2} \mathcal{L}_{12}^{2} \mathcal{L}_{14}^{3} \mathcal{L}_{18} \mathcal{L}_{33} \mathcal{L}_{54} \mathcal{L}_{62}^{3} \mathcal{L}_{92} \mathcal{L}_{115} \mathcal{L}_{141} \mathcal{L}_{143} \mathcal{L}_{183}}{\mathcal{L}_{10} \mathcal{L}_{11}^{2} \mathcal{L}_{13} \mathcal{L}_{16} \mathcal{L}_{23}^{2} \mathcal{L}_{25}^{2} \mathcal{L}_{28} \mathcal{L}_{31}^{3} \mathcal{L}_{35} \mathcal{L}_{45} \mathcal{L}_{47} \mathcal{L}_{56} \mathcal{L}_{61} \mathcal{L}_{70}}= \\
& =\left(\frac{2^{3} 3^{12}}{5^{7} 7}, \frac{3^{4} 5^{6} 7^{2}}{2^{23}}, \frac{2^{30} 7}{3^{16} 5^{2}}, \frac{3^{10} 5^{4}}{2^{14} 7^{3}}, \frac{2^{10} 11^{5}}{5^{7} 7^{3}}\right), \\
& F_{9}=\frac{\mathcal{L}_{8} \mathcal{L}_{10}^{5} \mathcal{L}_{13}^{3} \mathcal{L}_{14}^{5} \mathcal{L}_{15} \mathcal{L}_{19} \mathcal{L}_{22}^{5} \mathcal{L}_{24}^{9} \mathcal{L}_{25}^{3} \mathcal{L}_{28} \mathcal{L}_{44} \mathcal{L}_{55} \mathcal{L}_{56} \mathcal{L}_{92}^{3} \mathcal{L}_{132} \mathcal{L}_{184}}{\mathcal{L}_{11}^{8} \mathcal{L}_{12}^{2} \mathcal{L}_{18}^{2} \mathcal{L}_{23}^{3} \mathcal{L}_{26} \mathcal{L}_{30}^{3} \mathcal{L}_{32} \mathcal{L}_{36} \mathcal{L}_{45}^{3} \mathcal{L}_{48}^{5} \mathcal{L}_{54}^{3} \mathcal{L}_{65} \mathcal{L}_{90} \mathcal{L}_{91} \mathcal{L}_{114} \mathcal{L}_{115}}= \\
& =\left(\frac{2^{21} 5^{4} 7^{6}}{3^{23}}, \frac{5^{22}}{2^{18} 3^{3} 7^{6}}, \frac{2^{20} 3^{23}}{5^{13} 7^{5}}, \frac{3^{10} 5^{11}}{2^{6} 7^{8}}, \frac{2^{32} 7^{7}}{3^{5} 5^{10} 11^{2}}\right), \\
& F_{10}=\frac{\mathcal{L}_{8} \mathcal{L}_{12}^{2} \mathcal{L}_{13} \mathcal{L}_{14} \mathcal{L}_{19} \mathcal{L}_{21} \mathcal{L}_{22} \mathcal{L}_{24}^{3} \mathcal{L}_{33} \mathcal{L}_{48} \mathcal{L}_{54} \mathcal{L}_{55} \mathcal{L}_{62} \mathcal{L}_{132} \mathcal{L}_{141} \mathcal{L}_{143} \mathcal{L}_{185}}{\mathcal{L}_{9} \mathcal{L}_{11}^{4} \mathcal{L}_{16} \mathcal{L}_{18} \mathcal{L}_{25}^{2} \mathcal{L}_{26} \mathcal{L}_{30} \mathcal{L}_{31} \mathcal{L}_{32} \mathcal{L}_{44} \mathcal{L}_{47} \mathcal{L}_{65} \mathcal{L}_{70} \mathcal{L}_{74} \mathcal{L}_{114}}=
\end{aligned}
$$
\]

