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Abstract

A fascinating connection was conjectured on sums of completely
additive functions satisfying a congruence by Kátai. He could prove it
for the case of k = 3. The general solution of the problem is far from
beeing simple. The object of the present paper is to prove this con-
jecture for k = 4. Another purpose of the authors was to discuss the
problem from group theoretical aspects and to describe an algorithm
verifying the conjecture for finite number of functions under a certain
bound.

1 Introduction

An arithmetical function f(n) is said to be completely additive if the relation
f(nm) = f(n)+f(m) holds for every positive integer n and m. LetA∗ denote
the class of all real-valued completely additive functions. Throughout this
paper we apply the usual notations, i.e. P denotes the set of primes, N the
set of positive integers, Q and R the fields of rational and real numbers,
respectively.

Let P (z) = 1 + A1z + A2z
2 + . . . + Akz

k (k ≥ 1) be a polynomial with
real coefficients. Let E denote the operator Ezn := zn+1 in the linear space
of infinite sequences. For the polynomial P (z) we have

P (E)f(n) = f(n) + A1f(n + 1) + . . . + Akf(n + k).

∗The research was supported by OTKA Grant No. 2153, T 020295 and FKFP–0144.
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Conjecture I. (Kátai) If f ∈ A∗, P (z) 6∈ Q[z] and P (E)f(n) ≡ 0 (mod 1)
for all n ∈ N then f(n) is identically zero.

This conjecture was proved for the case of k = 2 (see [1]). Moreover, Kátai
raised a more general question:

Conjecture II. (Kátai) Let fj ∈ A∗ (j = 0, 1, 2, . . . , k). Assume that

k∑

j=0

fj(n + j) ≡ 0 (mod 1)

for all n ∈ N. Then fj(n) ≡ 0 (mod 1) for every n ∈ N and for every j.

In [2] Kátai proved it for the case of k = 3. The idea can be extended
to the Gaussian integers, as was done in [5, 7]. It was examined the analogy
of the conjecture for three completely additive [4], as well as for two [3] and
three [6] additive functions.

2 Group theoretical approach

We extend the domain of an arbitrary real valued completely additive func-
tion f(n) for the set of positive rational numbers Q∗ by f(a/b) := f(a)−f(b).
Let us do it for f0, f1, f2, . . . , fk (k ∈ N) and let us define the set

Ωk := { (a0, a1, a2, . . . , ak) ∈ Qk+1
∗ :

k∑

i=0

fi(ai) ≡ 0 (mod 1) }.

Performing the multiplications component-wise it is easy to see that (Qk+1
∗ ; ·)

is an abelian group. Hence, it follows from the additivity that if (a0, a1, . . . , ak)
∈ Ωk and (b0, b1, . . . , bk) ∈ Ωk then (a0b0

−1, a1b1
−1, . . . , akbk

−1) ∈ Ωk. Thus,
the following assertion is obvious.

Assertion. (Ωk; ·) is an abelian group with respect to the above defined
multiplication.

In fact, we think that the next conjecture is true:

Conjecture III If (A, ·) is a subgroup of the group (Qh
∗ ; ·), where h ∈ N

and (n, n + 1, . . . , n + h− 1) ∈ A for all n ∈ N, then A = Qh
∗ .
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It is clear that the first conjecture follows from the second one and the second
from the third one.

3 The main theorem

Theorem. Let P (z) = 1 + A1z + A2z
2 + A3z

3 + A4z
4 be a polynomial with

real coefficients, P (z) 6∈ Q[z]. If f ∈ A∗ satisfies the congruence relation

Ln := P (E)f(n) ≡ 0 (mod 1) (1)

for every n ∈ N, then f(n) is identically zero.

In order to prove the theorem we shall use an induction-like method.

3.1 Induction step

Lemma 1. If (1) holds for every n ∈ N and f(m) = 0 is satisfied for every
positive integer m ≤ 23 then f(n) = 0 for every n ∈ N.

Proof: We prove the lemma indirectly. Let

Kf := {n ∈ N : f(n) = 0}.

