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Abstract

A fascinating connection was conjectured on sums of completely
additive functions satisfying a congruence by Katai. He could prove it
for the case of kK = 3. The general solution of the problem is far from
beeing simple. The object of the present paper is to prove this con-
jecture for k£ = 4. Another purpose of the authors was to discuss the
problem from group theoretical aspects and to describe an algorithm
verifying the conjecture for finite number of functions under a certain
bound.

1 Introduction

An arithmetical function f(n) is said to be completely additive if the relation
f(nm) = f(n)+ f(m) holds for every positive integer n and m. Let A* denote
the class of all real-valued completely additive functions. Throughout this
paper we apply the usual notations, i.e. P denotes the set of primes, N the
set of positive integers, Q and R the fields of rational and real numbers,
respectively.

Let P(2) = 1+ Az + Ap2? + ... + Ap2* (k > 1) be a polynomial with
real coefficients. Let E denote the operator Fz, := z,,1 in the linear space
of infinite sequences. For the polynomial P(z) we have

PE)f(n) = f(n) + Aif(n+ 1)+ ...+ Apf(n+ k).
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Conjecture I. (Katai) If f € A*, P(z) € Q[z] and P(E)f(n) =0 (mod 1)
for allm € N then f(n) is identically zero.

This conjecture was proved for the case of k = 2 (see [1]). Moreover, Katai
raised a more general question:

Conjecture II. (Kétai) Let f; € A* (j =0,1,2,...,k). Assume that
k
Z (n+7)=0 (mod 1)

for alln € N. Then f;(n) =0 (mod 1) for every n € N and for every j.

In [2] Katai proved it for the case of K = 3. The idea can be extended
to the Gaussian integers, as was done in [5, 7]. Tt was examined the analogy
of the conjecture for three completely additive [4], as well as for two [3] and
three [6] additive functions.

2 Group theoretical approach

We extend the domain of an arbitrary real valued completely additive func-
tion f(n) for the set of positive rational numbers Q, by f(a/b) := f(a)— f(b).
Let us do it for fo, f1, fa, ..., fx (K € N) and let us define the set

Q= { (ap, a1, 0z, ...,a;) € Qi Z.fz a;)) =0 (mod 1) }.

Performing the multiplications component-wise it is easy to see that (Q**;.)
is an abelian group. Hence, it follows from the additivity that if (ag, a1, . .., ax)
€ Q and (Do, by, ..., by) € Qi then (aghy™ ', a1by ™, ... arby ') € Q. Thus,
the following assertion is obvious.

Assertion.  (Q; -) is an abelian group with respect to the above defined
multiplication.

In fact, we think that the next conjecture is true:
Conjecture III If (A,-) is a subgroup of the group (Q"; -), where h € N
and (n,n+1,...,n+h—1) € A for alln €N, then A =Q".
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It is clear that the first conjecture follows from the second one and the second
from the third one.

3 The main theorem

Theorem. Let P(z) =1+ A1z + Apz? + A32® + Ayz* be a polynomial with
real coefficients, P(z) ¢ Qlz]. If f € A* satisfies the congruence relation

L,:= PE)f(n)=0 (mod 1) (1)
for every n € N, then f(n) is identically zero.

In order to prove the theorem we shall use an induction-like method.

3.1 Induction step

Lemma 1. [If (1) holds for everyn € N and f(m) = 0 is satisfied for every
positive integer m < 23 then f(n) =0 for every n € N.

Proof: We prove the lemma indirectly. Let
Ki={neN : f(n)=0}.
Assume that Ky # N, i.e. there exist a smallest positive integer S such that
£(8) £ 0. 2)
By the assumption of the lemma it is pretty obvious that
SePp (3)

and S > 29. First we shall prove that for each V satisfying the relations
Ve{S+2,54+6,5+8 S+12}and V=1 (mod 6) we have

f(V)=0or f(V) £Q. (4)

Suppose that (4) does not hold. Then for some U for which U € {S +2,5 +
6,5 +8,5+ 12} with U =1 (mod 6), we obtain

f(U)#0and f(U) € Q ()
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By the fact U =1 (mod 6) it is easily seen that
(U+1—6kU+2—6kU+3-6k2U+2 : k=0,1} CK;. (6)

