On number system constructions

L4szlé6 German* and Attila Kovécs

Abstract

In this paper we investigate various number system constructions.
After summarizing the earlier results we prove that for a given lattice
A and expansive matrix M : A — A if p(M ') < 1/2 then there
always exists a suitable digit set D for which (A, M, D) is a number
system. Here p means the spectral radius of M—!. We shall prove
further that if the polynomial f(z) = ¢y + c1z + - + cpa® € Z[z],
cr, = 1 satisfies the condition |cy| > 2 Zle |ci| then there is a suitable
digit set D for which (Zk, M, D) is a number system, where M is the
companion matrix of f(zx).

1 Statements and earlier results

A lattice in R¥ is the set of all integer combinations of k linearly independent
vectors. It can be viewed either as a set of points in the k-dimensional
Euclidean space, as a Z-module, or as a finitely generated free Abelian group.
Let A be a lattice, M : A — A be a group endomorphism such that det (M) #
0 and let D be a finite subset of A containing 0.

Definition The triple (A, M, D) is called a number system (or having
the unique representation property) if every element z of A has a unique,
finite representation of the form x = Zi’:o M'd;, where d; € D and [ € N.
The operator M is called the base or radiz, D is the digit set.

Both A and MA are Abelian groups under addition, the order of the
factor group A/MA is t = |det(M)|. If two elements are in the same coset
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of this group then we say that they are congruent modulo M. In [21] the
following theorem was stated:

Theorem 1 If (A, M, D) is a number system then
a) D must be a full residue system modulo M,

b) M must be expansive,
c) det(I — M) # +1.

In this paper we always assume that these conditions hold, in which case
we call (A, M, D) a radiz system. Every number system is a radix system,
but the converse is not true.

The radix system (A, M, D) can be used to represent all the lattice points
in A even if it is not a number system. Clearly, for each v € A there exists a
unique d; € D such that y—d; € MA. Let v = M '(y—d;) and let us define
the function ® : A — A by ®(y) = ;. Let ®' denote the [-fold iterate of ®,
®%(y) = 7. The sequence of integer vectors ®/(z) = z; (j = 0,1,2,...) is
called the orbit of zy generated by ®. Since the spectral radius p(M~') < 1
therefore there exists a norm on R* such that for the corresponding operator

norm
M~ = sup [[M~"a]
llzll<1

the inequality [[M '] < 1 holds. The algorithmic construction of an app-
ropriate vector norm was presented in [19]. Throughout this work || .|| de-
notes this vector and the induced operator norm. Let furthermore K =
maxyep ||d||, 7 = ||[M7'|, L = Kr/(1 —r). Tt is easy to see, that if
Izl < L then [|®(z)|| < L, if ||z|]] > L then ||®(2)]] < ||z||. Since the
inequality ||z|| < L holds only for finitely many lattice points therefore the
path z, ®(z), ®?(z), ... is ultimately periodic for all 2 € A. The vector T € A
is called periodic if there exist a j € N such that ®/(7) = 7. Let P denote
the set of all periodic elements. The function ® defines a discrete dynamic
on A in the following way: let G(P) be the directed graph defined on the set
P by drawing an edge from 7 € P to ®(m). Then G(P) is a disjoint union of
directed cycles, where loops are allowed. We say that G(P) is the attractor
set of A generated by ®. Observe that (A, M, D) is a number system if and
only if G(P) = {0 — 0}.

There are three types of problems in the mainstream of the number system
research: decision, classification and construction. Decision means that for
a given radix system (A, M, D) decide whether it is a number system. Tt
has theoretic and algorithmic aspects, we refer only to [6, 14, 19, 21, 8, 34].



Classification means that for a given radix system (A, M, D) characterize
the number, location and structure of the periodic elements. Some results
in dimension two can be found in [9, 22, 23, 33]. In this paper we focus
on construction problems: for a given lattice A and operator M satisfying
criteria b) and ¢) in Theorem 1 is there any suitable digit set D for which
(A, M, D) is a number system? If yes, how many and how to construct them?
For a given radix system (A, M, D) some results are available:

Theorem 2 (Vince [34]) For a given k x k operator M if all its singular
values are greater then 3v/k then there exists a digit set D for which (A, M, D)
is a number system. In dimensions one and two the bound 3vk can be
improved to 2.

The digit set is D = ANMV, where V is the Voronoi domain of the cubic
lattice (the closure of V' is the unit cube centered at the origin).

