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Abstract

The object of this note is to analyze canonical radix expansions in
algebraic number fields, especially using 0 and 1 as digits. We shall
prove that infinitely many such binary number system exist and we
enumerate all of them up to degree 8, where degree means the degree of
the defining polynomial. In general, we prove that there are infinitely
many canonical number systems in each dimension even if the number
of digits is “small”.
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1 Introduction

A lattice in Rk is the set of all integer combinations of k linearly independent
vectors. Let Λ be a lattice. This can be viewed as a set of points in a
Euclidean space, a Z-module or as a finitely generated free Abelian group.
Let M : Λ → Λ be a group endomorphism such that det(M) 6= 0 and let D
be a finite subset of Λ containing 0.

Definition. The triple (Λ,M, D) is called a number system (or having the
unique representation property) if every element n of Λ has a unique finite
representation of the form n =

∑l
i=0 M iai, where ai ∈ D and l is a non-

negative integer. The endomorphism M is called the base or radix, D is the
digit set.

Clearly, both Λ and MΛ are Abelian groups under addition. The order of
the factor group Λ/MΛ is t = | det M |. Let Aj (j = 1, . . . , t) denote the
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cosets of this group. If two elements are in the same residue class Aj then we
say that they are congruent modulo M . Necessary conditions for the number
system property are as follows: D must be a full residue system modulo M ,
all eigenvalues of M have modulus greater than one and det(I −M) 6= ±1
(see e.g. [8]).

Let Λ be spanned by k linearly independent vectors. The following ques-
tion arise naturally. For an arbitrary M : Λ → Λ satisfying the previously
mentioned necessary conditions is there any digit set D for which (Λ,M, D)
has the unique representation property? In many cases the answer is pos-
itive. If ‖M−1‖2 ≤ 1/(1 +

√
k) then there always exists a digit set D for

which (Λ,M, D) is a number system [8]. Here ‖ ·‖2 means the operator norm
induced by the Euclidean vector norm of Rk.

It is well-known that a basis transformation in Λ does not change the
number system property, hence, number expansions can be examined without
loss of generality on the cubic lattice Zk. Furthermore, it was proved in [7]
that for an arbitrary z ∈ Λ the path z, Φ(z), Φ2(z), . . . is ultimately periodic,
where

Φ : Λ → Λ, Φ(z) = M−1(z − d), d ∈ D, z ≡ d mod M.

Via these periods a classification can be made for the points of Λ and the
radix system (Λ,M, D) is a number system iff the only period is 0 → 0. We
denote the set of periodic points by P . If π ∈ P then the length of period of
π is the smallest positive integer l for which π = Φl(π). Moreover, in [8] a
Classification Algorithm was presented and it was noted that the time
and space complexity of the algorithm depends strongly on the chosen basis
of the lattice determined by the radix M .

Let Λ = Zk. Now, we examine special kinds of digit sets. A set of vectors
D

(j)
M ⊂ Zk is called j-canonical with respect to the matrix M (1 ≤ j ≤ k)

if all the elements have the form νej, where ej denotes the j-th unit vector,

ν = 0, . . . , t− 1. If the set D
(j)
M forms a complete residue system modulo M

then we call it a j-canonical digit set and denote it by D(j). If there exists
a j for which (Zk,M, D(j)) is a number system then it is called j-canonical
number system. Unfortunately, j-canonical complete residue systems do not
always exist, necessary and sufficient conditions for that were given in [7].
Furthermore, 1-canonical digit sets are called simply canonical.
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2 CNS-polynomials