By using (1) and (6) we get that Ly—; = A1 f(U) =0 (mod 1), which with
(5) implies that
A €Q. (7)
Let us observe that
fU=-2)¢Q, (8)
since in the opposite case, by using (1) and (6) we get
Ly—q=A2f(U=2)+ Ay f( 0 )
Ly—s=Mf(U—2)+ A3 f( 0 (mod 1),
LU_2 = f(U - 2) + AQf(U) 0 (HlOd 1),
which with (5) and (7) would imply that P(z) € Q[z]. In virtue of (5), (8)
and of the equation Ly _5 it is obvious that
A ¢ Q. (9)

Since 3 | (2U + 1) and (2U + 1)/3 < S, we have f(2U + 1) = 0, hence by
using (5), (6), (7), (9) and the equation

L2U72 = Alf(QU — 1) + AQf(U) =0 (mod 1)

(mod 1),

U)
U)

we obtain
A #0, f2U-1)¢Q. (10)

Consider the equation
Loy1 =fRU —1)+ A f(U)+ Asf(2U +3) =0 (mod 1),
which with (5), (7) and (10) implies that
Ay #0, Asf(2U +3) € Q. (11)

By using relations (5), (8), (10) and (11) it is easy to see that U, U — 2,
2U — 1, 2U + 3 € P, consequently U =4 (mod 5). Since U =1 (mod 6),
U=4 (mod?5), U <S+12and S > 29 the following statements hold:

3|20 -5, (2U—-5)/3<S, 5|20 -3, (2U-3)/5< S.
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It means that f(2U —5) = f(2U — 3) = 0. Hence, using (5), (6) and the
equations

LQU_G = AQf(U - 2) =0 (mod 1),
LU_4 = AQf(U - 2) + A4f(U) =0 (mod 1)

we have

A, €Q. (12)

On the other hand, using (5), (6), (7) and (10) the equation Ly_7 = A; f(U —
6) =0 (mod 1) gives that f(U — 6) € Q, which with (11), (12) and by
Ly_¢=f(U—-6)+ Ayf(U—-2) =0 (mod 1) implies f(U — 2) € Q. This
contradicts to (8). Thus, we have proved (4).

Now we are able to prove Lemma 1. We distinguish two cases:

(I) S=1 (mod 6)
(I) S=5 (mod 6).

Case (I). In this case we have

{S+1+6k,S+2+6k,S+34+6l,S+5+6] : k=0,1,2,3 [ =0,1,2} C Ky,
(13)
and by virtue of the equations Lg_1, Lg_o, Ls_3, Lg_4 we get

AL f(S) = Ao f(S) = A3 f(S) = Ay f(S) =0 (mod 1).

If f(S) € Qthen A; € Q (j = 1,2,3,4) but this is a contradiction, since
P(z) ¢ Q[z]. Then we have
f(5) ¢ Q. (14)

Observe that if A; € Q for some 1 < j <4 then A; = 0. It means that
A;dQ or A;j=0 (j=1,2,34). (15)

Let ¢ = 0. It follows from (14), (15) and from the equation Lg,¢; = f(S +
6i) + Asf(S+4+6i) =0 (mod 1) that

A €Q, f(S+4+6i)£0. (16)

The reader can readily verify that f(S 4 6 + 6i) # 0 since in the opposite
case using the equation Lgi4rg; = f(S +4+6i) = 0 (mod 1) we get
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f(S+4+6Z) S @ This with (13), (15), (16) and by LS+1+6¢7 LS+2+6i7 LS+3+61'
implies A; = Ay = A3 = 0. Hence the equation Log,4112; would infer
Ayf(S+4+6i) =0 (mod 1), ie., Ay € Q which is a contradiction. So we
have f(S + 6 + 67) # 0. By similar arguments for ¢ = 1,2 and by using (4)
we obtain f(S +4) # 0 and f(S+6i) #0 (i =0,1,2,3). It means that
S,54+4,5+6,5+12,5+18 are primes which is impossible since S > 29 and
one of these numbers is a multiple of 5. So we proved that Case (I) cannot
occur.

Case (IT). In this case it is no hard to see that
{S+1+6k,S+3+6k,S+4+6kS+5+60 : k=0,1,2 1 =0,1} C Ky.

