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Abstract: It is well-known ([11]) that for a given Gaussian integer θ of norm
N ≥ 2 and canonical digit set A = {0, 1, . . . , N − 1} every Gaussian integer
γ has a unique expansion in the form γ =

∑m
i=0 aiθ

i, ai ∈ A if and only if
θ = −n ± i for some positive integer n. In this paper we shall generalize this
result in the meaning that we shall completely describe the location, number
and structural properties of the attractors generated by the discrete dynamic
of an expansion determined by (θ,A).

1. Expansions of the integers

Let θ be any rational integer greater than one. It is well-known
that every non-negative integer n has a unique representation of the form
n = a0 + a1θ + . . . + akθ

k, where the integers aj are selected from the set
{0, 1, . . . , θ − 1}. The decimal (θ = 10) and binary (θ = 2) systems are
the most familiar. Both positive and negative integers can be uniquely
represented without a sign prefix in any negative base θ < −1 using the
digits from {0, 1, . . . , |θ| − 1}. The concept of radix representation can
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be extended to the integers of the algebraic number fields, or in a more
general settings to the lattices of the k-dimensional Euclidean space.

The first non-real base system was introduced by Knuth [12], who
suggested that θ = 2i can be used as base for a complex number system
with the digit set A = {0, 1, 2, 3}. However, in order to represent all
the Gaussian integers, it is necessary to use one negative radix place; for
example 1 + 5i = 3(2i)1 + 1(2i)0 + 2(2i)−1. Penney [12] noticed, that
every complex number can be represented in binary form using the base
−1 + i, moreover, all the Gaussian integers can be written in the form∑n

j=0 aj(−1 + i)j, where aj = 0, 1. The systematic research of positional
number systems in algebraic extensions was initiated by Kátai and Szabó.
Theorem (Kátai and Szabó [11]). Let θ be a Gaussian integer of norm
N ≥ 2 and let A = {0, 1, . . . , N−1}. Then every Gaussian integer γ can
be uniquely represented as γ = a0 + a1θ + . . . + amθm, aj ∈ A, am 6= 0,
j = 0, 1, . . . ,m if and only if θ = −n± i for some positive integer n.

Let θ be an algebraic integer for which θ and all its conjugates have
moduli greater than one. Let N = |Norm(θ)| ≥ 2 and let A be a com-
plete residue system modulo θ. The pair (θ,A), A = {0, a1, . . . , aN−1} is
called a number system in Z[θ] if for each γ ∈ Z[θ] there exist an m ∈ N0

and aj ∈ A such that

(1) γ = a0 + a1θ + . . . + amθm, aj ∈ A, am 6= 0, j = 0, 1, . . . , m.

The uniqueness of the expansion follows from the assumption that
any two elements of A are incongruent modulo θ. The reason that the
norm N yields the correct number of digits is due to the fact that the
quotient ring Z[θ]/(θ) is isomorphic to ZN by the map which takes a
polynomial in θ to its constant term modulo N . Hence the possible
digits for a0 in (1) must form a complete set of representatives for ZN .

The exact characterization of those algebraic integers for which
(θ,A) is a number system with a suitable digit set A seems to be hard.
Some necessary conditions are |θ(j)| > 1 (j = 1, . . . , n) and 1 − θ(j) is
not unit, where θ(j) denotes the j-th conjugate of θ ∈ Q(Γ) and Γ is an
algebraic number of degree n. It was shown in [19] that for Q(i) the above
conditions are also sufficient, i.e. most Gaussian integers can be used as
a base of a number system if the digit sets are chosen appropriately. For
imaginary quadratic extension fields Kátai [7] proved the sufficiency of
the above conditions. Using his construction Farkas [1, 2] has the same
result for real quadratic extension fields. In general, Kátai [5] proved for
arbitrary algebraic number fields that if |θ(j)| > 2 (j = 1, . . . , n) then the
set A can be constructed in such a way that (θ,A) is number system.
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If the digit set A is restricted to be a set of non-negative numbers,
we get a straightforward generalization of the traditional number systems
in Z. The setA={0, 1, . . . , N−1} is called canonical digit set. In this case
all those integers θ in quadratic number fields can be given, for which
(θ,A) are number systems (see [4, 8, 9]). Using canonical digit sets Kör-
mendi [17] determined all the integers θ∈Q( 3

√
2) for which (θ,A) is a num-

ber system. B.Kovács [15] gave a necessary and sufficient condition for
the existence of canonical number systems in Z[θ]. Kovács and Pethő [16]
characterized all those integral domains that have number systems. The
concept of number systems can also be generalized to the lattices of the
k-dimensinal Euclidean space. In [13] an effective algorithm was pre-
sented to decide whether the system (M,A) is a number system or not
for a given invertible expanding linear operator M and given digit set A.