$$
\begin{aligned}
& =\left(\frac{2^{9} 3^{7} 7}{5^{5}}, \frac{5^{4} 7^{6}}{2^{7} 3^{5}}, \frac{2^{5} 5^{5} 7^{2}}{3^{7}}, \frac{2^{4} 3^{16} 5^{3}}{7^{9}}, \frac{2^{11} 7^{5}}{3^{3} 5^{4}}\right), \\
& F_{11}=\frac{\mathcal{L}_{9}^{4} \mathcal{L}_{12} \mathcal{L}_{14}^{9} \mathcal{L}_{22} \mathcal{L}_{24} \mathcal{L}_{32} \mathcal{L}_{54} \mathcal{L}_{62}^{3} \mathcal{L}_{186}}{\mathcal{L}_{10}^{3} \mathcal{L}_{11} \mathcal{L}_{15} \mathcal{L}_{16} \mathcal{L}_{25} \mathcal{L}_{31}^{4} \mathcal{L}_{45} \mathcal{L}_{48}^{5}}=\left(\frac{3^{6} 7^{9}}{2^{2} 5^{7}}, \frac{3^{15} 5^{16}}{2^{24} 7^{7}}, \frac{2^{53} 7^{2}}{3^{11} 5^{10}}, \frac{3^{4} 5^{7}}{2^{4}}, \frac{2^{8} 3^{22} 11^{3}}{5^{5} 7^{8}}\right), \\
& F_{12}=\frac{\mathcal{L}_{8}^{2} \mathcal{L}_{9}^{5} \mathcal{L}_{13}^{2} \mathcal{L}_{14}^{14} \mathcal{L}_{19}^{2} \mathcal{L}_{21}^{2} \mathcal{L}_{22} \mathcal{L}_{24} \mathcal{L}_{25} \mathcal{L}_{32}^{3} \mathcal{L}_{33} \mathcal{L}_{37} \mathcal{L}_{55} \mathcal{L}_{56} \mathcal{L}_{58} \mathcal{L}_{61} \mathcal{L}_{62}^{4} \mathcal{L}_{91}^{2} \mathcal{L}_{92}^{2}}{\mathcal{L}_{10} \mathcal{L}_{11}^{2} \mathcal{L}_{15}^{2} \mathcal{L}_{18}^{4} \mathcal{L}_{23} \mathcal{L}_{26}^{2} \mathcal{L}_{27} \mathcal{L}_{29} \mathcal{L}_{30}^{3} \mathcal{L}_{31}^{4} \mathcal{L}_{38} \mathcal{L}_{44}^{2} \mathcal{L}_{45}^{2} \mathcal{L}_{47} \mathcal{L}_{48}^{7} \mathcal{L}_{54}^{2} \mathcal{L}_{65}^{2} \mathcal{L}_{66} \mathcal{L}_{70} \mathcal{L}_{74}} \\
& \frac{\mathcal{L}_{132}^{2} \mathcal{L}_{141} \mathcal{L}_{143} \mathcal{L}_{200} \mathcal{L}_{202} \mathcal{L}_{204}}{\mathcal{L}_{99} \mathcal{L}_{101} \mathcal{L}_{114} \mathcal{L}_{115} \mathcal{L}_{117} \mathcal{L}_{119} \mathcal{L}_{122}}=\left(\frac{2^{11} 7^{17}}{3^{21} 5^{7}}, \frac{3^{13} 5^{13}}{2^{26} 7^{5}}, \frac{2^{42} 3^{7}}{5^{14} 7^{3}}, \frac{2^{10} 5^{8}}{3^{6} 7^{2}}, \frac{2^{17} 3^{26}}{57^{11} 11^{3}}\right), \\
& F_{13}=\frac{\mathcal{L}_{8}^{3} \mathcal{L}_{10}^{6} \mathcal{L}_{11}^{3} \mathcal{L}_{13} \mathcal{L}_{16} \mathcal{L}_{18}^{2} \mathcal{L}_{22}^{2} \mathcal{L}_{24} \mathcal{L}_{25}^{5} \mathcal{L}_{27} \mathcal{L}_{29} \mathcal{L}_{31}^{7} \mathcal{L}_{44} \mathcal{L}_{47}^{2} \mathcal{L}_{48}^{4} \mathcal{L}_{49} \mathcal{L}_{65} \mathcal{L}_{70}^{2} \mathcal{L}_{74} \mathcal{L}_{84}}{\mathcal{L}_{9}^{7} \mathcal{L}_{12}^{5} \mathcal{L}_{14}^{12} \mathcal{L}_{19} \mathcal{L}_{21}^{2} \mathcal{L}_{23}^{2} \mathcal{L}_{30}^{2} \mathcal{L}_{32}^{2} \mathcal{L}_{33}^{2} \mathcal{L}_{37} \mathcal{L}_{41} \mathcal{L}_{45}^{2} \mathcal{L}_{54}^{3} \mathcal{L}_{55} \mathcal{L}_{58} \mathcal{L}_{62}^{7} \mathcal{L}_{91}} \\
