
On number system 
onstru
tionsL�aszl�o Germ�an� and Attila Kov�a
syAbstra
tIn this paper we investigate various number system 
onstru
tions.After summarizing the earlier results we prove that for a given latti
e� and expansive matrix M : � ! � if �(M�1) < 1=2 then therealways exists a suitable digit set D for whi
h (�;M;D) is a numbersystem. Here � means the spe
tral radius of M�1. We shall provefurther that if the polynomial f(x) = 
0 + 
1x + � � � + 
kxk 2 Z[x℄,
k = 1 satis�es the 
ondition j
0j > 2Pki=1 j
ij then there is a suitabledigit set D for whi
h (Zk;M;D) is a number system, where M is the
ompanion matrix of f(x).1 Statements and earlier resultsA latti
e in Rk is the set of all integer 
ombinations of k linearly independentve
tors. It 
an be viewed either as a set of points in the k-dimensionalEu
lidean spa
e, as a Z-module, or as a �nitely generated free Abelian group.Let � be a latti
e,M : �! � be a group endomorphism su
h that det(M) 6=0 and let D be a �nite subset of � 
ontaining 0.De�nition The triple (�;M;D) is 
alled a number system (or havingthe unique representation property) if every element x of � has a unique,�nite representation of the form x = Pli=0M idi, where di 2 D and l 2 N .The operator M is 
alled the base or radix, D is the digit set.Both � and M� are Abelian groups under addition, the order of thefa
tor group �=M� is t = j det(M)j. If two elements are in the same 
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of this group then we say that they are 
ongruent modulo M . In [21℄ thefollowing theorem was stated:Theorem 1 If (�;M;D) is a number system thena) D must be a full residue system modulo M ,b) M must be expansive,
) det(I �M) 6= �1.In this paper we always assume that these 
onditions hold, in whi
h 
asewe 
all (�;M;D) a radix system. Every number system is a radix system,but the 
onverse is not true.The radix system (�;M;D) 
an be used to represent all the latti
e pointsin � even if it is not a number system. Clearly, for ea
h 
 2 � there exists aunique dj 2 D su
h that 
�dj 2M�. Let 
1 =M�1(
�dj) and let us de�nethe fun
tion � : �! � by �(
) = 
1. Let �l denote the l-fold iterate of �,�0(
) = 
0. The sequen
e of integer ve
tors �j(z0) = zj (j = 0; 1; 2; : : :) is
alled the orbit of z0 generated by �. Sin
e the spe
tral radius �(M�1) < 1therefore there exists a norm on Rk su
h that for the 
orresponding operatornorm kM�1k = supkxk�1 kM�1xkthe inequality kM�1k < 1 holds. The algorithmi
 
onstru
tion of an app-ropriate ve
tor norm was presented in [19℄. Throughout this work k : k de-notes this ve
tor and the indu
ed operator norm. Let furthermore K =maxd2D kdk, r = kM�1k, L = Kr=(1 � r). I t is easy to see, that ifkzk � L then k�(z)k � L, if kzk > L then k�(z)k < kzk. Sin
e theinequality kxk � L holds only for �nitely many latti
e points therefore thepath z;�(z);�2(z); : : : is ultimately periodi
 for all z 2 �. The ve
tor � 2 �is 
alled periodi
 if there exist a j 2 N su
h that �j(�) = �. Let P denotethe set of all periodi
 elements. The fun
tion � de�nes a dis
rete dynami
on � in the following way: let G(P) be the dire
ted graph de�ned on the setP by drawing an edge from � 2 P to �(�). Then G(P) is a disjoint union ofdire
ted 
y
les, where loops are allowed. We say that G(P) is the attra
torset of � generated by �. Observe that (�;M;D) is a number system if andonly if G(P) = f0! 0g.There are three types of problems in the mainstream of the number systemresear
h: de
ision, 
lassi�
ation and 
onstru
tion. De
ision means that fora given radix system (�;M;D) de
ide whether it is a number system. Ithas theoreti
 and algorithmi
 aspe
ts, we refer only to [6, 14, 19, 21, 8, 34℄.2