Let ¢ = 0. Because of P(z) € Q]z] it is easily seen that f(S + 2+ 6i) # 0
and by (4) we have
F(S+2+6i) ¢ Q. (17)

Hence by using the equation
Lsiorei = f(S+2+6i)+ Asf(S+6+6i) =0 (mod 1)

it follows f(S + 6 + 6i) # 0. Suppose that f(S + 8 + 6i) = 0. Then from
Lsi6+6i we get f(S + 6+ 6i) € Q, therefore by Lgi3y6i, Lstateir Lsistei
we infer Ay, Ay, A3 € Q. Moreover, by the equations Lg_ 16, Lsi116; and
by (17) immediately follows that A; = A3 = 0. Since 25 + 8 + 127 € Ky,
25 410 4 127 € Ky, the equation

L25+8+12i = A4f(25 +12 + 12@) = A4f(S + 6+ 62) =0 (mod ].)

gives Ay € Q which is contradiction. So f(S + 8 + 6i) # 0. Similarly, for
i = 1 using (4) we obtain S, S + 2,5 + 6,5 + 8,5 + 14 are primes, but this
is impossible since S > 29 and one of these numbers is a multiple of 5. The
proof of Lemma 1 is finished. a

The proof of the theorem will be completed by proving the following

Lemma 2. If (1) holds for every n € N then f(m) = 0 for every positive
integer m < 23.

To verify this lemma we discuss the next conjecture which is a step by step
approach of the second one.



3.2 Algorithm for the bounded case

Conjecture IV Let fo, f1,..., fr € A*. Given any e € N there exist
a d € N such that if L, := Z?ZO filn+j) =0 (mod 1) holds for every
n <d (n €N) then fj(n) =0 (mod 1) for everyn <e (j=0,1,....k).

We introduce some notations.
Let us denote the n-tuple £,, := (n,n+1,...,n+k) € Q. Let furthermore

Iy :={(ap,a1,...,a;) : a; are squarefree integers,a; > 1 (0 < j < k)}.
For an arbitrary v = (ag, a1, ...,ax) € I'y we define the vector v = v(7) as

follows. Let the prime decomposition of a; be a; = pgj )péj ). pl(j ), where the

factors are written in ascending order. Then

v() =) folpi ) AP Fupl ) Je @), Se))] =
:[vl,vg,...,vu], u:l0+l1—|—+lk
Example Let k=4~ = (6,30, 10, 15, 3).
Then v = [f0<2>7f0(3>7f1<2>7f1(3)7f1(5)7f2(2)7f2<5)7f3<3)7f3<5)>f4<3)]'
Let Al = {[by,bo,..., b)) = Xh bju; =0 (mod1), b € Z}. Let b =
[b1,...,b.) € Al Then
bifo(pi”) + -+ big (i) + -+ Bufi(p)) =0 (mod 1),

which can be rewritten as
Jo(Bo) + f1(B1) + ...+ fe(Bx) =0 (mod 1),

where §; = T2 (p\")o++, s = lo+. . .+1i_1. Let B(= B(B)) = (Bo, B, - -, Br)-
Clearly, 3 € Qf. Let A ={p(b) : be A}

Remarks
1. It follows from our construction that there is a one-to-one correspondence
between A# and Ak

2. AkCQk

Example Let k,v,v as before. Suppose that b = (1,2,3,1,-2,-3,1,-2,3,1)

€ AP Then = (18,2 3,12 3) ¢ AF)
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Algorithm to verify Conjecture IV.

Input k, eeN

1. Let v be an arbitrary element from I'; and let v be the vector generated
by v as before.

2. By using the equations Lq, Lo, ..., L; and the fact that fy, f1,..., fx €
A* express all the possible Fy, Fy, ..., Fj € AF. The corresponding vectors

G1,Gy,...,G; € Al can be considered as rows of a matrix M € RA¥H,
Examine so many equations that the rank of the matrix M will be equal to
L.

3. Using Gaussian elimination over the integers it can be solved the linear
equation Mv = 0 (mod 1). If the only solution is v = 0 (mod 1) then go
to the next step, otherwise go to the step 2, increase i and find a new matrix
M or go to the step 1 and choose a new 7.

4. Investigate so many equations Lq, Lo, ..., L;,... while all f;(p) can be
expressed in the form f;(p) = >/, by (mod 1) (p < e,p e P b € Z,0 <
j < k). Then the conjecture is true for k, e and d is equal to ¢, which is the
number of the examined equations.

If the conjecture is true, the algorithm terminates.

Remark For a given k, e the d is not unique, it depends on the selection of
.