2.1 Construction

The following construction provides an expansive M and a canonical digit
set modulo M . Consider the polynomial

f(x) = ckx
k + ck−1x

k−1 + . . . + c0 = (x− θ1) . . . (x− θk), ck = 1 (1)

over Z[x]. Let us denote the quotient ring Z[x]/(f) by Λf . Let β = x + (f)
denote the image of x in Λf . Then Λf has the structure of a free Abelian
group with basis {1, β, β2, . . . , βk−1}. Hence, Λf is a lattice, addition and
multiplication of lattice points is just addition and multiplication in the ring
Z[x]/(f). To be more precise consider the polynomial f(x) in (1) and assume
that |θi| > 1 (i = 1, . . . , k). Observe that Λf is the set of elements of form
u0 + u1β + . . . + uk−1β

k−1 (uj ∈ Z). For the addition it is isomorphic with
the additive group Zk. Clearly, Iβ = {βσ : σ ∈ Λf} is an ideal in Λf ,
the number of residue classes in the factor ring Λf/Iβ is t =| θ1 . . . θk |.
Choosing an element from each residue class the digit set can be defined
as Dβ = {a0 = 0, a1, . . . , at−1} ⊆ Λf . Let α ∈ Λf . Then there exists a
unique a ∈ Dβ and a unique α1 ∈ Λf for which α = a + βα1. The function
Φ : Λf → Λf is defined as Φ(α) = α1. Observe that the map α → βα can be
formulated as a linear transformation, which has a simple form in the basis
{1, β, β2, . . . , βk−1}, namely the Frobenius matrix

Mf =




0 . . . −c0

1 0 . . .
...

0
. . .

...
0 . . . 1 −ck−1




. (2)

Hence, all the problems regarding number expansions can be formulated
in Zk instead of making it in Λf . The digit set has | (−1)kc0 | elements.
Since M∗

f [k, 1] = (−1)k+1 therefore by [7, Theorem 8] canonical digit set
always exist. Here M∗ means the adjoint of M , i.e., the elements are the
adjoints of the appropriate sub-determinants. In the special case, when f(x)
is irreducible over Z[x] then Λf = Z[x]/(f) is isomorphic with Z[θ], where θ
is any root of f(x) in an appropriate extension field of the rationals. Hence,
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we may replace β to θ in the above reasoning. The next lemma provides a
sufficient condition for Z[x]/(f) being isomorphic with Z[θ].

Lemma 1. Consider the polynomial f(x) in (1) and assume that |θi| > 1,
(1 ≤ i ≤ k). If f(0) = c0 is prime then f(x) is irreducible.
Proof: Suppose indirectly that f(x) = u(x)v(x), u, v ∈ Z[x], deg(u) ≥
1, deg(v) ≥ 1 and both u and v are monic. Since c0 = f(0) = u(0)v(0) is
prime therefore either u(0) is ±1 or v(0) is ±1. Assume that u(0) is ±1.
Since the constant term of u(x) is the product of some roots of f in module,
this is impossible. 2

Consider the canonical radix system (Λf ,Mf , D). Computing the Smith
normal form of Mf by UMfV = G it is easy to see that

U =




0 1 0
...

. . .

0 0 1
− sgn(c0) 0 . . . 0




and G = diag(1, . . . , 1, |c0|). Hence, by [7, Theorem 4] the function Φ can be
given as

Φ(x) = Φ([x1, . . . , xk]
T ) = = [−c1

c0

x∗+x2,−c2

c0

x∗+x3, . . . ,−ck−1

c0

x∗+xk,−x∗

c0

]T

(3)

where x∗ = x1 − d, 0 ≤ d < |c0| and c0 | x∗. Using the notation y = bx1/c0c
in (3) the function Φ can also be written as

Φ(x) = [−c1y + x2,−c2y + x3, . . . ,−ck−1y + xk,−y]T . (4)

If the system (Λf ,Mf , D) is a canonical number system then we call the
polynomial f(x) as a cns-polynomial, or we say that the polynomial f(x) has
the cns-property. In this case for every x ∈ Zk there is a j ∈ N0 for which
Φj(x) = 0.

2.2 Necessary conditions for the cns-property

Now we give some necessary conditions for constructing canonical number
systems via cns-polynomials. These conditions are quite obvious, most of
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them were used in different research papers by W. Gilbert, I. Kátai and A.
Pethő. We prove it for the sake of completeness.