Classi�
ation means that for a given radix system (�;M;D) 
hara
terizethe number, lo
ation and stru
ture of the periodi
 elements. Some resultsin dimension two 
an be found in [9, 22, 23, 33℄. In this paper we fo
uson 
onstru
tion problems: for a given latti
e � and operator M satisfying
riteria b) and 
) in Theorem 1 is there any suitable digit set D for whi
h(�;M;D) is a number system? If yes, how many and how to 
onstru
t them?For a given radix system (�;M;D) some results are available:Theorem 2 (Vin
e [34℄) For a given k � k operator M if all its singularvalues are greater then 3pk then there exists a digit setD for whi
h (�;M;D)is a number system. In dimensions one and two the bound 3pk 
an beimproved to 2.The digit set is D = �\MV , where V is the Voronoi domain of the 
ubi
latti
e (the 
losure of V is the unit 
ube 
entered at the origin).Theorem 3 (A. Kov�a
s [21℄) For a given k � k operator M ifkM�1k2 � 1=(1 +pk);then there exists a digit set D for whi
h (�;M;D) is a number system. Herek:k2 is the operator norm indu
ed by the Eu
lidean ve
tor norm.We note that if kM�1k2 � 1=(1 + pk) then kMk2 � 1 + pk but the
onverse is not ne
essary true. The digit set is by sele
ting a 
omplete residuesystem around the origin keeping the norm of the elements minimal. Observethat the digit set D is not ne
essary unique. In this paper we shall prove thefollowing:Theorem 4 For a given matrix M if �(M�1) < 1=2 then there exists adigit set D for whi
h (�;M;D) is a number system.Matrix transformations M1 : � ! � and M2 : � ! � of latti
es �and � are equivalent (or similar) if there exists an invertible matrix Q su
hthat M2Q = QM1 and � = Q�. It is easy to see that the equivalen
epreserves the number system property, i.e, if M1 and M2 are equivalent viathe matrix Q and (�;M;D) is a number system then (Q�;M2; QD) is anumber system as well. Hen
e, there is no loss of generality in assumingthat M is an integral matrix a
ting on the latti
e Zk. Sear
hing for numbersystems in Zk has a natural 
omputational advantage, sin
e the minimaland 
hara
teristi
 polynomial of M are also integral. Moreover, equivalen
emeans a simple basis transformation, therefore there exist equivalent matri
esin several 
anoni
al forms. The Frobenius normal form of a square k � k3



matrixM has the stru
ture F = diag(C1; : : : ; Cr), where Ci's are 
ompanionmatri
es asso
iated with polynomials p1; : : : ; pr, where pi is a fa
tor of the
hara
teristi
 polynomial of M with the property pi j pi+1 (i = 1; : : : ; r� 1).The Frobenius normal form de�ned in this way is unique and every matrix
an be transformed by an equivalen
e transformation to its Frobenius normalform. We note that transforming M to its Frobenius 
anoni
al form there isno need to extend the �eld of its 
oeÆ
ients.If the minimal polynomial is identi
al to the 
hara
teristi
 polynomial,the Frobenius normal form is the 
ompanion matrix of the 
hara
teristi
polynomial. This 
ase is extremely important due to the following 
onstru
-tion. Consider a polynomial f(x) = 
0 + 
1x + � � � + 
nxk 2 Z[x℄, 
k = 1.Let (f) be the ideal generated by f , let �f be the quotient ring Z[x℄=(f)and let � = x + (f). Then, �f 
an be realized as a free Abelian group oras a Z-module with basis (1; �; �2; : : : ; �k�1) and �f is isomorphi
 to Zk.Hen
e, the 
ompanion matrix of f(x) serves as the radix and a
ts on the
ubi
 latti
e Zk. Addition and multipli
ation of latti
e points is just addi-tion and multipli
ation in the ring �f . We remark that using 
anoni
al digitsets the de
ision problem in this stru
ture are in the forefront of the resear
h[1, 3, 4, 7, 25, 30℄. A set of integer ve
tors is 
alled j-
anoni
al with respe
tto the matrix M if all the elements have the form �ej, where ej denotes thej-th unit ve
tor, � = 0; 1; : : : ; j det(M)j � 1 (see [19℄). 1-
anoni
al 
ompleteresidue systems are 
alled 
anoni
al digit sets with respe
t to M .In the spe
ial 
ase when f(x) is irredu
ible over Z then �f is isomorphi
to Z[�℄, where � is any root of f(x) in an appropriate extension �eld of therationals. This 
ase has been extensively studied, we refer only to [6, 11, 15,16, 17, 18℄Let us denote the k-dimensional general linear group over Z by GL(k;Z)and its subgroup, for whi
h the determinant of the elements are �1 bySL(k;Z). Let A;B 2 GL(k;Z). We say that A and B are integrally similar(or Z-similar) if there exist a T 2 SL(k;Z) su
h that AT = TB. Clearly, ifA and B are integrally similar then they are similar, but the 
onverse is nottrue.Example 1 The matri
es� 0 1�6 �1 � and � �2 �42 1 �have the same 
hara
teristi
 polynomial x2+x+6, they are similar, but theyare not Z-similar. 4