Assume that Kf 6= N, i.e. there exist a smallest positive integer S such that

f(S) 6= 0. (2)

By the assumption of the lemma it is pretty obvious that

S ∈ P (3)

and S ≥ 29. First we shall prove that for each V satisfying the relations
V ∈ {S + 2, S + 6, S + 8, S + 12} and V ≡ 1 (mod 6) we have

f(V ) = 0 or f(V ) 6∈ Q. (4)

Suppose that (4) does not hold. Then for some U for which U ∈ {S + 2, S +
6, S + 8, S + 12} with U ≡ 1 (mod 6), we obtain

f(U) 6= 0 and f(U) ∈ Q. (5)
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By the fact U ≡ 1 (mod 6) it is easily seen that

{U ± 1− 6k, U + 2− 6k, U + 3− 6k, 2U ± 2 : k = 0, 1} ⊆ Kf . (6)

By using (1) and (6) we get that LU−1 = A1f(U) ≡ 0 (mod 1), which with
(5) implies that

A1 ∈ Q. (7)

Let us observe that
f(U − 2) 6∈ Q, (8)

since in the opposite case, by using (1) and (6) we get

LU−4 = A2f(U − 2) + A4f(U) ≡ 0 (mod 1),

LU−3 = A1f(U − 2) + A3f(U) ≡ 0 (mod 1),

LU−2 = f(U − 2) + A2f(U) ≡ 0 (mod 1),

which with (5) and (7) would imply that P (z) ∈ Q[z]. In virtue of (5), (8)
and of the equation LU−2 it is obvious that

A2 6∈ Q. (9)

Since 3 | (2U + 1) and (2U + 1)/3 < S, we have f(2U + 1) = 0, hence by
using (5), (6), (7), (9) and the equation

L2U−2 = A1f(2U − 1) + A2f(U) ≡ 0 (mod 1)

we obtain
A1 6= 0, f(2U − 1) 6∈ Q. (10)

Consider the equation

L2U−1 = f(2U − 1) + A1f(U) + A4f(2U + 3) ≡ 0 (mod 1),

which with (5), (7) and (10) implies that

A4 6= 0, A4f(2U + 3) 6∈ Q. (11)

By using relations (5), (8), (10) and (11) it is easy to see that U , U − 2,
2U − 1, 2U + 3 ∈ P, consequently U ≡ 4 (mod 5). Since U ≡ 1 (mod 6),
U ≡ 4 (mod 5), U ≤ S + 12 and S ≥ 29 the following statements hold:

3 | 2U − 5, (2U − 5)/3 < S, 5 | 2U − 3, (2U − 3)/5 < S.
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It means that f(2U − 5) = f(2U − 3) = 0. Hence, using (5), (6) and the
equations

L2U−6 = A2f(U − 2) ≡ 0 (mod 1),

LU−4 = A2f(U − 2) + A4f(U) ≡ 0 (mod 1)

we have
A4 ∈ Q. (12)

On the other hand, using (5), (6), (7) and (10) the equation LU−7 = A1f(U−
6) ≡ 0 (mod 1) gives that f(U − 6) ∈ Q, which with (11), (12) and by
LU−6 = f(U − 6) + A4f(U − 2) ≡ 0 (mod 1) implies f(U − 2) ∈ Q. This
contradicts to (8). Thus, we have proved (4).

Now we are able to prove Lemma 1. We distinguish two cases:

(I) S ≡ 1 (mod 6)
(II) S ≡ 5 (mod 6).

Case (I). In this case we have

{S +1+6k, S +2+6k, S +3+6l, S +5+6l : k = 0, 1, 2, 3 l = 0, 1, 2} ⊆ Kf ,
(13)

and by virtue of the equations LS−1, LS−2, LS−3, LS−4 we get

A1f(S) ≡ A2f(S) ≡ A3f(S) ≡ A4f(S) ≡ 0 (mod 1).