Lemma 2. If (Λf ,Mf , D) is a canonical number system defined by the cns-
polynomial (1) then
(a) c0 ≥ 2;
(b) if −1 ≤ r ∈ R then f(r) > 0, if −1 ≤ z ∈ Z then f(z) ≥ 1;
(c) f(1) ≥ c0;
(d) if k is even then f(−c0) ≥ 1, if k is odd then f(−c0) ≤ −1;

(e)
∑bk/2c

i=0 c2i ≥ b(c0 + 1)/2c.
Proof: (a) It is obvious that every real root of f(x) (if exist) must be
less then −1. Hence, c0 = (−1)kθ1 . . . θk > 1. Concerning (b) the previous
idea can also be applied. (c) It is known that the only periodic element in
the number system (Λf ,Mf , D) is the null vector. Now we analyse how can
we avoid the loops Φ(x) = x different from 0 → 0. Suppose that there is
a loop. Using (4) the following system of equations can be set up: {x1 =
x2−c1y, x2 = x3−c2y, . . . , xk−1 = xk−ck−1y, xk = −y}. From these equations
it is easy to deduce that xk(1 + ck−1 + . . . + c0) = d ∈ D. If xk = 0 then
x = 0 which is a known case. If xk 6= 0 then applying (a) the number of
loops is b(c0 − 1)/f(1)c. Hence, if c0 ≤ f(1) then there does not exist any
loop. Concerning (d) if θi ∈ C \ R for all 0 ≤ i ≤ k then the assertion is
obvious. On the other hand observe that there does not exist any real θi for
which θi ≤ −c0, otherwise there would be a θj for which | θj |< 1. Hence
−c0 < θi < −1 for all real roots of f(x). It means that if k is even then
f(−c0) ≥ 1, if k is odd then f(−c0) ≤ −1. (e) is immediately follows from
(a) and (b) by z = −1. 2

Let c0 ≥ 2 and k be fixed. Since all roots of the polynomial f(x) has mod-
uli greater then one — we also say that the polynomial satisfies the root-
condition —, therefore the number of cns-polynomials is finite. Next, we
provide upper bounds for the absolute value of the coefficients ci, 1 ≤ i ≤ k−1
in (1).

Lemma 3. Let f(x) be the cns-polynomial defined by (1) and let 2 ≤ k ≤ 9.
Then the coefficients of f(x) can be bounded as

|cj| ≤ s(1− c0) + c0

(
k

j

)
− 1, |ck−j| ≤ s(c0− 1)(1− bk/jc) + c0

(
k

j

)
− 1,

where s =

⌊(
k

j

)
/bk/jc

⌋
, 1 ≤ j ≤ bk/2c.
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Proof: We use the relationship between roots and coefficients of polyno-
mials and the inequalities

α + β < 1 + αβ and
1

α
+

1

β
< 1 +

1

αβ
(5)

where α, β > 1. For brevity let zi =| θi |. To have a better view into the for-
mulas let us consider the special case k = 7, j = 2. Then

∑
1≤i1<i2≤7 zi1zi2 <

z1z2 z4z5 z6z7+z1z3 z2z5 z4z7+z1z4 z2z6 z3z7+z1z5 z2z4 z3z6+z1z6 z2z3 z5z7+
z1z7 z3z4 z5z6 + z2z7 z3z5 z4z6 +2 ·7 < 7c0 +14. In the given range 2 ≤ k ≤ 9
such a sort is always possible. Hence,

|ck−j| =
∑

1≤i1<...<ij≤k

zi1 . . . zij < sc0 + s(bk/jc − 1) and

|cj| = c0

∑

1≤i1<...<ij≤k

1

zi1

. . .
1

zij

< c0(
s

c0

+ s(bk/jc − 1)),

from which the lemma follows. 2

Remarks. (1) These estimates are good enough for searching canonical
number systems algorithmically.