& \frac{\mathcal{L}_{92}^{2} \mathcal{L}_{114} \mathcal{L}_{117} \mathcal{L}_{119} \mathcal{L}_{205}}{\mathcal{L}_{102} \mathcal{L}_{132} \mathcal{L}_{141}^{2} \mathcal{L}_{143}^{2}}=\left(\frac{2^{6} 5^{15}}{3^{26} 7^{9}}, \frac{2^{27}}{3^{16} 5^{12}}, \frac{3^{35} 5^{5}}{2^{77} 7^{6}}, \frac{7^{8}}{2^{8} 3^{19} 5^{5}}, \frac{5^{3} 7^{6}}{2^{4} 3^{30}}\right), \\
& F_{14}=\frac{\mathcal{L}_{12}^{7} \mathcal{L}_{18} \mathcal{L}_{20} \mathcal{L}_{23}^{3} \mathcal{L}_{26}^{2} \mathcal{L}_{30}^{4} \mathcal{L}_{31}^{2} \mathcal{L}_{33}^{2} \mathcal{L}_{44} \mathcal{L}_{45}^{4} \mathcal{L}_{48}^{9} \mathcal{L}_{53} \mathcal{L}_{54}^{5} \mathcal{L}_{90} \mathcal{L}_{115}}{\mathcal{L}_{8}^{4} \mathcal{L}_{9}^{6} \mathcal{L}_{10} \mathcal{L}_{11}^{2} \mathcal{L}_{13}^{3} \mathcal{L}_{14}^{11} \mathcal{L}_{16} \mathcal{L}_{21}^{2} \mathcal{L}_{22}^{3} \mathcal{L}_{24} \mathcal{L}_{25}^{7} \mathcal{L}_{27} \mathcal{L}_{28} \mathcal{L}_{43} \mathcal{L}_{47}^{2} \mathcal{L}_{56} \mathcal{L}_{62}^{2} \mathcal{L}_{70}^{2} \mathcal{L}_{84}} \\
& \frac{\mathcal{L}_{141}^{2} \mathcal{L}_{143}^{2} \mathcal{L}_{213} \mathcal{L}_{215}}{\mathcal{L}_{91} \mathcal{L}_{92}^{4} \mathcal{L}_{106} \mathcal{L}_{142}}=\left(\frac{2^{12} 3^{33}}{5^{5} 7^{19}}, \frac{2^{6} 7^{14}}{3^{10} 5^{14}}, \frac{5^{22} 7^{13}}{2^{31} 3^{39}}, \frac{3^{29}}{2^{8} 5^{11} 7^{7}}, \frac{2^{3}, 7^{14}}{3^{20} 5^{4} 11^{3}}\right), \\
& F_{15}=\frac{\mathcal{L}_{9}^{3} \mathcal{L}_{12}^{7} \mathcal{L}_{14} \mathcal{L}_{15}^{2} \mathcal{L}_{18}^{2} \mathcal{L}_{23}^{2} \mathcal{L}_{30}^{3} \mathcal{L}_{33}^{3} \mathcal{L}_{44} \mathcal{L}_{45}^{3} \mathcal{L}_{52} \mathcal{L}_{54}^{6} \mathcal{L}_{62}^{2} \mathcal{L}_{65} \mathcal{L}_{115} \mathcal{L}_{122}}{\mathcal{L}_{8}^{3} \mathcal{L}_{10}^{4} \mathcal{L}_{11}^{2} \mathcal{L}_{13}^{2} \mathcal{L}_{16}^{3} \mathcal{L}_{21} \mathcal{L}_{22}^{2} \mathcal{L}_{25}^{7} \mathcal{L}_{28} \mathcal{L}_{31}^{2} \mathcal{L}_{32}^{2} \mathcal{L}_{40} \mathcal{L}_{42} \mathcal{L}_{47} \mathcal{L}_{53} \mathcal{L}_{56} \mathcal{L}_{61} \mathcal{L}_{70}^{2}} \\
& \frac{\mathcal{L}_{141} \mathcal{L}_{143} \mathcal{L}_{212} \mathcal{L}_{214} \mathcal{L}_{216}}{\mathcal{L}_{91} \mathcal{L}_{92}^{3} \mathcal{L}_{105} \mathcal{L}_{107} \mathcal{L}_{132}}=\left(\frac{3^{49}}{2^{17} 5^{12} 7^{7}}, \frac{5^{12}}{2^{4} 3^{7}}, \frac{2^{32} 5^{3} 7^{12}}{3^{38}}, \frac{3^{28}}{2^{7} 7^{9}}, \frac{2^{4} 3^{2} 7^{5} 11^{4}}{5^{10}}\right), \\