2. Expansions and discrete dynamics

Let θ be an algebraic integer for which θ and all its conjugates
have moduli greater than one. Let N = |Norm(θ)| ≥ 2 and let A be
a complete residue system modulo θ. The system (θ,A) can be used
to represent all the integers even if it is not a number system. Clearly,
for each γ ∈ Z[θ] there exist a unique aj ∈ A such that θ|γ − aj. Let

γ1 =
γ−aj

θ
and let us define the function Φ : Z[θ] → Z[θ] by Φ(γ) = γ1.

Let Φl denote the l-fold iterate of Φ, Φ0(γ) = γ0. The sequence of integer
vectors Φj(γ0) = γj (j = 0, 1, 2, . . .) is called the path of the dynamical
system generated by Φ. It is also called the orbit of γ0 generated by Φ.

The function Φ was introduced by Matula [18] for Z in order to
construct number systems. Somewhat later, independently, Kátai [10, 3]
used it for constructing number systems in algebraic extensions. From
dynamical point of view the research was initiated by Kátai [6, 13].

In this paper we restrict our attention to the ring of Gaussian inte-
gers Z[i]. Let θ ∈ Z[i] be given. The number of elements in a complete
residue system modulo θ = A + Bi is N = Norm(θ) = A2 + B2. Gauss
showed that if A and B are relative prime then the natural numbers
0, 1, . . . , N − 1 form a complete residue system modulo θ. Moreover, if
A and B have a common factor then any complete residue system mod-
ulo θ must contain some numbers with nonzero imaginary parts. In the
following we shall consider the canonical digit set A = {0, 1, . . . , N − 1},
where N ≥ 2; so we always assume that (A,B) = 1. Let furthermore
L := N−1

|θ|−1
. Then for every γ ∈ Z[i] the next lemma is obviously true.



180 A. Kovács

Lemma 1. If |γ| ≤ L then |Φ(γ)| ≤ (L + N − 1)/(|θ|) = L. If |γ| > L
then |Φ(γ)| ≤ (|γ|+ N − 1)/(|θ|) < |γ|.

Since the inequality |δ| ≤ L holds only for finitely many Gaussian
integers δ, therefore the path γ, Φ(γ), Φ2(γ), . . . is ultimately periodic for
all γ ∈ Z[i]. An element π ∈ Z[i] is called periodic if there exist a j ∈ N
such that Φj(π) = π. The smallest such j is the length of the period of π
generated by Φ. Let P denote the set of all periodic elements. Let π ∈ P
be of period length l. The set of the periodic elements {Φ(π), . . . , Φl(π)}
will be denoted by C(π). Suppose that π ∈ P . Then the basin of at-
traction of π consists of all γ ∈ Z[i] for which there exists a j ∈ N0 such
that Φj(γ) = π and is denoted by B(π). Let X ⊆ P . In a similar way,
B(X) denotes all the elements γ ∈ Z[i] for which there exists a j ∈ N0

and π′ ∈ X such that Φj(γ) = π′.
The basin of attraction of an element π ∈ P can be obtained in a

simple way. Let Ψ0(π) = {π}, Ψl+1(π) =
⋃

b∈A{θΨl(π)+b}, l = 0, 1, . . ..
Observe that Ψ — which acts as a left shift operator — is an inverse of
Φ, which acts as a right shift operator. Obviously, B(π) =

⋃∞
l=0 Ψl(π).

The following assertions are clearly true. 1) P is finite. 2) If π ∈ P then
Φ(π) ∈ P . 3) If π ∈ P then |π| ≤ L. 4) π ∈ P iff there is an l > 0

(2) π = a0 + a1θ + . . . + al−1θ
l−1 + πθl, aj ∈ A.