(2) By using these formulas we got the following estimations (ck = 1):
k = 2, |c1| ≤ c0;
k = 3, |c1| ≤ 2c0, |c2| ≤ c0 + 1;
k = 4, |c1| ≤ 3c0, |c2| ≤ 3c0 + 2, |c3| ≤ c0 + 2;
k = 5, |c1| ≤ 4c0, |c2| ≤ 5c0 + 4, |c3| ≤ 5c0 + 4, |c4| ≤ c0 + 3;
k = 6, |c1| ≤ 5c0, |c2| ≤ 10c0 + 4, |c3| ≤ 10c0 + 9, |c4| ≤ 5c0 + 9, |c5| ≤ c0 + 4;
k = 7, |c1| ≤ 6c0, |c2| ≤ 14c0 + 6, |c3| ≤ 18c0 + 16, |c4| ≤ 18c0 + 16, |c5| ≤
7c0 + 13, |c6| ≤ c0 + 5;
k = 8, |c1| ≤ 7c0, |c2| ≤ 21c0 + 6, |c3| ≤ 28c0 + 27, |c4| ≤ 35c0 + 34, |c5| ≤
28c0 + 27, |c6| ≤ 7c0 + 20, |c7| ≤ c0 + 6;
k = 9, |c1| ≤ 8c0, |c2| ≤ 27c0 + 8, |c3| ≤ 56c0 + 27, |c4| ≤ 63c0 + 62, |c5| ≤
63c0 + 62, |c6| ≤ 28c0 + 55, |c7| ≤ 9c0 + 26, |c8| ≤ c0 + 7.

2.3 Some results

The systematic research of canonical number systems in algebraic number
fields was initiated by I. Kátai and J. Szabó [6]. I. Kátai published many
papers with different co-authors in this area. W. Gilbert, B. Kovács and A.
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Pethő have also dealt with these systems. The concept of canonical number
systems generated by arbitrary square-free polynomials was introduced by
A. Pethő [11].

Further we mention some important results. It was observed that a wide
class of polynomials can serve for constructing canonical number systems. B.
Kovács [9] proved that if f(x) ∈ Z[x] is irreducible, its zeroes have moduli
greater than one and if ck ≤ ck−1 ≤ . . . ≤ c0 ≥ 2 then f(x) is a cns-
polynomial. His proof can be applied for reducible polynomials as well.
Moreover, if c0 is “big enough” then S. Akiyama and A. Pethő [1] gave a
method determining the cns-property of arbitrary polynomials. They also
proved that if c2, . . . , ck−1,

∑k
i=1 ci ≥ 0 and c0 > 2

∑k
i=1 |ci| then f(x) is a

cns-polynomial and the last inequality can be replaced by c0 ≥ 2
∑k

i=1 |ci|
when all ci 6= 0.

Recently, H. Brunotte [2] provided an algorithm, which attempt to prove
the cns-property for a given irreducible monic polynomial f(x) ∈ Z[x] satisfy-
ing the root-condition. His algorithm works for arbitrary monic polynomials
in Z[x] as well. His method differs essentially from the method of S. Akiyama
and A. Pethő. Instead of using power basis he chosed a different one. In H.
Brunotte’s basis the function Φ : Zk → Zk has the form

Φ([x1, . . . , xk]
T ) = [− sgn(c0)

⌊∑k−1
j=1 cjxj + xk

|c0|
⌋
, x1, . . . , xk−1]

T

His algorithm based on the following theorem. Suppose that the set E ⊆ Zk

has the recursive definition (i) [0, . . . , 0]T , [−1, 0, . . . , 0]T , [0, . . . , 0,−1]T ∈ E,
(ii) for every [x1, . . . , xk]

T ∈ E and d ∈ D = {0, 1, . . . , |c0| − 1} the element
Φ([x1, . . . , xk−1, xk + d]T ) belongs to E. If for every e ∈ E there exists a

je ∈ N0 such that Φ
je

(e) = 0 then the polynomial f(x) has the cns-property.
Let us see some examples. Let k = 2. Then by Lemma 2 and Lemma 3

we get that −1 ≤ c1 ≤ c0. It is easy to see that in these cases the roots of
f(x) are outside the complex unit disc. Using the previous algorithm of H.
Brunotte it is also not hard to see that E ⊆ {

[x1, x2]
T , x1, x2 ∈ {−1, 0, 1}}

and applying the function Φ we have that the cns-property always holds. In
fact, we got a kind of generalization of the result of I. Kátai, B. Kovács [4, 5]
and of W. Gilbert [3].