4 Examples

Implementing this algorithm the experiments with a simple Maple! program
show the following results:

Example Let k = 4,~ = (210, 210,210, 210, 2310).
Then we have
LY LN LR L7 Lo L3530 L3 La3Lar L5 L34 Los Ly Lor L1a1L1as
L3LYL13L15L16L18L 50 Loy Lo Lo Log Ly LaaLarLasLroLral3sL117L119
31975 313 2335275 21033 3205
T \98p127 9127~ 327 ' 72 9577 )
Fy = LEL3 LY L15L36 L35 La3L35 Lo7 L9 L30 L5 LagLaaLasLarLis Lyt Lsglis Lo
L3L2,L8, L3 L1 L3, Lo5L32L33L54Le0Lo1 Lo2L116L118L120L 59 L141 L143

Fy

!Maple is a registered trademark of Waterloo Maple Software
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512 232 314510 21275 5477
= (2334710’ 34515’ 24374 ) 31356’ 2213811)’
Py = L3L2. L4, L10L01 Lo9L35L3, L3 L34 L7 L5L56L58L62L01 Lo2L132
L30L3 L12L3 L3 L3 Lo Log L0 L1 LaaLlasLasLarLigLsaLles
Li40L1a1 L142L143L144 21776 55 24335 55 2931
LeoL70L71Lral11aLlr1sL117L11g 313587214327 76 7 34747 5573115
 L3LY LS LY L3 L35 L0 L33 L35 L2 Lo Los La15L1a1 L1a3Lso _

);

Fy =
LRLS LT3 L6L10L30 L54LS5 Log L3 Laz L6 Lr0LgL132
335 311 57 23953710 24310 314116
- (217511’ 210~ 339 5 72 ' 98gdT5 )
P LoL14L18Lo1 L30L33La5LasL5aL2 L1 L115L191L1a1 L143L 168

- L3L30L11L13L15L16L39LoaL3= Lo L3 L39LaaLa7rLs6LeoLroLo2 -
37 73 2753 2035 52113
= (21356’ 212 3 5’ 314 ’5574’ 2233 )’

Fy = LH L3 L3 L3, LogLor L3 LR LaoLis L3 L2 LraL114L117L110L174 _
ﬁgLgﬁloﬁ%i))ﬁ%gﬁlgﬁ%ﬁiﬁ%[,32£37C55E56£5g£%2[,85[,32

26319 215713 51875 31074 5672112
( 5379 ’ 39515 ’231315’ 21157’ 24315 )’
P = LY L19L15L16 L3 L35 Lo6 Log L0 L1 L35 Lar L3L2 LasLr0Lrs
Egﬁgﬁ%ﬁﬁﬁlgﬁgl[,%2£g4£25£§2£33£34£37E55£58£60£é2£82
L114L117L119L1s2 ( 31155 24076 51575 9 77 5117211)
£132£141£143 - 2207117 3145257 961387 395147 935317 /7
Fy = L3L3L3 L8 La3Lsa Ly Loz Liis L1a1L1asLiss
L10L3 L13L16L35L35 Log L3 L35La5La7L56L61L70
23312 345672 2307 31054 210115
~ \Tg77 923 31652’ 9ld73’ 5773 /)’
_ LLY0L33 LY L15L19L30 LS, L3 Log LasLss L6 L3 L132L184 _
L8 L3 L3 L3 Lo6 L3 L2 Lo Ls Lo L34 LosLooLo1 L114L115
2215476 522 220323 310511 23277
:( 323 ’2183376’ 51375’ 2678 ’35510112)’
L8L35L13L14L19L01 Lo L34 L33L48L54Ls5Le2L132L141 L143L185 _
Lol L16L18L35Lo6L30L31 Lo LasLarLes LroLraLli1a