& F_{16}=\frac{\mathcal{L}_{9}^{12} \mathcal{L}_{12}^{7} \mathcal{L}_{13} \mathcal{L}_{14}^{2} \mathcal{L}_{19}^{2} \mathcal{L}_{21}^{2} \mathcal{L}_{23}^{2} \mathcal{L}_{24}^{4} \mathcal{L}_{32}^{6} \mathcal{L}_{33}^{4} \mathcal{L}_{34}^{2} \mathcal{L}_{37}^{2} \mathcal{L}_{54}^{4} \mathcal{L}_{55}^{2} \mathcal{L}_{58}^{2} \mathcal{L}_{10}^{10} \mathcal{L}_{11}^{10} \mathcal{L}_{15}^{4} \mathcal{L}_{16}^{4} \mathcal{L}_{18}^{4} \mathcal{L}_{132}^{2} \mathcal{L}_{25}^{8} \mathcal{L}_{26}^{3} \mathcal{L}_{27}^{2} \mathcal{L}_{29}^{2} \mathcal{L}_{31}^{11} \mathcal{L}_{44}^{2} \mathcal{L}_{46} \mathcal{L}_{47}^{4} \mathcal{L}_{48}^{11} \mathcal{L}_{65}^{2} \mathcal{L}_{69} \mathcal{L}_{70}^{4} \mathcal{L}_{71}}{\mathcal{L}^{4}} \\
& \frac{\mathcal{L}_{140} \mathcal{L}_{141}^{4} \mathcal{L}_{142} \mathcal{L}_{143}^{4} \mathcal{L}_{217}}{\mathcal{L}_{74}^{2} \mathcal{L}_{108} \mathcal{L}_{114}^{2} \mathcal{L}_{117}^{2} \mathcal{L}_{119}^{2}}=\left(\frac{2^{6} 3^{20} 7^{24}}{5^{34}}, \frac{3^{20} 5^{39}}{2^{73} 7^{8}}, \frac{2^{120} 7^{4}}{3^{45} 5^{14}}, \frac{2^{5} 3^{25} 5^{17}}{7^{20}}, \frac{2^{28} 3^{52}}{5^{22} 7^{11}}\right), \\
& F_{17}=\frac{\mathcal{L}_{8}^{2} \mathcal{L}_{10}^{7} \mathcal{L}_{13} \mathcal{L}_{15} \mathcal{L}_{19} \mathcal{L}_{22}^{4} \mathcal{L}_{24}^{7} \mathcal{L}_{25}^{3} \mathcal{L}_{29} \mathcal{L}_{31}^{5} \mathcal{L}_{44} \mathcal{L}_{48} \mathcal{L}_{92}^{3} \mathcal{L}_{132} \mathcal{L}_{234}}{\mathcal{L}_{9}^{5} \mathcal{L}_{11}^{6} \mathcal{L}_{12}^{2} \mathcal{L}_{14}^{4} \mathcal{L}_{18} \mathcal{L}_{21} \mathcal{L}_{23}^{2} \mathcal{L}_{30}^{3} \mathcal{L}_{32} \mathcal{L}_{45}^{3} \mathcal{L}_{46} \mathcal{L}_{54}^{3} \mathcal{L}_{62}^{5} \mathcal{L}_{65} \mathcal{L}_{76} \mathcal{L}_{91} \mathcal{L}_{116}}= \\
& =\left(\frac{2^{23} 5^{7}}{3^{21} 7^{6}}, \frac{2^{6} 5^{6}}{3^{16} 7^{2}}, \frac{3^{24}}{2^{38} 7^{4}}, \frac{3^{10} 5^{4}}{2^{14} 7^{8}}, \frac{2^{20} 7^{14}}{3^{22} 5^{8} 11^{5}}\right), \\
& F_{18}=\frac{\mathcal{L}_{10} \mathcal{L}_{11}^{7} \mathcal{L}_{16}^{2} \mathcal{L}_{18}^{3} \mathcal{L}_{23} \mathcal{L}_{25}^{3} \mathcal{L}_{26} \mathcal{L}_{27} \mathcal{L}_{30} \mathcal{L}_{31}^{3} \mathcal{L}_{38} \mathcal{L}_{45} \mathcal{L}_{47}^{2} \mathcal{L}_{48}^{2} \mathcal{L}_{65}^{2} \mathcal{L}_{70}^{2} \mathcal{L}_{74} \mathcal{L}_{114} \mathcal{L}_{242}}{\mathcal{L}_{9} \mathcal{L}_{12}^{4} \mathcal{L}_{13} \mathcal{L}_{14}^{7} \mathcal{L}_{19}^{2} \mathcal{L}_{22}^{2} \mathcal{L}_{24}^{4} \mathcal{L}_{33}^{2} \mathcal{L}_{37} \mathcal{L}_{54} \mathcal{L}_{55} \mathcal{L}_{62}^{3} \mathcal{L}_{92} \mathcal{L}_{120} \mathcal{L}_{132}^{2} \mathcal{L}_{141}^{2} \mathcal{L}_{143}^{2}}= \\
& =\left(\frac{5^{11}}{2^{14} 3^{5} 7^{5}}, \frac{2^{26} 3^{4}}{5^{16} 7^{2}}, \frac{3^{14} 5^{5}}{2^{33} 7^{4}}, \frac{2^{2} 7^{16}}{3^{23} 5^{9}}, \frac{5^{11}}{2^{30} 3^{2} 7}\right),
\end{aligned}
$$