Let S(k; A;Q ) and S(k; A;Z) be the set of all k�k integer matri
es whi
hare similar to A over Q and over Z, respe
tively (in other words the elementsof the similarity matri
es have rational and rational integral elements, respe
-tively). Then S(k; A;Q ) is the union of integral similarity 
lasses. Moreover,it is the union of �nitely many integral similarity 
lasses if and only if A isdiagonalizable over C (see e.g. in [26℄). This is the 
ase if, for example, theminimal polynomial of A is irredu
ible over Z.Theorem 5 (Latimer{Ma
Du�ee{Taussky [28, 32℄) Let f(x) 2 Z[x℄be an irredu
ible moni
 polynomial of degree k. Then there is a bije
tionbetween the integral similarity 
lasses of k � k integer matri
es with 
ha-ra
teristi
 polynomial f(x) and the ideal 
lasses in Z[�℄, where f(�) = 0,� 2 C .It is also known that if A is an integer k � k matrix then every matrixB 2 S(k; A;Q ) is integrally similar to A if and only if the minimal polynomialm(x) of A has the form p1(x)p2(x) � � � pr(x) (some r � 1) of distin
t moni
irredu
ible polynomials p1(x); : : : ; pr(x) su
h that i) the ideal 
lass numberof Q (�i) is 1 for i = 1; 2; : : : ; r, where �i is a root of the equation pi(x) = 0,and ii) the resultant res(pi; pj) = �1 for all i; j with 1 � i 6= j � r.Summarizing the above reasoning, if for a given k � k integer matrix Mwe are able to �nd a suitable digit set D for whi
h (Zk;M;D) is a numbersystem then we have a 
onstru
tion for all operators in S(k;M;Z). If M isdiagonizable over C then there are �nitely many integral similarity 
lassesand if the 
hara
teristi
 polynomial ofM is irredu
ible then Theorem 5 showsalso their 
ardinality.In the same way, the 
on
ept of Z-similarity plays an important role ifone wants to show that for a given operator M there does not exist anyappropriate digit set D for whi
h (Zk;M;D) is a number system.Theorem 6 (Barb�e, von Haeseler [5℄) Let M be an expanding operatorin Zk with j det(M)j = 2. There is a digit set D for whi
h (Zk;M;D) is anumber system if and only if M is Z-similar to the 
ompanion matrix CM ofthe 
hara
teristi
 polynomial ofM and (Zk; CM ; f0; e1g) is a number system.Sin
e there exist irredu
ible, expansive polynomials f(x) for whi
h f(0) =2 and the number of the ideal 
lasses in Z[�℄ is greater than one (f(�) = 0),therefore there exist integral similarity 
lasses in whi
h the digit set 
onst-ru
tion is not possible. Su
h polynomials are x4+x2+2; x6�x4�x2+2; x6+x3 + x2 � x + 2; x6 + x4 + 2; x6 + x5 + x4 + 2x3 + x2 + x + 2. Lagarias andWang reports [27℄ that there does not exist any other polynomials having5