5) If π1, π2 ∈ P , π1 6= π2 and C(π1) = C(π2) then their length of period
are equal. 6) B(P) = Z[i]. 7) If π1, π2 ∈ P then B(π1) = B(π2) iff
C(π1) = C(π2).

Let G(P ) be the directed graph defined on the set P by drawing
an edge from π ∈ P to Φ(π). Then G(P ) is a disjoint union of directed
cycles, where loops are allowed. G(P ) is also called the attractor of Z[i]
generated by Φ.

Observe that (θ,A) is a number system iff for each γ ∈ Z[i] there
is an m ∈ N0 such that Φm(γ) = 0. Due to Kátai and Szabó we know
that this is the case iff θ = −n ± i for some positive integer n. The
following questions arise naturally (see also [13]). (a) What can be stated
about the attractors of an arbitrary canonical system (θ,A) generated
by Φ, where θ ∈ Z[i] and Norm(θ) ≥ 2? (b) How the structure of the
periodic elements looks like? (c) Is there a good upper estimation for
the number of the different sets C(π)? (d) It is known that if π ∈ P
then the maximum of the period length of π can be estimated with the
number of Gaussian integers covered by the disk with radius L centered
at the origin. Is there a better estimation? The purpose of this note is
to answer these questions.
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3. Periodic elements of period length one

Let θ = A+Bi,A = {0, 1, . . . , N −1}, N = A2 +B2. First we shall
examine the periodic elements of period length one (also called loops).
Theorem 1. The loops in the system (θ,A) are πj = 1−A+Bi

(1−A,B)
j, j =

= 0, 1, . . . , k, where k =
⌊
(1− A,B)

(
1 + 2(A−1)

N−2A+1

)⌋
.

Proof. It follows from (2) that π ∈ P is a loop if and only if π = b+θπ for
some b ∈ A. It means that (1− θ)π = b ∈ A, hence π = b

1−θ
= b

1−A−Bi
=

= (1−A)b
(1−A)2+B2 +

Bb
(1−A)2+B2 i. Since π ∈ Z[i] therefore (1−A)2+B2|(1−A,B)b.

On the other hand 0 ≤ b ≤ N −1, which means that πj = 1−A+Bi
(1−A,B)

j, j =

= 0, 1, . . . , k, where k =
⌊

(N−1)(1−A,B)
(1−A)2+B2

⌋
. The proof is complete.♦

Before we continue the examinations for searching the periodic el-
ements of longer periods it is worth to analyze some special cases.

4. Some special cases

Let us consider the system (A±i, {0, 1, . . . , A2}), where A > 0. Re-
call that Kátai and Szabó determined the attractors for the cases A < 0,
namely G(P ) = {0 → 0}.
4.1. The case θ = A± i, A ≥ 1. It is well-known that the attractors
of the system (1+i, {0, 1}) are G(P ) = {0 → 0, i → i}. It was also shown
(e.g. in [13]) that the attractors of the system (2 + i, {0, 1, 2, 3, 4}) are
G(P ) = {0 → 0, −1 + i →
→ −1 + i, −2 + 2i → −2 + 2i}.
Lemma 2. Let θ = A + i, A ≥ 3. Then the attractors are G(P ) =
= {0 → 0, 1− A + i → 1− A + i}.
Proof. It is easy to see that Φ(0) = 0 and Φ(1 − θ) = 1 − θ. We have
to prove that there are no more periodic elements. It is not hard to
check (e.g. using the algorithm presented in [13]) that the lemma is true
for A = 3. Let A ≥ 4. Suppose that U + V i = π ∈ P , Φ(π) = π1 =
= U1+V1i ∈ P . Then U+V i = b+(A+i)(U1+iV1) for some b ∈ A. Hence

(3) U = b + AU1 − V1, V = U1 + AV1.

We have some useful observations. 1. For every periodic elements π

(4) |U |, |V | ≤ A + 1.