$$
\begin{aligned}
& F_{19}=\frac{\mathcal{L}_{9}^{2} \mathcal{L}_{14}^{6} \mathcal{L}_{19} \mathcal{L}_{21} \mathcal{L}_{25} \mathcal{L}_{32}^{2} \mathcal{L}_{62}^{2} \mathcal{L}_{91} \mathcal{L}_{92} \mathcal{L}_{132} \mathcal{L}_{243}}{\mathcal{L}_{10} \mathcal{L}_{15}^{2} \mathcal{L}_{18} \mathcal{L}_{23} \mathcal{L}_{30} \mathcal{L}_{31}^{2} \mathcal{L}_{38} \mathcal{L}_{44} \mathcal{L}_{45} \mathcal{L}_{48}^{3} \mathcal{L}_{54} \mathcal{L}_{60} \mathcal{L}_{65}}= \\
& =\left(\frac{27^{8}}{3^{3} 5^{5}}, \frac{3^{8} 5^{7}}{2^{13} 7^{3}}, \frac{2^{20} 3^{2} 7^{2}}{5^{9}}, \frac{25^{6} 7}{3^{6}}, \frac{3^{13} 511}{27^{6}}\right), \\
& F_{20}=\frac{\mathcal{L}_{10}^{4} \mathcal{L}_{13} \mathcal{L}_{15} \mathcal{L}_{22}^{2} \mathcal{L}_{24}^{2} \mathcal{L}_{25}^{2} \mathcal{L}_{28} \mathcal{L}_{31}^{5} \mathcal{L}_{44} \mathcal{L}_{48}^{4} \mathcal{L}_{56} \mathcal{L}_{60} \mathcal{L}_{92} \mathcal{L}_{244}}{\mathcal{L}_{9}^{5} \mathcal{L}_{11} \mathcal{L}_{12}^{2} \mathcal{L}_{14}^{9} \mathcal{L}_{18} \mathcal{L}_{21} \mathcal{L}_{27} \mathcal{L}_{32} \mathcal{L}_{45} \mathcal{L}_{54}^{2} \mathcal{L}_{61} \mathcal{L}_{62}^{5} \mathcal{L}_{91} \mathcal{L}_{115} \mathcal{L}_{121}}= \\
& =\left(\frac{2^{15} 5^{8}}{3^{18} 7^{9}}, \frac{2^{15} 7^{5}}{3^{17} 5^{10}}, \frac{3^{14} 5^{9}}{2^{51} 7^{5}}, \frac{3}{2^{15} 5^{4}}, \frac{2^{16} 7^{8}}{3^{23} 5^{2} 11^{6}}\right), \\
& F_{21}=\frac{\mathcal{L}_{9}^{5} \mathcal{L}_{11}^{11} \mathcal{L}_{12}^{4} \mathcal{L}_{14} \mathcal{L}_{18}^{3} \mathcal{L}_{21} \mathcal{L}_{23}^{4} \mathcal{L}_{26} \mathcal{L}_{30}^{4} \mathcal{L}_{32} \mathcal{L}_{38} \mathcal{L}_{45}^{5} \mathcal{L}_{48} \mathcal{L}_{54}^{5} \mathcal{L}_{61} \mathcal{L}_{62}^{4} \mathcal{L}_{65}^{2} \mathcal{L}_{91}}{\mathcal{L}_{8} \mathcal{L}_{10}^{9} \mathcal{L}_{13}^{3} \mathcal{L}_{15} \mathcal{L}_{19}^{2} \mathcal{L}_{20} \mathcal{L}_{22}^{7} \mathcal{L}_{24}^{13} \mathcal{L}_{25}^{5} \mathcal{L}_{28} \mathcal{L}_{31}^{4} \mathcal{L}_{44} \mathcal{L}_{52} \mathcal{L}_{55} \mathcal{L}_{56}} \\
& \frac{\mathcal{L}_{114} \mathcal{L}_{115} \mathcal{L}_{158} \mathcal{L}_{245}}{\mathcal{L}_{79} \mathcal{L}_{92}^{5} \mathcal{L}_{122} \mathcal{L}_{132}^{2}}=\left(\frac{3^{36} 7^{3}}{2^{46} 5^{9}}, \frac{2^{10} 3^{21}}{5^{18} 7}, \frac{2^{20} 5^{10} 7^{9}}{3^{44}}, \frac{2^{32} 7^{11}}{3^{17} 5^{16}}, \frac{3^{29} 5^{11} 11^{7}}{2^{52} 7^{16}}\right) .
\end{aligned}
$$