the above property with degree less than or equal to 6.Example 2 The matrixM = 0BB� 1 1 �1 0�1 0 1 11 0 �1 1�1 0 0 0 1CCAis expansive, its 
hara
teristi
 polynomial is f(x) = x4 + x2 + 2, D = f0; e1gis a 
omplete residue system modulo the 
ompanion matrix CM of f(x) and(Z4; CM ; D) is a number system [20℄, but it is not possible to give any digitset D0, for whi
h (Z4;M;D0) would be a number system, sin
e M is notZ-similar to CM . We note that for the matrix M the sets f0; e2g and f0; e3gare 
omplete residue systems modulo M but f0; e1g is not.The strength of Theorem 4 is that satisfying the 
ondition �(M�1) < 1=2the digit set 
onstru
tion is always possible independently of the dimensionand the basis of the spa
e. To be more pre
ise, if (Zk;M;D) is a numbersystem having �(M�1) < 1=2 and T 2 S(k;M;Q ) then �(T�1) < 1=2 and(Zk; T;D) is a number system as well sin
eM and T have the same spe
trum.If we restri
t our attention to one Z-similarity 
lass we have the followingresult:Theorem 7 (B. Kov�a
s [24℄ and Peth}o [29℄) Let the polynomial 
0 +
1x + � � � + 
kxk 2 Z[x℄, (
k = 1) be given and let us denote its 
ompanionmatrix by M . If the 
onditions b) and 
) in Theorem 1 hold, furthermore if2 � 
0 � 
1 � � � � � 
k�1 � 1then (Zk;M;D) is a number system with the 
anoni
al digit set D.We shall prove the following theorem.Theorem 8 Let the polynomial f(x) = 
0 + 
1x + � � � + 
kxk 2 Z[x℄,(
k = 1) be given and let us denote its 
ompanion matrix by M . If the
ondition j
0j > 2 kXi=1 j
ij (1)holds then there exists a suitable digit set D for whi
h (Zk;M;D) is a numbersystem. 6



First observe that (1) { whi
h is 
alled the weak dominant 
ondition{ implies the ful�llment of 
ondition b) in Theorem 1. Otherwise for thej�j � 1 root of f(x) we have j
0j = jPki=1 
i�ij �Pki=1 j
ij < j
0j=2, whi
h isa 
ontradi
tion. On the other hand the weak dominant 
ondition implies thatPki=0 
i 6= �1 whi
h means exa
tly the 
ondition 
) in Theorem 1. Takingextra 
onditions the weak dominant 
ondition 
an be made stronger:Theorem 9 (Akiyama, Rao [2℄) Let the polynomial f(x) = 
0 + 
1x +� � �+ 
kxk 2 Z[x℄, 
k = 1 be given and let us denote its 
ompanion matrix byM . If the 
onditions a) j
0j >Pki=1 j
ij; (2)b) Pki=1 
i � 0;
) 
i � 0; i = 2; 3; : : : ; k � 1hold then (Zk;M;D) is a number system with the 
anoni
al digit set D. Thestrong dominant 
ondition (2) 
an be repla
ed by j
0j � Pki=1 j
ij if eitherp1 < 0 or pi > 0 for all i = 1; 2; : : : ; k � 1.What is the situation in algebrai
 number �elds? Let # be a �xed algeb-rai
 number of degree k, its 
onjugates #(1) = #; #(2); : : : ; #(k). Let �(j) bethe set of integers in Q (#(j)), �(1) = �. Let us �x an integer basis !1; : : : ; !kin Q (#). Let furhermore �j = j!(j)1 j+ � � �+ j!(j)k j where !(j)k is the 
onjugateof !k belonging to Q (#(j)).Theorem 10 (K�atai [12℄) Assume that � 2 � satis�es the 
onditionsj�(j)j > max(2; 2�j), (j = 1; : : : ; k). Then there exists a suitable digit set Dfor whi
h (�; �;D) is a number system.Let Kj(D) = maxfj�(j)j : � 2 Dg. H. Brunotte made the observation(personal 
ommuni
ation with I. K�atai) that ifD is a 
omplete residue system(mod �) su
h that j�(j)j > maxf2; 2pKj(D)g (j = 1; : : : ; k) then thereexists a 
omplete residue system D su
h that (�; �;D) is a number system,and Kj(D) � Kj(D) (j = 1; : : : ; k).Theorem 11 (K�atai [13℄) Let � be the set of algebrai
 integers in animaginary quadrati
 �eld and let � 2 �. Then there exists a suitable digitset D by whi
h (�; �;D) is a number system if and only if j�j > 1, j1��j > 1hold.In other words K�atai was able to prove that in imaginary quadrati
 �eldsfor the number system 
onstru
tion the 
onditions in Theorem 1 are alsosuÆ
ient. His digit set 
onstru
tion based on the 
onjugates of the basi
7