If k = 3 then we are only able to write a set of inequalities between the
coefficients of f(x) (see also [1, 2]). Nevertheless, the following assertion
holds.
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Assertion. The following polynomials are cns-polynomials in Z[x]:
(i) xk + c1x + c0 for every k ≥ 3 iff −1 ≤ c1 ≤ c0 − 2, c0 ≥ 2,
(ii) xk + pxk−1 + pxk−2 + . . . + px + p for all 2 ≤ p ∈ N,
(iii) xk + xk−1 + xk−2 + . . . + x + p for all 2 ≤ p ∈ N,
(iv) xk + pxk−1 + p2xk−2 + . . . + pk−1x + pk for all 2 ≤ p ∈ N.
Proof: The case (i) was proved in [2]. In order to check that the roots
of the polynomials (ii) and (iii) are outside the complex unit disc one can
use the method of Lehmer-Schur [10]. The proof is easy, we leave it to the
reader. It is also obvious that the moduli of the roots of polynomial (iv) are
equal and greater than one. Since the coefficients of the polynomials (ii)-(iv)
are positive and monotonically increasing, the theorem of B. Kovács can be
applied. The proof is finished. 2

Remarks. (1) We proved that there are infinitely many cns-polynomials
(therefore canonical number systems) in each dimension k even if the constant
term of the polynomial is “small”.

(2) The polynomials (iv) and (i) for c1 = 0 show that for every e > 1
there is a base M such that (Λ,M, D) is a canonical number system and
the moduli of each eigenvalues of M are smaller than or equal to e. This
shows that the second necessary condition mentioned in the first section for
satisfying the unique representation property is sharp.

2.4 Searching for cns-polynomials

Now we provide an algorithm for searching canonical number systems by
computer. To decide whether the polynomial f(x) has a root inside the
complex unit disc the method of Lehmer-Schur can be used. To analyse the
possible roots in the unit circle we have the following well-known lemma.

Lemma 4. Let Q(x) = q0 + q1x + . . . + qkx
k ∈ Z[x], Q(γi) = 0, |γi| ≥ 1.

Then |γi| > 1 if and only if gcd(Q(x), xkQ(1/x)) is a constant polynomial.

Algorithm: CNS-Sieve. Searching candidates for cns-polynomials. The
inputs are the constant term c0 and the degree k of the monic polynomial
f(x) ∈ Z[x].

1. Let S be the finite set of polynomials determined by Lemma 3;
2. if S 6= ∅ then p :=get-a-new-candidate(S); S := S \ {p};

else goto step 5;
3. if Lemma 2 (e), (b) with z = −1, (c) and (d) hold for the polynomial p
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then goto step 4; else goto step 2;
4. Apply Lehmer-Schur and Lemma 4 for the polynomial p;

if all roots of p have moduli greater than one then print(p);
goto step 2;

5. Stop;

The algorithm terminates since S is a finite set. Observe that the CNS-
Sieve algorithm contains computationally easy-to-check methods. More-
over, if Lemma 2 fails for the polynomial p then possibly more than one
polynomials can be deleted from the set S, depending on which part of
Lemma 2 does not hold. Clearly, the CNS-Sieve algorithm can also be ap-
plied for k > 9 but in this case bounds for the coefficients of f(x) must be
determined.