Indeed, it is clear that if π ∈ P then |π| ≤ L = A2

|θ|−1
= |θ|+ 1. Therefore

|π|2 = U2 + V 2 ≤ |θ|2 + 2|θ| + 1. On the other hand 2|θ| = 2
√

A2 + 1 <
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< 2(A + 1/2), hence |π|2 < A2 + 2A + 3. But |π|2 ∈ Z[i], so |π|2 ≤
≤ (A + 1)2 + 1, which means that the inequality (4) holds.

2. Nonzero rational integer can not be periodic. For the proof
suppose indirectly, that π = U ∈ P (U 6= 0, V = 0). From (3) we
get that U1 = −AV1. If V1 = 0 then U1 = 0, therefore π1 = 0 which
contradicts the periodicity of π. Hence V1 6= 0. By using (4) it is clear
that |U1| < 2A, therefore V1 = ±1. If V1 = 1 then keeping in mind that
θ + θ = 2A we have π1 = −A + i = −θ = θ − 2A = (N − 2A)− θθ + θ.
Hence Φ(π1) = 1− θ, and the fact Φ(1− θ) = 1− θ contradicts to π ∈ P .
If V1 = −1 then π1 = A− i = θ = 2A−θ, which means that Φ(π1) = −1.
Clearly, −1 = N − 1 − θθ, so Φ(−1) = −θ. Since Φ(−θ) = 1 − θ and
Φ(1− θ) = 1− θ therefore π 6∈ P , which is contradiction.

3. Pure imaginary Gaussian integer can not be periodic. Again,
suppose indirectly that π1 = iV1 ∈ P (U1 = 0, V1 6= 0). From (3) we
get that V = AV1. By the inequality (4) it follows that |V | < 2A,
therefore V1 = ±1, so π1 = ±i. If π1 = i then Φ(π1) = 1 − θ, since
i = −A+ θ = (N −A)+ θ− θθ. If π1 = −i then Φ(π1) = Φ(A− θ) = −1.
In both cases we can use the same argumentation as before, so π1 can
not be periodic, which is a contradiction.

4. If π1 ∈ P then |V1| ≤ 2. Indeed from (3) and (4) it follows that
|AV1| = |V − U1| ≤ 2A + 2 < 3A.

5. If π1 ∈ P then V1 > 0. In virtue of (3) and (4) we get that
U = b + A(V − AV1) − V1 = b − A2V1 + (AV − V1). If V1 < 0 then
U ≥ A2 − 2A, so A + 2 > A2 − 2A which contradicts the fact that
A2 ≥ 3A + 2.

According to the observations we have only to check 4 cases. Before
we analyze these cases we remark the fact that if A ≥ 4 then A2−2A+3,
A2 − 4A + 2 and A2 − 4A + 3 ∈ A.

(a) If V = V1 = 1 then U1 = 1 − A, hence π1 = 1 − A + i. π1 is
listed in Lemma 2.

(b) If V = V1 = 2 then U1 = 2 − 2A, so π1 = 2 − 2A + 2i. The
expansion of π1 is 2− 2A + 2i = A2 − 4A + 3 + θ(2− θ). The expansion
of 2− θ is 2+ (θ− 2A) = A2 +3− 2A+ θ(1− θ), therefore π1 ∈ B(1− θ).

(c) If V = 1, V1 = 2 then U1 = 1 − 2A, so π1 = 1 − 2A + 2i. But
1− 2A + 2i = 1− 4A + 2θ = A2 − 4A + 2 + θ(2− θ), therefore using the
expansion of 2− θ we get that 1− 2A + 2i ∈ B(1− θ).

(d) If V = 2, V1 = 1 then U1 = 2 − A and π1 = 2 − A + i. Its
expansion is 2 − A + i = 2 − 2A + θ = A2 + 3 − 2A + θ(1 − θ), so
π1 ∈ B(1− θ). The proof of Lemma 2 is complete.♦
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Let us notice that if π = a0 + a1θ + . . . + al−1θ
l−1 + πθl then

(5) π = a0 + a1θ + . . . + al−1θ
l−1

+ πθ
l
, aj ∈ A.

Together with this observation we proved the following
Theorem 2. Let θ = A + i, A ≥ 1. Then the attractors of the system
(θ,A) are G(P ) = {0 → 0, 1−A+ i → 1−A+ i} for all A except A = 2,
in which case G(P ) = {0 → 0, −1 + i → −1 + i, −2 + 2i → −2 + 2i}.
If θ = A − i then using (5) the attractor set G(P ) can be obtained from
the previous ones.