latti
e. He studied the 
onstru
tion of G. Steidl, who investigated the samefor the ring of Gaussian integers [31℄.In real quadrati
 �elds the situation is more 
ompli
ated. The followingresult is available [10℄:Theorem 12 (Farkas, A. Kov�a
s) Let � be the set of algebrai
 integersin the real quadrati
 �eld Q (p2) and let 0 6= � 2 �. If �; 1�� are not unitsand j�j ; j�j > p2 then there exists a suitable digit set D by whi
h (�; �;D)is a number system.The digit set 
onstru
tion is similar to K�atai's 
onstru
tion but it 
ontainssome improvement. This improvement is based on the observation that usingK�atai's digit set 
onstru
tion the stru
ture of the periodi
 elements is simple.2 Proof of Theorem 4Let the radix system (�;M;D) be given. Sin
e �(M�1) < 1=2 therefore thereexists a ve
tor norm for whi
h the 
orresponding operator norm kM�1k < 1=2holds. Let furthermoreD = fdi 2 
oseti(M)j any f 2 �; f � di implies kdik � kfk; i = 1; : : : ; tg;where t = j det(M)j. Indire
tly, let us suppose that there are periodi
 ele-ments in (�;M;D) di�erent from zero. Let � 2 P su
h that for all �0 2 Pthe inequality k�k � k�0k holds. Consider the expansion of �0 = �n = � by�i = di +M�i+1 (i = 0; : : : ; n� 1);where n is the length of the expansion, di 2 D, di � �i (mod M). Clearly,by the 
onstru
tion of the digit set Dkdik � k�ik � k�k (3)hold for all i = 0; : : : ; n� 1. Let furthermore A =M�1. Then,An� = And0 + An�1d1 + � � �+ Adn�1 + �;hen
e (An � I)� = nXk=1 Akdn�k: (4)8



Observe that the matrix (An � I) is nonsingular for any positive integer n,othervise 1 would be an eigenvalue of An, so A would have an eigenvalue ofmodulus 1. Re
all that the operator norm satis�es the following properties:a) kBmk � kBkm for any positive integer m and square matrix B.b) If kBk < 1 then (I �B)�1 exists,
) k(I �B)�1k � 1=(1� kBk) andd) I +B +B2 + � � �+Bm = (I � B)�1(I � Bm+1).In virtue of (3) and (4) and the properties above we have thatk�k � kAkk�k 1� kAkn1� kAk k(An � I)�1k� kAkk�k 1� kAkn1� kAk 11� kAnk� k�k kAk1� kAk < k�k;whi
h is a 
ontradi
tion.S. Akiyama kindly pointed out that the ne
essary 
ondition �(M�1) 
anonly be repla
ed to kMk > 2 if the 
ondition number 
ond(M) = kMk �kM�1k = 1. In algebrai
 number �elds using the notations of Theorem 10we have the following 
orollary:Corollary Let � be the set of algebrai
 integers in Q (�), where � is analgebrai
 number of degree k. If � 2 � satis�es the 
onditions j�(j)j > 2(j = 1; : : : ; k) then there exists a digit set D for whi
h (�; �;D) is a numbersystem.3 Proof of Theorem 8Let the polynomial f(x) = 
0 + 
1x+ � � �+ 
kxk 2 Z[x℄, 
k = 1 be given andlet its 
ompanion matrixM = 0BBBBB� 0 0 � � � 0 �
01 0 � � � 0 �
10 1 0 � � � �
2. . . 00 0 � � � 1 �
k�1
1CCCCCA :

9



Suppose that the 
ondition (1) holds. We prove that there exists a suitabledigit set D for whi
h (Zk;M;D) is a number system.Let the matrix Q 2 SL(k;Z) be as follows:Q = 0BBBBB� 
k 
k�1 � � � 
2 
10 
k 
k�1 � � � 
20 0 
k � � � 
3. . .0 0 0 � � � 
k
1CCCCCA :Clearly, the matrixM1 = 0BBBBB� �
k�1 �
k�2 � � � �
1 �
01 0 0 � � � 00 1 0 � � � 0. . .0 0 � � � 1 0