2.5 CNS-polynomials with constant term c0 = 2

Now we turn our attention to generalized binary number expansions, i.e.
c0 = 2. The case k = 1 is well-known, and the case k = 2 was analyzed in
section 2.3. Let k ≥ 3. Suppose that the polynomial f(x) is obtained by the
CNS-Sieve Algorithm for some k. Then, a periodic element 0 6= π ∈ P
would be a test proving that f(x) is not a cns-polynomial. If one does not
find such a π by searching a small finite portion of the space systematically
or randomly then one can use the Classification Algorithm [8] or H.
Brunotte’s algorithm [2] to prove that f(x) is really a cns-polynomial. If
f(x) is not a cns-polynomial then these algorithms serve also the test.

The author implemented the CNS-Sieve Algorithm in C language.
The following table shows the results up to degree 8.

Output of
Degree (k) CNS-Sieve Algorithm Number of

(number of polynomials) cns-polynomials

3 5 4
4 22 12
5 18 7
6 73 25
7 62 12
8 215 20

Table 1
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Further, we enumerate the computed cns-polynomials.
k = 3, 2− x + x3, 2 + x3, 2 + x + x2 + x3, 2 + 2x + 2x2 + x3.
k = 4, 2 − x + x4, 2 + x4, 2 − x2 + x4, 2 + x2 + x4, 2 + 2x2 + x4, 2 + x +

x3 + x4, 2 + x + x2 + x3 + x4, 2 + 2x + x2 + x3 + x4, 2 + x + 2x2 + x3 + x4, 2 +
2x + 2x2 + x3 + x4, 2 + 2x + 2x2 + 2x3 + x4, 2 + 3x + 3x2 + 2x3 + x4.

k = 5, 2− x + x5, 2 + x5, 2− x + x2 + x5, 2 + x2 + x3 + x5, 2 + x + x4 +
x5, 2 + x + x2 + x3 + x4 + x5, 2 + 2x + 2x2 + 2x3 + 2x4 + x5.

k = 6, 2−x+x6, 2−x2+x6, 2−x3+x6, 2+x6, 2+x3+x6, 2+2x3+x6, 2+x2−
x3+x4+x6, 2+x2+x4+x6, 2+x2+x3+x4+x6, 2+2x2+2x4+x6, 2+x−x2−x3+
x5+x6, 2+x−x3+x5+x6, 2+x+x5+x6, 2+x+x2+x3+x4+x5+x6, 2+2x+x2+
x3+x4+x5+x6, 2+2x+2x2+x3+x4+x5+x6, 2+x+x2+2x3+x4+x5+x6, 2+
2x+2x2+2x3+x4+x5+x6, 2+x+2x2+x3+2x4+x5+x6, 2+2x+2x2+2x3+2x4+
x5+x6, 2+2x+3x2+2x3+2x4+x5+x6, 2+2x+2x2+2x3+2x4+2x5+x6, 2+3x+
3x2+3x3+3x4+2x5+x6, 2+3x+4x2+4x3+3x4+2x5+x6, 2+x+x2+x4+x5+x6.

k = 7, 2−x+x7, 2−2x+2x2−x3+x5−x6+x7, 2−x+x2+x4+x7, 2+x3+
x4 +x7, 2+x2 +x5 +x7, 2+x+x6 +x7, 2+x+x2 +x3 +x4 +x5 +x6 +x7, 2+
2x + 2x2 + x3 + x4 + x5 + x6 + x7, 2 + 2x + 2x2 + 2x3 + 2x4 + x5 + x6 + x7, 2 +
2x+2x2 +2x3 +2x4 +2x5 +2x6 +x7, 2+3x+4x2 +4x3 +4x4 +3x5 +2x6 +x7.