If f(S) ∈ Q then Aj ∈ Q (j = 1, 2, 3, 4) but this is a contradiction, since
P (z) 6∈ Q[z]. Then we have

f(S) 6∈ Q. (14)

Observe that if Aj ∈ Q for some 1 ≤ j ≤ 4 then Aj = 0. It means that

Aj 6∈ Q or Aj = 0 (j = 1, 2, 3, 4). (15)

Let i = 0. It follows from (14), (15) and from the equation LS+6i = f(S +
6i) + A4f(S + 4 + 6i) ≡ 0 (mod 1) that

A4 6∈ Q, f(S + 4 + 6i) 6= 0. (16)

The reader can readily verify that f(S + 6 + 6i) 6= 0 since in the opposite
case using the equation LS+4+6i = f(S + 4 + 6i) ≡ 0 (mod 1) we get
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f(S+4+6i) ∈ Q. This with (13), (15), (16) and by LS+1+6i, LS+2+6i, LS+3+6i

implies A1 = A2 = A3 = 0. Hence the equation L2S+4+12i would infer
A4f(S + 4 + 6i) ≡ 0 (mod 1), i.e., A4 ∈ Q which is a contradiction. So we
have f(S + 6 + 6i) 6= 0. By similar arguments for i = 1, 2 and by using (4)
we obtain f(S + 4) 6= 0 and f(S + 6i) 6= 0 (i = 0, 1, 2, 3). It means that
S, S +4, S +6, S +12, S +18 are primes which is impossible since S ≥ 29 and
one of these numbers is a multiple of 5. So we proved that Case (I) cannot
occur.

Case (II). In this case it is no hard to see that

{S + 1 + 6k, S + 3 + 6k, S + 4 + 6k, S + 5 + 6l : k = 0, 1, 2 l = 0, 1} ⊆ Kf .

Let i = 0. Because of P (z) 6∈ Q[z] it is easily seen that f(S + 2 + 6i) 6= 0
and by (4) we have

f(S + 2 + 6i) 6∈ Q. (17)

Hence by using the equation

LS+2+6i = f(S + 2 + 6i) + A4f(S + 6 + 6i) ≡ 0 (mod 1)

it follows f(S + 6 + 6i) 6= 0. Suppose that f(S + 8 + 6i) = 0. Then from
LS+6+6i we get f(S + 6 + 6i) ∈ Q, therefore by LS+3+6i, LS+4+6i, LS+5+6i

we infer A1, A2, A3 ∈ Q. Moreover, by the equations LS−1+6i, LS+1+6i and
by (17) immediately follows that A1 = A3 = 0. Since 2S + 8 + 12i ∈ Kf ,
2S + 10 + 12i ∈ Kf , the equation

L2S+8+12i = A4f(2S + 12 + 12i) ≡ A4f(S + 6 + 6i) ≡ 0 (mod 1)

gives A4 ∈ Q which is contradiction. So f(S + 8 + 6i) 6= 0. Similarly, for
i = 1 using (4) we obtain S, S + 2, S + 6, S + 8, S + 14 are primes, but this
is impossible since S ≥ 29 and one of these numbers is a multiple of 5. The
proof of Lemma 1 is finished. 2

The proof of the theorem will be completed by proving the following

Lemma 2. If (1) holds for every n ∈ N then f(m) = 0 for every positive
integer m ≤ 23.

To verify this lemma we discuss the next conjecture which is a step by step
approach of the second one.
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3.2 Algorithm for the bounded case

Conjecture IV Let f0, f1, . . . , fk ∈ A∗. Given any e ∈ N there exist
a d ∈ N such that if Ln :=

∑k
j=0 fj(n + j) ≡ 0 (mod 1) holds for every

n ≤ d (n ∈ N) then fj(n) ≡ 0 (mod 1) for every n ≤ e (j = 0, 1, . . . , k).

We introduce some notations.
Let us denote the n-tuple Ln := (n, n+1, . . . , n+k) ∈ Ωk. Let furthermore

Γk := {(a0, a1, . . . , ak) : aj are squarefree integers, aj > 1 (0 ≤ j ≤ k)}.
For an arbitrary γ = (a0, a1, . . . , ak) ∈ Γk we define the vector v = v(γ) as

follows. Let the prime decomposition of aj be aj = p
(j)
1 p

(j)
2 . . . p

(j)
lj

, where the
factors are written in ascending order. Then

v(γ) := [f0(p
(0)
1 ), . . . , f0(p

(0)
l0

), f1(p
(1)
1 ), . . . , f1(p

(1)
l1

), . . . , fk(p
(k)
1 ), . . . , fk(p

(k)
lk

)] =

= [v1, v2, . . . , vµ], µ = l0 + l1 + . . . + lk.