Theorem 3 (A. Kovécs [21]) For a given k x k operator M if
1Mo < 1/(1+ V),

then there exists a digit set D for which (A, M, D) is a number system. Here
||.]|2 is the operator norm induced by the Euclidean vector norm.

We note that if ||[M~"|, < 1/(1 + vk) then ||M|]y > 1 + vk but the
converse is not necessary true. The digit set is by selecting a complete residue
system around the origin keeping the norm of the elements minimal. Observe
that the digit set D is not necessary unique. In this paper we shall prove the
following:

Theorem 4 For a given matrix M if p(M ') < 1/2 then there exists a
digit set D for which (A, M, D) is a number system.

Matrix transformations M; : A — A and My, : T' — T of lattices A
and T are equivalent (or similar) if there exists an invertible matrix ) such
that M>@Q = QM; and ' = QA. It is easy to see that the equivalence
preserves the number system property, i.e, if M; and M, are equivalent via
the matrix @@ and (A, M, D) is a number system then (QA, M, QD) is a
number system as well. Hence, there is no loss of generality in assuming
that M is an integral matrix acting on the lattice Z*. Searching for number
systems in Z* has a natural computational advantage, since the minimal
and characteristic polynomial of M are also integral. Moreover, equivalence
means a simple basis transformation, therefore there exist equivalent matrices
in several canonical forms. The Frobenius normal form of a square k x k



matrix M has the structure F' = diag(C1, ..., C,), where C;’s are companion
matrices associated with polynomials pq,...,p,, where p; is a factor of the
characteristic polynomial of M with the property p; | piv1 (1 =1,...,r —1).
The Frobenius normal form defined in this way is unique and every matrix
can be transformed by an equivalence transformation to its Frobenius normal
form. We note that transforming M to its Frobenius canonical form there is
no need to extend the field of its coefficients.

If the minimal polynomial is identical to the characteristic polynomial,
the Frobenius normal form is the companion matrix of the characteristic
polynomial. This case is extremely important due to the following construc-
tion. Consider a polynomial f(z) = ¢y + 17 + -+ + cp2* € Z[x], ¢ = 1.
Let (f) be the ideal generated by f, let Ay be the quotient ring Z[z]/(f)
and let & = = + (f). Then, A can be realized as a free Abelian group or
as a Z-module with basis (1,a,a? ...,a" ) and A; is isomorphic to Z*.
Hence, the companion matrix of f(x) serves as the radix and acts on the
cubic lattice Z". Addition and multiplication of lattice points is just addi-
tion and multiplication in the ring A;. We remark that using canonical digit
sets the decision problem in this structure are in the forefront of the research
[1, 3,4, 7,25, 30]. A set of integer vectors is called j-canonical with respect
to the matrix M if all the elements have the form ve;, where e; denotes the
j-th unit vector, v = 0,1,...,|det(M)| — 1 (see [19]). 1-canonical complete
residue systems are called canonical digit sets with respect to M.

In the special case when f(z) is irreducible over Z then A, is isomorphic
to Z[a], where « is any root of f(x) in an appropriate extension field of the
rationals. This case has been extensively studied, we refer only to [6, 11, 15,
16, 17, 18]

Let us denote the k-dimensional general linear group over Z by GL(k, Z)
and its subgroup, for which the determinant of the elements are +1 by
SL(k,Z). Let A, B € GL(k,Z). We say that A and B are integrally similar
(or Z-similar) if there exist a T' € SL(k,Z) such that AT = TB. Clearly, if
A and B are integrally similar then they are similar, but the converse is not
true.

Example 1 The matrices

(5 ) e (7570

have the same characteristic polynomial 22 +z + 6, they are similar, but they
are not Z-similar.



Let S(k, A, Q) and S(k, A, Z) be the set of all k x k integer matrices which
are similar to A over Q and over Z, respectively (in other words the elements
of the similarity matrices have rational and rational integral elements, respec-
tively). Then S(k, A, Q) is the union of integral similarity classes. Moreover,
it is the union of finitely many integral similarity classes if and only if A is
diagonalizable over C (see e.g. in [26]). This is the case if, for example, the
minimal polynomial of A is irreducible over Z.

Theorem 5 (Latimer-MacDuffee-Taussky [28, 32]) Let f(z) € Z[z]
be an irreducible monic polynomial of degree k. Then there is a bijection
between the integral similarity classes of k& x k integer matrices with cha-

racteristic polynomial f(z) and the ideal classes in Z[f], where f(f) = 0,
g e C.