4.2. The case θ = 1± Bi. Suppose that B ≥ 1. Applying Th. 1 it is
easy to see that the periodic elements of period length one in the system
(1 + Bi,A = {0, . . . , B2}) are πj = ji (j = 0, 1, . . . , B). We state that
there are no other periodic elements.
Lemma 3. Let θ = 1 + Bi, B ≥ 1. The attractors in the system
(1 + Bi,A) are G(P ) = {ji → ji, j = 0, 1, . . . B}.
Proof. Th. 2 shows that the lemma is true for B = 1. It is not hard
to see that Lemma 3 also holds for B = 2. In the following, let B ≥ 3.
Let U + V i = π ∈ P , Φ(π) = π1 = U1 + V1i ∈ P . Then U + V i =
= b + (1 + Bi)(U1 + iV1) for some b ∈ A. Hence

(6) U = b + U1 −BV1, V = BU1 + V1.

Again, we have some useful observations:

−Bi, 2−Bi, −2 + Bi, −j ∈ B(Bi), j = 1, 2, . . . , B + 1,(7)

−1 + ji ∈ B(ji), j = 1, 2, . . . , B,(8)

+1 + ji ∈ B(ji), j = 0, 1, . . . , B − 1,(9)

+1 + Bi, 2− (B − 1)i ∈ B(0),(10)

(B + 1)i ∈ B(i),(11)

−ji ∈ B((B − j)i), j = 1, . . . , B − 1,(12)

−Bi− i,−1− i,−2 + (B − 1)i ∈ B((B − 1)i).(13)

The proofs are easy, we left them to the reader. The inequalities

(14) |U |, |V | ≤ B + 1

can be proven in the same way as we did it in the previous subsection.
Statement (7) shows that a nonzero rational integer can not be periodic.
In the same way, it follows from (7), (11), (12) and (13) that pure imag-
inary Gaussian integer periodic elements are exactly the given ones. By
equation (6) we have that |U1| ≤ 2.
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If V = B + 1 then from (6) and (14) we get the following cases:
(a) U1 = 0, V1 = B + 1. Clearly, π1 ∈ B(0). (b) U1 = 1, V1 = 1. Ob-
servation (9) shows that the path of π1 does not generate a new periodic
element. (c) U1 = 2, V1 = −B + 1. See (10).

If V = −B − 1 then we have: (a) U1 = 0, V1 = −B − 1. See (13).
(b) U1 = −1, V1 = −1. See (13). (c) U1 = −2, V1 = B − 1. See (13).

If V = B then the cases: (a) U1 = 0, V1 = B. Clearly, π1 ∈ B(Bi).
(b) U1 = 1, V1 = 0. Obviously, π1 ∈ B(0). (c) U1 = 2, V1 = −B. See (7).

If V = −B then we have: (a) U1 = 0, V1 = −B. See (7).
(b) U1 = −1, V1 = 0. See (7). (c) U1 = −2, V1 = B. See (7).

We can conclude that the remaining cases are |V |, |V1| ≤ B − 1.
Then, from the equation (6) we have that |U1| ≤ 1. If U = U1 = ±1
then by (6) we get that V1 = j, j = 0, 1, . . . , B. The statements (8), (9)
and (10) show that the orbits of the different π1-s do not generate a new
attractor. If U = −U1 = 1 then V1 = j, j = 0, 1, . . . , B − 1. See (8). If
U = −U1 = −1 then V1 = j, j = 1, . . . , B. In this case see (9) and (10).
The proof of Lemma 3 is finished.♦

Taking (5) into consideration we proved the following theorem.
Theorem 3. Let θ = 1 + Bi. The attractors in the system (θ,A) are
G(P ) = {ji→ji, j = 0, 1, . . . B}. If θ = 1−Bi then G(P ) = {−ji→−ji,
j = 0, 1, . . . B}.

Fig. 1 shows the basin of attractions of the system (1+2i, {0, . . . , 4})
in a region of the complex plane. B(0) is gray, B(i) is white and B(2i) is
black.