Fy

Fyp =
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29377 5476 255572 2431653 21175
= gam 3 0w )
Ja— £3£12£$1)4£22£24£32E54£%2»C186 7(3679 315516 95372 3457 28322113)
N 3 L1 L5 L6 Los LA Las Ll 22577 22477 3115107 94 7 5578
_ LELYLYLILTGLE) LorLoaLo5 L3 L33 L7 La5 L6 L58L61 Lao LE L
L10L31 L35L18La3 L3 LorLag L30L3) L33L5, L35 LarLig L34 LE5 LooLToLrs
5%32£141£143£200L202£204 _ 211717 313513 24237 21058 217326 )
LogL101L114L115L117L119L192 32157 7 22675 7 514737 36727 5 7111137
_ EgE?OE?l£13£16£%8£§2Lz4£g§£27£29CglE44£?17£38£49£65E%0£74£84
LLIL1GL19L3) L33L30 L35 L35L57La1 L35 L34 L55L58L i Lot
LiLialurLligloos _ 2051 22T 3%55 7% 5370 )
5102[’1325%415%43 32679’ 316512’ 27776’ 2831955’ 24330 )
_ L15L18L20L35L36L30L31 L35 Laa L5 L9 L53L3, Loo L1135
LILYL10LY L5 L11L16L31 L35 L4 L35 LorLosLa3Lin Ls6LE L0 L
5%415%43[/2135215 - 212333 26714 522713 329 237714 )
£91£32£106£142 - 55719 ) 310514’ 231339’ 2851177’ 32054113 )
_ LYLT L1 LR LR L33 L0 LR Laa L35 Lo L84 L35 L5 L115 L1
L3LY0LT L33L56 Lo1 L30 L55 Lo L3 L3 LaoLaz LarLs3 L6 Le1 L3
Lig1L1a3L212L214L216 ( 319 5l2 93253712 328 243275114)
Lo1L3,L105L107L132 217512777 24377 338 727797 510 7
Fig— L5 L1 L13LT1LR9 L3 L33L54 L9 L33 L3, L37 L5, L35 L3 L65L5 LT3
LRLIOLIT L5 L16 L1855 L36L57 L0 L31 L4 Lao Lir LI8 L35 Loo LT L1
5140£41141£142£41143£217 _ 26320724 320539 212074 25325517 228352)
[1345108['%145%175%19 534 ? 97378 7 3455147 720 5227117
_ L2LT0L13L15L10L59 LY L35 Log L3 LasLag L0 L132Lo34 _
LLS) L3 L1,L18Lo1 L33 L30 L3 L35 Lac L34 L3 LosLr6Lo1Li16
22357 2656 324 31054 220714
= 32176’ 31672’ 23874’ 21478’ 32258115 )
Fis = L10LT L36L3sLog L3 Log Lot Lo Ly LagLas L LA L5 L20 L4 L114Loso _
595%25135{45%95325345335375545555%259251205%325%415%43
_ 511 22634 31455 22716 511
- (2143575’ 516727 933747 323597 230327)’

Fis

Fi3

Fiy

Fi5

Fi7
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Fyg

Iy

Fig

L3L84L19L21 L5 L3 L35 Lo1Lo2L132Lu3

278

 L10L3:L18L03L30L% L3sLaalLas L L5alooLes
3857 2203272 2 567 3135 11

= (

3355 ’ 21373

) 59 Y

36 7

276

)7

L0L13L15L39L3, L3 Log L3 Laa L5 L6L60Lo2L2ua

B L3L11L35L3L18L21 Lo7L32La5 L3, L61 L35 Lo1L115L121 -

21558 21575

31459

3

21678

= 31879’ 317510’ 25175’ 21554’ 32352116)’

_ LBLH L1y L1a LR L1 L3306 L0 L33 L3 L5 Las L34 Ler Lp L35 Lot

L114L115L158L245

33673 210321 22051079 232711 329511117

L79L35L192L35, 246597 518 77

values belonging to the different e-s.

344

7 317516

9252 716

From these we can be give a non-singular matrix M corresponding to the
algorithm. Going on to the step 4 the next chart shows the appropriate d

The attentive reader can observe that by this example Lemma 2 (even more)

e | 1-97 | 98-137 | 138-179 | 180-191 | 192-239 | 240-269 | 270-419
d | 245 299 411 721 788 954 1076
e | 420-431 | 432-439 | 440-599 | 600-659

d| 1674 1725 1765 2401

is proved and so the proof of the theorem is completed.

Without giving the exact vectors Fi, Fo, .. b
puter tests verifying Conjecture IV for higher degree. For brevity let us

denote P, :=[[a;,a; € P,a; < n.

Let k = 5,7 = (Pa3, Pas, Pa3, Pa3, Pa3, Pa3). Then

., F; € Al we insert some com-

e | 1-109 | 110-179 | 180-191 | 192-229 | 230-307 | 308-313 | 314-397
d| 624 815 853 960 1145 1240 1252

e | 398-419 | 420-431 | 432-439 | 440-457 | 458-599 | 600-643

d| 1587 1674 1726 1768 1833 2401

Let k = 6,7 = (Ps7, Pu1, Pu, Pas, Paz, Pz, Py3). Then
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e | 1-227 | 228-419 | 420-431 | 432-541 | 542-599
d | 1336 1589 1674 2154 2164

Our method is clearly not appropriate for large number of completely
additive functions, for large e or u. Even if we could prove Conjecture IV for
a given k to prove the induction step seems to be very hard.
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