It is also known that if A is an integer k£ X k& matrix then every matrix
B € S(k, A, Q) is integrally similar to A if and only if the minimal polynomial
m(z) of A has the form p;(z)ps(z) - - - pr(z) (some r > 1) of distinct monic
irreducible polynomials p;(z),...,p.(x) such that i) the ideal class number
of Q(#;) is 1 for i = 1,2,...,r, where 6; is a root of the equation p;(xz) = 0,
and ii) the resultant res(p;, p;) = £1 for all 4, j with 1 <i#j <.

Summarizing the above reasoning, if for a given k X k integer matrix M
we are able to find a suitable digit set D for which (Z*, M, D) is a number
system then we have a construction for all operators in S(k, M,Z). If M is
diagonizable over C then there are finitely many integral similarity classes
and if the characteristic polynomial of M is irreducible then Theorem 5 shows
also their cardinality.

In the same way, the concept of Z-similarity plays an important role if
one wants to show that for a given operator M there does not exist any
appropriate digit set D for which (Z*, M, D) is a number system.

Theorem 6 (Barbé, von Haeseler [5]) Let M be an expanding operator
in Z* with |det(M)| = 2. There is a digit set D for which (Z*, M, D) is a
number system if and only if M is Z-similar to the companion matrix C'y; of
the characteristic polynomial of M and (Z*, Oy, {0, e,}) is a number system.

Since there exist irreducible, expansive polynomials f(x) for which f(0) =
2 and the number of the ideal classes in Z[f] is greater than one (f(#) = 0),
therefore there exist integral similarity classes in which the digit set const-
ruction is not possible. Such polynomials are z* 4+ 22 +2, 2% —2* — 22 +2, 25+
23+ 2% —x+ 2,25+ 2t + 2,25+ 25 + 2* + 223 + 2% + v + 2. Lagarias and
Wang reports [27] that there does not exist any other polynomials having



the above property with degree less than or equal to 6.
Example 2 The matrix

11 -120

-1 0 11

M= 10 -1 1
-1 0 00

is expansive, its characteristic polynomial is f(z) = 2* + 22 +2, D = {0,¢,}
is a complete residue system modulo the companion matrix Cy, of f(z) and
(Z*, Oy, D) is a number system [20], but it is not possible to give any digit
set D', for which (Z* M, D') would be a number system, since M is not
Z-similar to C'y;. We note that for the matrix M the sets {0, e} and {0, e3}
are complete residue systems modulo M but {0, e;} is not.

The strength of Theorem 4 is that satisfying the condition p(M 1) < 1/2
the digit set construction is always possible independently of the dimension
and the basis of the space. To be more precise, if (Z*, M, D) is a number
system having p(M~") < 1/2 and T € S(k, M, Q) then p(T™') < 1/2 and
(Z*,T, D) is a number system as well since M and T have the same spectrum.
If we restrict our attention to one Z-similarity class we have the following
result:

Theorem 7 (B. Kovics [24] and Pethé [29]) Let the polynomial ¢y +
cax + -+ ezt € Z[z], (¢ = 1) be given and let us denote its companion
matrix by M. If the conditions b) and c) in Theorem 1 hold, furthermore if

2<c¢zc 2221

then (Z*, M, D) is a number system with the canonical digit set D.
We shall prove the following theorem.

Theorem 8 Let the polynomial f(x) = ¢y + c1x + - -+ + ¢cpa* € Z[z],
(¢, = 1) be given and let us denote its companion matrix by M. If the
condition

k
o] > 2 |eil (1)
=1

holds then there exists a suitable digit set D for which (Z*, M, D) is a number
system.



First observe that (1) — which is called the weak dominant condition
— implies the fulfillment of condition b) in Theorem 1. Otherwise for the
IA| < 1 root of f(z) we have |co] = | S5, ;N < o8 il < |eol/2, which is
a contradiction. On the other hand the weak dominant condition implies that
Ef:[] ¢; # +1 which means exactly the condition ¢) in Theorem 1. Taking
extra conditions the weak dominant condition can be made stronger:

Theorem 9 (Akiyama, Rao [2]) Let the polynomial f(z) = ¢y + 1z +
.-+ cpx® € Z[z], ¢p = 1 be given and let us denote its companion matrix by
M. If the conditions

a) ol > Y05y leil, (2)
b) ZLIQZO,
¢) ¢;>0,i=23 ... k—1

hold then (Z*, M, D) is a number system with the canonical digit set D. The
strong dominant condition (2) can be replaced by |co| > SO |ei| if either
pr<0Oorp;>0foralle=1,2,...,k—1.