Fig. 1
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5. Structural properties of the attractors

It is enough to consider the case θ = A + Bi, (A,B) = 1, B ≥ 2.
Clearly, if π ∈ P then

(15) |π| ≤ L =
A2 + B2 − 1

|θ| − 1
= |θ|+ 1 =

√
A2 + B2 + 1 < |A|+ |B|.

In this section we shall examine the structure of the orbit of π gen-
erated by Φ. Suppose that U + V i = π ∈ P , Φ(π) = π1 = U1 + V1i ∈ P .
Then U + V i = b + (A + Bi)(U1 + iV1) for some b ∈ A. Therefore,

(16) U = b + AU1 −BV1, V = BU1 + AV1.

From equation (16) we can get a congruence equation V ≡ AV1 (mod B).
Applying the Euler-Fermat theorem we have that

(17) V1 ≡ Aϕ(B)−1V (mod B).

Here ϕ denotes the Euler totient function. Let furthermore Lδ = {C +
+Di ∈ Z[i], (B, D) = δ}. Clearly, Z[i] =

⋃
δ|B Lδ. In virtue of (16) we

can also notice that if (V, B) = δ then (V1, B) = δ. Hence the function
Φ maps Lδ to Lδ for each δ|B. We shall distinguish two cases.

5.1. The structure of Lδ, where δ < B. Let X = V/δ, X1 = V1/δ,
Bδ = B/δ. Then from (16) we have that

(18) X = BδU1 + AX1.

Let us denote by Z∗Bδ
the set of reduced residue classes modulo Bδ,

i.e., Z∗Bδ
= {m (mod Bδ), (m,Bδ) = 1}. Since (A,B) = 1 therefore

the residue classes A,A2, A3, . . . (mod Bδ) are all in Z∗Bδ
constituting

a subgroup. Let us denote by tδ the smallest positive integer k for
which Ak ≡ 1 (mod Bδ). Then Tδ = {A,A2, . . . , Atδ} is a subgroup
of Z∗Bδ

. Obviously, tδ|ϕ(Bδ). Let ϕ(Bδ) = lδtδ. Hence the number of
elements of the factor group Z∗Bδ

/Tδ is lδ and we get the decomposi-

tion Z∗Bδ
= H0 ∪ H1 ∪ . . . ∪ Hlδ−1, where H0 = Tδ. Let L(j)

δ = {α =
= C + Di, α ∈ Lδ, D/δ (mod Bδ) ∈ Hj}. Hence we have a decompo-

sition of Lδ by Lδ = L(0)
δ ∪ L(1)

δ ∪ . . . ∪ L(lδ−1)
δ . The next lemma follows

from the above deduced construction.
Lemma 4. If α ∈ L(j)

δ then Φ(α) ∈ L(j)
δ .

5.2. The structure of LB. Theorem 4. Let θ = A + Bi, A ≥ 2,
(A,B) = 1 and X + Y Bi =
= π ∈ P. Then either π = 0 or π = 1− θ.
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Proof. It is enough to prove it for the case B ≥ 2. The following
statements are clearly true. 1) |X| ≤ A + B. 2) |Y | ≤ ⌊

A
B

+ 1
⌋
.

3) 0 → 0 ∈ G(P ), 1− θ → 1− θ ∈ G(P ).
The expansion of π is X + Y Bi = X + Y (θ −A) = X −AY + θY.

If X − AY ≥ 0 and Y ≥ 0 then π ∈ B(0). (The case X − AY ≥
≥ A2 + B2 can not occur.) Let X − AY ≥ 0 and Y < 0. In this case
the expansion of Y is Y = Y + A2 + B2 − θθ. The expansion of −θ is
θ − 2A = A2 + B2 − 2A + θ(1 − θ), so π ∈ B(1 − θ). If X − AY < 0
then π = A2 + B2 + X − AY + θ(Y − θ). The expansion of Y − θ is
Y − θ = Y + θ− 2A = A2 + B2 + Y − 2A + θ(1− θ). Hence, the proof is
complete.♦