Example Let k = 4, γ = (6, 30, 10, 15, 3).
Then v = [f0(2), f0(3), f1(2), f1(3), f1(5), f2(2), f2(5), f3(3), f3(5), f4(3)].

Let ∆µ
v := {[b1, b2, . . . , bµ] :

∑µ
j=1 bjvj ≡ 0 (mod 1), bi ∈ Z}. Let b =

[b1, . . . , bµ] ∈ ∆µ
v . Then

b1f0(p
(0)
1 ) + . . . + bl0(p

(0)
l0

) + . . . + bµfk(p
(k)
lk

) ≡ 0 (mod 1),

which can be rewritten as

f0(β0) + f1(β1) + . . . + fk(βk) ≡ 0 (mod 1),

where βt =
∏lt

k=1(p
(t)
k )bs+k , s = l0+. . .+lt−1. Let β(= β(b)) = (β0, β1, . . . , βk).

Clearly, β ∈ Qk
∗. Let ∆k

v = {β(b) : b ∈ ∆µ
v}.

Remarks
1. It follows from our construction that there is a one-to-one correspondence
between ∆µ

v and ∆k
v .

2. ∆k
v ⊂ Ωk.

Example Let k, γ, v as before. Suppose that b = (1,2,3,1,-2,-3,1,-2,3,1)
∈ ∆µ

v . Then β = (18, 24
25

, 5
8
, 125

9
, 3) ∈ ∆k

v .
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Algorithm to verify Conjecture IV.
Input k, e ∈ N
1. Let γ be an arbitrary element from Γk and let v be the vector generated
by γ as before.
2. By using the equations L1, L2, . . . , Li and the fact that f0, f1, . . . , fk ∈
A∗ express all the possible F1, F2, . . . , Fj ∈ ∆k

v . The corresponding vectors

G1, G2, . . . , Gj ∈ ∆µ
v can be considered as rows of a matrix M ∈ Rµ×µ.

Examine so many equations that the rank of the matrix M will be equal to
µ.
3. Using Gaussian elimination over the integers it can be solved the linear
equation Mv ≡ 0 (mod 1). If the only solution is v ≡ 0 (mod 1) then go
to the next step, otherwise go to the step 2, increase i and find a new matrix
M or go to the step 1 and choose a new γ.
4. Investigate so many equations L1, L2, . . . , Li, . . . while all fj(p) can be
expressed in the form fj(p) ≡ ∑µ

l=1 blvl (mod 1) (p ≤ e, p ∈ P, bl ∈ Z, 0 ≤
j ≤ k). Then the conjecture is true for k, e and d is equal to i, which is the
number of the examined equations.

If the conjecture is true, the algorithm terminates.

Remark For a given k, e the d is not unique, it depends on the selection of
γ.

4 Examples

Implementing this algorithm the experiments with a simple Maple1 program
show the following results:

Example Let k = 4, γ = (210, 210, 210, 210, 2310).
Then we have

F1 =
L5

9L2
11L

4
12L5

14L17L21L2
23L2

30L2
32L33L37L2

45L3
54L58L4

62L91L141L143

L8L6
10L13L15L16L18L3

22L4
24L4

25L27L29L4
31L44L47L48L70L74L2

92L117L119
=

= (
31975

28512
,
313

212
,
2335275

327
,
21033

72
,
3205
2577

),

F2 =
L3

8L3
10L3

11L15L2
16L2

18L23L2
25L27L29L30L4

31L38L44L45L47L3
48L57L59L2

65L70

L3
9L2

12L8
14L2

19L21L2
24L28L32L33L54L4

62L91L92L116L118L120L2
132L141L143

=

1Maple is a registered trademark of Waterloo Maple Software
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= (
512