What is the situation in algebraic number fields? Let ¥ be a fixed algeb-
raic number of degree k, its conjugates 9V = 9,93 ... 9% Let AW be
the set of integers in Q(9)), A = A. Let us fix an integer basis wy, ..., wy
in Q(¢). Let furhermore A; = w4+ |w,(€j)| where w,(cj) is the conjugate
of wy belonging to Q(JM)).

Theorem 10 (Katai [12]) Assume that o € A satisfies the conditions
la)] > max(2,2A;), (j =1,..., k). Then there exists a suitable digit set D
for which (A, a, D) is a number system.

Let K;(D) = max{|¢)| : ¢ € D}. H. Brunotte made the observation
(personal communication with I. Katai) that if D is a complete residue system
(mod «) such that o] > max{2,2\/K;(D)} (j = 1,...,k) then there
exists a complete residue system D such that (A, a, D) is a number system,
and K;(D) < K;(D) (j =1,...,k).

Theorem 11 (Kétai [13]) Let A be the set of algebraic integers in an
imaginary quadratic field and let & € A. Then there exists a suitable digit
set D by which (A, «, D) is a number system if and only if |o| > 1, [1—a| > 1
hold.

In other words Katai was able to prove that in imaginary quadratic fields
for the number system construction the conditions in Theorem 1 are also
sufficient. His digit set construction based on the conjugates of the basic
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lattice. He studied the construction of G. Steidl, who investigated the same
for the ring of Gaussian integers [31].

In real quadratic fields the situation is more complicated. The following
result is available [10]:

Theorem 12 (Farkas, A. Kovédcs) Let A be the set of algebraic integers
in the real quadratic field Q(v/2) and let 0 # a € A. If a, 1 £ « are not units
and ||, [@] > v/2 then there exists a suitable digit set D by which (A, a, D)
is a number system.

The digit set construction is similar to Katai’s construction but it contains
some improvement. This improvement is based on the observation that using
Katai’s digit set construction the structure of the periodic elements is simple.

2 Proof of Theorem 4

Let the radix system (A, M, D) be given. Since p(M ') < 1/2 therefore there
exists a vector norm for which the corresponding operator norm ||[M~'|] < 1/2
holds. Let furthermore

D = {d; € coset;(M)| any f € A, f =d; implies ||d;|| < || f]l,: =1,...,t},

where t = |det(M)|. Indirectly, let us suppose that there are periodic ele-
ments in (A, M, D) different from zero. Let m € P such that for all 7’ € P
the inequality ||7|| > ||7'|| holds. Consider the expansion of my = 7, = 7 by

Wi:di+M7Ti+1 (ZZO,,TL—]_),

where n is the length of the expansion, d; € D, d; = m; (mod M). Clearly,
by the construction of the digit set D

dill < [[mill < ||| (3)
hold for all i = 0,...,n — 1. Let furthermore A = M ~!. Then,
At = Ay + AV Yy + -+ Adyy + T,

hence

(A" — )1 = Zn:Akdn_k. (4)



Observe that the matrix (A™ — I) is nonsingular for any positive integer n,
othervise 1 would be an eigenvalue of A", so A would have an eigenvalue of
modulus 1. Recall that the operator norm satisfies the following properties:

a) ||B™]| < ||B||™ for any positive integer m and square matrix B.
b) If || B|| < 1 then (I — B)™" exists,

c) [I[(1 = B) ' < 1/(1—||B]|) and
d)I+B+B*+---+B™=(I—-B) (I -B™").

In virtue of (3) and (4) and the properties above we have that
1Al

Il < [[A[lflll T Al (A" = D)~
L[l 1
< [[A[lflrll
L—[JA] 1= A~]
1Al
< lrll ——zm <=l
1—[[A]

which is a contradiction.

S. Akiyama kindly pointed out that the necessary condition p(M~1!) can
only be replaced to |[M|| > 2 if the condition number cond(M) = ||M|| -
|M~"|| = 1. In algebraic number fields using the notations of Theorem 10
we have the following corollary:

Corollary Let A be the set of algebraic integers in Q(o), where o is an
algebraic number of degree k. If o € A satisfies the conditions |a()| > 2
(j =1,...,k) then there exists a digit set D for which (A, a;, D) is a number
system.