From these we can be give a non-singular matrix M corresponding to the algorithm. Going on to the step 4 the next chart shows the appropriate d values belonging to the different e-s.

e	$1-97$	$98-137$	$138-179$	$180-191$	$192-239$	$240-269$	$270-419$
d	245	299	411	721	788	954	1076

e	$420-431$	$432-439$	$440-599$	$600-659$
d	1674	1725	1765	2401

The attentive reader can observe that by this example Lemma 2 (even more) is proved and so the proof of the theorem is completed.

Without giving the exact vectors $F_{1}, F_{2}, \ldots, F_{j} \in \Delta_{\underline{v}}^{\mu}$ we insert some computer tests verifying Conjecture IV for higher degree. For brevity let us denote $P_{n}:=\prod a_{j}, a_{j} \in \mathbb{P}, a_{j} \leq n$.

Let $k=5, \gamma=\left(P_{23}, P_{23}, P_{23}, P_{23}, P_{23}, P_{23}\right)$. Then

e	$1-109$	$110-179$	$180-191$	$192-229$	$230-307$	$308-313$	$314-397$
d	624	815	853	960	1145	1240	1252

e	$398-419$	$420-431$	$432-439$	$440-457$	$458-599$	$600-643$
d	1587	1674	1726	1768	1833	2401

Let $k=6, \gamma=\left(P_{37}, P_{41}, P_{41}, P_{43}, P_{43}, P_{43}, P_{43}\right)$. Then

e	$1-227$	$228-419$	$420-431$	$432-541$	$542-599$
d	1336	1589	1674	2154	2164

Our method is clearly not appropriate for large number of completely additive functions, for large e or μ. Even if we could prove Conjecture IV for a given k to prove the induction step seems to be very hard.

References

[1] Kátai, I., On arithmetic functions with regularity properties, Acta Sci. Math., 45 (1983), 253-260.
[2] Kátai, I., On additive functions satisfying a congruence, Acta Sci. Math., 47 (1984), 85-92.
[3] Kátai, I., Multiplicative functions with regularity properties, I-V, Acta Math. Hungar., 42 (1983), 295-308; 43 (1984), 105-130; 43 (1984), 259272; 44 (1984), 125-132; 45 (1985), 379-380.
[4] Kátai, I., Arithmetical functions satisfying some realations, Acta Sci. Math., 55 (1991), 249-268.
[5] van Rossum-Wijsmuller, M., Additive functions on the Gaussian integers, Publicationes Math. Debrecen, 38 (1991), 255-262.
[6] Styer, R., A problem of Kátai on sums of additive functions, Acta Sci. Math., 55 (1991), 269-286.
[7] Kátai, I., van Rossum-Wijsmuller, M., Additive functions satisfying congruences, Acta Sci. Math., 56 (1992), 63-72.

Attila Kovács and Bui Minh Phong
Eötvös Loránd University
Deptartment of Computer Algebra
H-1117 Budapest, Pázmány P. sétány I/D, Hungary
e-mail: attila@compalg.inf.elte.hu bui@compalg.inf.elte.hu

[^0]: *The research was supported by OTKA Grant No. 2153, T 020295 and FKFP-0144.

[^1]: ${ }^{1}$ Maple is a registered trademark of Waterloo Maple Software