2334710
,

232

34515
,
314510

24374
,
21275

31356
,

5477

2213811
),

F3 =
L2

9L2
13L4

14L19L21L22L2
23L2

24L3
32L34L37L55L56L58L62L91L92L132

L3
10L3

11L12L2
15L3

18L2
26L27L29L30L31L44L45L46L47L2

48L54L65

L140L141L142L143L144

L69L70L71L74L114L115L117L119
= (

21776

31358
,

55

21432
,
24335

76
,

55

3474
,

29314

5573115
),

F4 =
L2

9L2
11L6

12L3
14L2

18L2
23L3

30L33L3
45L5

54L4
62L65L115L141L143L152

L2
8L6

10L2
13L2

16L19L3
22L4

24L6
25L28L4

31L47L56L70L3
92L132

=

= (
335

217511
,
311 5 7

210
,
23953710

339
,
24310

5 72
,
314116

285475
),

F5 =
L9L14L18L21L30L33L45L48L54L2

62L91L115L121L141L143L168

L8L2
10L11L13L15L16L2

22L24L2
25L28L2

31L39L44L47L56L60L70L92
=

= (
3117
21356

,
73

212 3 5
,
2753

314
,
2635

5574
,
52113

2233
),

F6 =
L4

11L2
12L2

18L2
23L26L27L2

30L2
31L42L2

45L8
48L2

54L74L114L117L119L174

L8L6
9L10L2

13L10
14L19L3

22L3
24L2

25L32L37L55L56L58L2
62L85L2

92

=

= (
26319

5379
,
215713

39515
,

51875

231315
,
31074

21157
,
5672112

24315
),

F7 =
L8

11L12L15L16L2
18L3

23L26L29L3
30L4

31L3
45L47L8

48L2
54L65L70L74

L3
8L5

9L3
13L13

14L19L21L4
22L6

24L25L2
32L33L34L37L55L58L60L4

62L3
92

L114L117L119L182

L132L141L143
= (

31155

220711
,

24076

314525
,
51575

26138
,

2 77

39514
,
5117211
235317

),

F8 =
L2

9L2
12L3

14L18L33L54L3
62L92L115L141L143L183

L10L2
11L13L16L2

23L2
25L28L3

31L35L45L47L56L61L70
=

= (
23312

577
,
345672

223
,

2307
31652

,
31054

21473
,
210115

5773
),

F9 =
L8L5

10L3
13L5

14L15L19L5
22L9

24L3
25L28L44L55L56L3

92L132L184

L8
11L2

12L2
18L3

23L26L3
30L32L36L3

45L5
48L3

54L65L90L91L114L115
=

= (
2215476

323
,

522

2183376
,
220323

51375
,
310511

2678
,

23277

35510112
),

F10 =
L8L2

12L13L14L19L21L22L3
24L33L48L54L55L62L132L141L143L185

L9L4
11L16L18L2

25L26L30L31L32L44L47L65L70L74L114
=
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= (
29377