3 Proof of Theorem 8

Let the polynomial f(z) = co+ c1z + -+ + cxa* € Z[z], ¢, = 1 be given and
let its companion matrix

00 - 0 —C
10 0 —C1
M=1]101 0 —Co
.0
00 -+ 1 —cg



Suppose that the condition (1) holds. We prove that there exists a suitable
digit set D for which (Z*, M, D) is a number system.
Let the matrix @ € SL(k,Z) be as follows:

Cky Ck—1 =**°* Ca
0 Ck, Cg—1 =+ C2
Q= 0 0 cp, -+ C3
0 O 0 Ck
Clearly, the matrix
“Ck—1 —Ck—2 ' —C0 —C
1 0 0 0
M, 0 1 0 0
0 0 1 0

is integrally similar to M via the matrix ). Hence, it is enough to find a
digit set D; for which (Z*, My, D;) is a number system. Why do we use this
basis? Because the function ®, which describes the dynamic of the lattice
points, becomes very simple. To be more precise, since

0 1 0 0
0 0 1 0
]\41_1 = . 0
0 0 0 1
—1/00 _Ckfl/CO —Ckfz/Co —01/00

therefore the function @ acts as a kind of a left shift map: if y = [y1, o, ..., yk]” €
ZF, d = [d,dy,....d;]T € Dy, y=d (mod M) and z = [z, 20, ..., 2|7 =

[yl - dla Yz — d?a s Yk — dk]T then (P(Z) = [227 R3y ey Rk Zk-l—l]Ta where
1 k
2kt = = > 2 jiiC, (5)
0~
Jj=1

Clearly, if the digit set has a special (e.g. canonical) form, then the function
® is even simpler. This basis was first suggested by H. Brunotte examining
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number systems with canonical digit sets, and later extensively used by S.
Akiyama, H. Rao, A. Pethd, and J.M. Thuswaldner.
Let us consider the symmetric digit set
Dy =A{vey | v =—|(lcol =1)/2],. .., Llcol/2]}. (6)
Then, by (5) and (6) for any [2;, Ziy1,-- -, 2zisk 1]" € Z* we have that

2iCk + Zig1Cp—1 + *** + Zigk—101 + 2Ziprco € Dy, (7)

where 2, is defined by (5). Let us suppose that (Z*, My, D;) is not a
number system. Then there is a period different from 0 — 0. Let n =
max{ 2; | [2j,Zj41,- s 2j16—1]T € P,j <i < j+k—1}. It follows from the
structure of the digit set that n > 0. Let us choose an i in (7) such that

Ritk = 1]-
Let ¢ be even. By using (7) if sgn(cy) > 0 then

77__ Z|Cz|

if sgn(cy) < 0 then

k

_(|620| 1 —nleol) = leol (n — %) +1< U(Z|cz|)

Let ¢g be odd. Again, using (7) if sgn(cg) > 0 then

co— 1 i
—02 +6077—60(77—— 5 Z|Cz|

if sgn(cy) < 0 then

—1
_(|CO|2 —77|CO|) |CO|(7’]—— — Z|Cz|

Thus, in any case, we have

o ( n— — Z|cz : (8)

11



Reordering inequality (8) we got that
k

(ol = Y lesl) <

7j=1
by which
ol
- :
(leol = 2251 lesl)
Hence, if |cy| > 2 Zle lc;| then 1 < 1 which is a contradiction. The proof is
finished.

n<
2

4 Summary

This paper contains some new results regarding general number system const-
ructions. To have a better view we summarized also the earlier results.
Comparing our theorems with each other one can see that in some cases,
e.g. when for the characteristic polynomial of the radix M the inequality
co > 28 3°% |¢;] holds, our both constructions are applicable. On the other
hand, for the case f(:r2 = 2% — 222 — 72 + 15 only Theorem 4, while for the
cases f(z) = a* =S¢ 2" 4 2k 4+ 1, k = 3,4,... only Theorem 8 can be
applied. But we must stress the difference. While Theorem 4 works for all
operators M for which ||[M~!|| < 1/2, Theorem 8 works only for one integral
similarity class.

Furthermore, Example 2 shows that the conditions in Theorem 1 are not
sufficient for the number system constructions. Regarding one Z-similarity
class in dimension two — via the characteristic polynomial of M — we believe
that the necessary conditions in Theorem 1 are also sufficient. This points
out the direction of our further research.

The authors are grateful to Professor I. Katai, who kindly presented the
results of his personal communication with H. Brunotte, and to S. Akiyama,
who found a bad argumentation at the proof of Theorem 4 in the original
manuscript.
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