k = 8, 2−x+x8, 2−x2 +x8, 2−x4 +x8, 2+x8, 2+x4 +x8, 2+2x4 +x8, 2+
x3+x5+x8, 2+x2+x6+x8, 2+x2+x4+x6+x8, 2+2x2+x4+x6+x8, 2+x2+
2x4 +x6 +x8, 2+2x2 +2x4 +x6 +x8, 2+2x2 +x3 +x4 +x5 +x6 +x8, 2+2x2 +
2x4+2x6+x8, 2+3x2+3x4+2x6+x8, 2+x+x7+x8, 2+x+x2+x4+x6+x7+
x8, 2+x+x2 +x3 +x5 +x6 +x7 +x8, 2+x+x2 +x3 +x4 +x5 +x6 +x7 +x8, 2+
2x+x2+x3+x4+x5+x6+x7+x8, 2+2x+2x2+2x3+x4+x5+x6+x7+x8, 2+
2x+2x2+2x3+2x4+x5+x6+x7+x8, 2+2x+2x2+2x3+2x4+2x5+2x6+x7+
x8, 2+2x+2x2+2x3+2x4+2x5+2x6+2x7+x8,2+x+x2+x3+2x4+x5+x6+
x7+x8, 2+x+2x2+2x3+x4+2x5+x6+x7+x8, 2+x+2x2+x3+2x4+x5+2x6+
x7 +x8, 2+x+3x2 +2x3 +3x4 +2x5 +2x6 +x7 +x8, 2+2x+3x2 +3x3 +3x4 +
2x5+2x6+x7+x8, 2+3x+3x2+3x3+3x4+3x5+3x6+2x7+x8, 2+3x+4x2+
5x3 +5x4 +4x5 +3x6 +2x7 +x8, 2+4x+5x2 +5x3 +5x4 +4x5 +3x6 +2x7 +x8.

The output of the CNS-Sieve Algorithm shows that the estimates in
Lemma 2 and Lemma 3 may be complemented and improved. It is also
clear that the time complexity of the algorithm is exponential in k. More-
over, in higher dimensions proving that a given polynomial obtained by the
CNS-Sieve Algorithm is really a cns-polynomial is hard. The following
conjecture would help, but the author was unable to prove this.

Conjecture. Suppose that the lattice Λ is generated with the power basis
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and the polynomial f(x) is obtained by the CNS-Sieve Algorithm. If
there does not exist any periodic element π for which ‖π‖∞ = 1 then f(x) is
a cns-polynomial.

Obviously, if such a π exist then the polynomial is not a cns-polynomial. We
used this idea to test the output of the CNS-Sieve Algorithm.

Remarks. (1) The case k = 3 in Table 1 was known to A. Járai (unpub-
lished).

(2) Suppose that the polynomial f(x) is obtained by the CNS-Sieve
Algorithm and it is not a cns-polynomial. Then, the Classification
Algorithm provides more than one periods. The following questions are
quite interesting: how many such periods exist and what are the length of
them? The general characterization seems to be hard. The following table
shows some computational results.

the polynomial π ∈ P the length of
f(x) ‖π‖∞ = 1 period of π

2 + x + x2 + x4 [−1, 1, 0, 0]T 11
2 + x + 2x2 + 2x3 + x4 + x5 [−1,−1,−1, 0, 0]T 21
2 + x + x3 + x4 + x5 + x6 [−1,−1,−1, 0, 0, 0]T 33

2 + x + 2x3 + 2x4 + x6 + x7 [−1,−1, 1,−1, 0, 1, 0]T 47
2 + 2x + x2 + x6 + 2x7 + x8 [−1,−1, 0, 0, 0, 0, 0, 0]T 64

Table 2

(3) In order to decide the cns-property of a given polynomial the algo-
rithm of H. Brunotte is preferable. The author is grateful to J. Sziliczi who
programmed this algorithm in C++ in a very fine way. This shows among
others that for the cns-polynomial 2+x+2x2 +x3 +2x4 +x5 +2x6 +x7 +x8

the algorithm uses 344 iteration steps, the number of integer vectors in the
set E is 143123, while for the cns-polynomial 2+3x+3x2 +3x3 +3x4 +3x5 +
3x6 + 2x7 + x8 the algorithm uses 253 iteration steps and number of integer
vectors in the set E is 241719.
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