55
,
5476

2735
,
255572

37
,
2431653

79
,
21175

3354
),

F11 =
L4

9L12L9
14L22L24L32L54L3

62L186

L3
10L11L15L16L25L4

31L45L5
48

= (
3679

2257
,
315516

22477
,

25372

311510
,
3457

24
,
28322113

5578
),

F12 =
L2

8L5
9L2

13L14
14L2

19L2
21L22L24L25L3

32L33L37L55L56L58L61L4
62L2

91L2
92

L10L2
11L2

15L4
18L23L2

26L27L29L3
30L4

31L38L2
44L2

45L47L7
48L2

54L2
65L66L70L74

L2
132L141L143L200L202L204

L99L101L114L115L117L119L122
= (

211717

32157
,
313513

22675
,
24237

51473
,
21058

3672
,

217326

5 711113
),

F13 =
L3

8L6
10L3

11L13L16L2
18L2

22L24L5
25L27L29L7

31L44L2
47L4

48L49L65L2
70L74L84

L7
9L5

12L12
14L19L2

21L2
23L2

30L2
32L2

33L37L41L2
45L3

54L55L58L7
62L91

L2
92L114L117L119L205

L102L132L2
141L2

143

= (
26515

32679
,

227

316512
,
33555

27776
,

78

2831955
,

5376

24330
),

F14 =
L7

12L18L20L3
23L2

26L4
30L2

31L2
33L44L4

45L9
48L53L5

54L90L115

L4
8L6

9L10L2
11L3

13L11
14L16L2

21L3
22L24L7

25L27L28L43L2
47L56L2

62L2
70L84

L2
141L2

143L213L215

L91L4
92L106L142

= (
212333

55719
,

26714

310514
,
522713

231339
,

329

2851177
,

23, 714

32054113
),

F15 =
L3

9L7
12L14L2

15L2
18L2

23L3
30L3

33L44L3
45L52L6

54L2
62L65L115L122

L3
8L4

10L2
11L2

13L3
16L21L2

22L7
25L28L2

31L2
32L40L42L47L53L56L61L2

70

L141L143L212L214L216

L91L3
92L105L107L132

= (
349

21751277
,

512

2437
,
23253712

338
,

328

2779
,
243275114

510
),

F16 =
L12

9 L7
12L13L24

14L2
19L2

21L2
23L4

24L6
32L4

33L2
34L2

37L4
54L2

55L2
58L10

62L2
91L2

132

L2
8L11

10L10
11L4

15L4
16L4

18L8
25L3

26L2
27L2

29L11
31L2

44L46L4
47L11

48L2
65L69L4

70L71

L140L4
141L142L4

143L217

L2
74L108L2

114L2
117L2

119

= (
26320724

534
,
320539

27378
,
212074

345514
,
25325517

720
,
228352

522711
),

F17 =
L2

8L7
10L13L15L19L4

22L7
24L3

25L29L5
31L44L48L3

92L132L234

L5
9L6

11L2
12L4

14L18L21L2
23L3

30L32L3
45L46L3

54L5
62L65L76L91L116

=

= (
22357

32176
,

2656

31672
,

324

23874
,
31054

21478
,

220714

32258115
),

F18 =
L10L7

11L2
16L3

18L23L3
25L26L27L30L3

31L38L45L2
47L2

48L2
65L2

70L74L114L242

L9L4
12L13L7

14L2
19L2

22L4
24L2

33L37L54L55L3
62L92L120L2

132L2
141L2

143

=

= (
511

2143575
,
22634

51672
,
31455

23374
,
22716

32359
,

511

230327
),
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F19 =
L2

9L6
14L19L21L25L2

32L2
62L91L92L132L243

L10L2
15L18L23L30L2

31L38L44L45L3
48L54L60L65

=

= (
2 78

3355
,

3857

21373
,
2203272

59
,
2 567

36
,
3135 11

2 76
),

F20 =
L4

10L13L15L2
22L2

24L2
25L28L5

31L44L4
48L56L60L92L244

L5
9L11L2

12L9
14L18L21L27L32L45L2

54L61L5
62L91L115L121

=

= (
21558

31879
,

21575

317510
,
31459

25175
,

3
21554

,
21678

32352116
),

F21 =
L5

9L11
11L4

12L14L3
18L21L4

23L26L4
30L32L38L5

45L48L5
54L61L4

62L2
65L91

L8L9
10L3

13L15L2
19L20L7

22L13
24L5

25L28L4
31L44L52L55L56

L114L115L158L245

L79L5
92L122L2

132

= (
33673

24659
,
210321

518 7
,
22051079

344
,
232711

317516
,
329511117

252716
).

From these we can be give a non-singular matrix M corresponding to the
algorithm. Going on to the step 4 the next chart shows the appropriate d
values belonging to the different e-s.

e 1-97 98-137 138-179 180-191 192-239 240-269 270-419
d 245 299 411 721 788 954 1076

e 420-431 432-439 440-599 600-659
d 1674 1725 1765 2401

The attentive reader can observe that by this example Lemma 2 (even more)
is proved and so the proof of the theorem is completed. 2

Without giving the exact vectors F1, F2, . . . , Fj ∈ ∆µ
v we insert some com-

puter tests verifying Conjecture IV for higher degree. For brevity let us
denote Pn :=

∏
aj, aj ∈ P, aj ≤ n.

Let k = 5, γ = (P23, P23, P23, P23, P23, P23). Then

e 1-109 110-179 180-191 192-229 230-307 308-313 314-397
d 624 815 853 960 1145 1240 1252

e 398-419 420-431 432-439 440-457 458-599 600-643
d 1587 1674 1726 1768 1833 2401

Let k = 6, γ = (P37, P41, P41, P43, P43, P43, P43). Then

11



e 1-227 228-419 420-431 432-541 542-599
d 1336 1589 1674 2154 2164

Our method is clearly not appropriate for large number of completely
additive functions, for large e or µ. Even if we could prove Conjecture IV for
a given k to prove the induction step seems to be very hard.
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