1CCCCCAis integrally similar to M via the matrix Q. Hen
e, it is enough to �nd adigit set D1 for whi
h (Zk;M1; D1) is a number system. Why do we use thisbasis? Be
ause the fun
tion �, whi
h des
ribes the dynami
 of the latti
epoints, be
omes very simple. To be more pre
ise, sin
eM�11 = 0BBBBB� 0 1 0 � � � 00 0 1 � � � 0. . . 00 0 0 � � � 1�1=
0 �
k�1=
0 �
k�2=
0 � � � �
1=
0
1CCCCCAtherefore the fun
tion � a
ts as a kind of a left shift map: if y = [y1; y2; : : : ; yk℄T 2Zk, d = [d1; d2; : : : ; dk℄T 2 D1, y � d (mod M1) and z = [z1; z2; : : : ; zk℄T =[y1 � d1; y2 � d2; : : : ; yk � dk℄T then �(z) = [z2; z3; : : : ; zk; zk+1℄T , wherezk+1 = � 1
0 kXj=1 zk�j+1
j: (5)Clearly, if the digit set has a spe
ial (e.g. 
anoni
al) form, then the fun
tion� is even simpler. This basis was �rst suggested by H. Brunotte examining10



number systems with 
anoni
al digit sets, and later extensively used by S.Akiyama, H. Rao, A. Peth}o, and J.M. Thuswaldner.Let us 
onsider the symmetri
 digit setD1 = f�e1 j � = �b(j
0j � 1)=2
; : : : ; bj
0j=2
g: (6)Then, by (5) and (6) for any [zi; zi+1; : : : ; zi+k�1℄T 2 Zk we have thatzi
k + zi+1
k�1 + � � �+ zi+k�1
1 + zi+k
0 2 D1; (7)where zi+k is de�ned by (5). Let us suppose that (Zk;M1; D1) is not anumber system. Then there is a period di�erent from 0 ! 0. Let � =maxf zi j [zj; zj+1; : : : ; zj+k�1℄T 2 P; j � i � j + k � 1g. It follows from thestru
ture of the digit set that � > 0. Let us 
hoose an i in (7) su
h thatzi+k = �.Let 
0 be even. By using (7) if sgn(
0) > 0 then
0�� � 12� � �� kXj=1 j
ij�;if sgn(
0) < 0 then�� j
0j2 � 1� �j
0j� = j
0j�� � 12�+ 1 � �� kXj=1 j
ij�:Let 
0 be odd. Again, using (7) if sgn(
0) > 0 then�
0 � 12 + 
0� = 
0�� � 12�+ 12 � �� kXj=1 j
ij�;if sgn(
0) < 0 then�� j
0j � 12 � �j
0j� = j
0j�� � 12�+ 12 � �� kXj=1 j
ij�:Thus, in any 
ase, we havej
0j�� � 12� � �� kXj=1 j
ij�: (8)11



Reordering inequality (8) we got that��j
0j � kXj=1 j
jj� � j
0j2 ;by whi
h � � j
0j2(j
0j �Pkj=1 j
jj) :Hen
e, if j
0j > 2Pkj=1 j
jj then � < 1 whi
h is a 
ontradi
tion. The proof is�nished.4 SummaryThis paper 
ontains some new results regarding general number system 
onst-ru
tions. To have a better view we summarized also the earlier results.Comparing our theorems with ea
h other one 
an see that in some 
ases,e.g. when for the 
hara
teristi
 polynomial of the radix M the inequality
0 > 2kPki=1 j
ij holds, our both 
onstru
tions are appli
able. On the otherhand, for the 
ase f(x) = x3 � 2x2 � 7x+ 15 only Theorem 4, while for the
ases f(x) = xk �Pk�1i=1 xi + 2k + 1, k = 3; 4; : : : only Theorem 8 
an beapplied. But we must stress the di�eren
e. While Theorem 4 works for alloperators M for whi
h kM�1k < 1=2, Theorem 8 works only for one integralsimilarity 
lass.Furthermore, Example 2 shows that the 
onditions in Theorem 1 are notsuÆ
ient for the number system 
onstru
tions. Regarding one Z-similarity
lass in dimension two { via the 
hara
teristi
 polynomial of M { we believethat the ne
essary 
onditions in Theorem 1 are also suÆ
ient. This pointsout the dire
tion of our further resear
h.The authors are grateful to Professor I. K�atai, who kindly presented theresults of his personal 
ommuni
ation with H. Brunotte, and to S. Akiyama,who found a bad argumentation at the proof of Theorem 4 in the originalmanus
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