Recall that the elements of the ring Z[θ] have the form {m + nθ :
: m,n ∈ Z}.
Lemma 5. Z[θ] = {u + vBi : u, v ∈ Z} = {β ∈ Z[i] : B| Im(β)}.
Proof. Obviously, m+nθ = (m+nA)+nBi. Let v := n, u := m+nA.♦

In the next theorem we shall prove somewhat more than what we
really need. The proof follows the argument of Kátai and Szabó ([11]).
Theorem 5. Let θ = A + Bi, A = −E, E > 0, (E, B) = 1. Then
Z[θ] = B(0).
Proof. Let β be an arbitrary Gaussian integer such that β ∈ B(0). It
means that β = b0 + b1θ + . . .+ bkθ

k for some k ∈ N and bj ∈ A. Clearly,
B| Im(θj). Since A ⊂ N0 therefore B| Im(β). By Lemma 5 we have that
β ∈ Z[θ], hence B(0) ⊆ Z[θ]. Suppose now that β ∈ Z[θ]. Then

(19) β = m + nθ.

On the other hand the expansion of −1 is

(20) −1 = N − 1 + θθ = N − 1 + 2Eθ + θ2.

Since 1, N − 1, 2E ∈ A therefore −1 has the finite expansion (20) in
the system (θ,A). Equations (19) and (20) mean that β has also an
expansion in the form

(21) β = u0 + u1θ + u2θ
2 + u3θ

3,

where uj ≥ 0 (j = 0, 1, 2, 3).
Lemma 6. (Clearing Lemma.) Suppose that β has the following expan-
sion:

(22) β = u0 + u1θ + . . . + umθm,

where uj ≥ 0 (j = 0, . . . ,m). Let T =
∑m

j=0 uj. Then for every k ≥ 0

there exists an expansion β = v0 + v1θ + . . . + vkθ
k + . . . + vlθ

l such that∑l
j=0 vj = T and 0 ≤ vj < N (j = 0, 1, . . . , k).
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Proof of Lemma 6. First we shall examine the expansion of N =
= A2 + B2.

(23)
N = (−2E − θ)θ =

(
(N − 2E)− θθ − θ

)
θ =

= (N − 2E)θ + (−θ − 1)θ2 = (N − 2E)θ + (2E − 1)θ2 + θ3.
Observe that N − 2E, 2E − 1, 1 ∈ A and the sum of the digits of the
expansion in (23) is N . Clearly, if u0 < N in (22) then the lemma holds
for k = 0. In the opposite case, if N ≤ u0, then let u0 = pN + q, p ≥ 1,
0 ≤ q < N . Let us take u0 = q +p

(
0+(N −2E)θ +(2E−1)θ2 + θ3

)
into

the equation (22). Then we have that β = u′0 + u′1θ + . . . + u′mθm′
, where

u′0 = q, u′1 = u1 + p(N − 2E), u′2 = u2 + p(2E− 1), u′3 = u3 + p, u′j = uj

(j ≥ 4). Observe that
∑

u′j = T , so the sum of the digits does not
change in the new expansion. Hence, the case k = 0 is satisfied. We can
continue the process for j = 1, 2, . . . , k.♦

Now, we can apply Clearing Lemma for the expansion of β in (21).
Let T0 = T = u0 + u1 + u2 + u3. If u0 ≥ N then by the lemma we have
that β = v0 + θβ1, 0 ≤ v0 < N, β1 = y1 + y2θ + . . . + ymθm, yj ≥ 0.
Let T1 = T0 − v0. Clearly, T1 = y1 + . . . + ym. Applying the Clearing
Lemma again and again we have a monotonically decreasing sequence
T0, T1, T2, . . ., and expansions β, β1, β2, . . .. If there exists an h ∈ N such
that Th = 0 then the expansion of β is finite having the digits from
the set A, so Th. 5 is proved. If such an h does not exist then there
is a suitable large h0 such that Th0 = Th0+1 = . . . = r > 0. But in
this case βh0 = θβh0+1 = θ2βh0+2 = . . . = θjβh0+j = . . ., therefore
γ := β − (v0 + v1θ + . . . + vh0θ

h0) = θh0+tβh0+t for every t ∈ N. Observe
that θh0+t|γ (t = 1, 2, . . .) and this holds only if γ = 0. This means that
β has a finite expansion with digits from the set A. The proof of Th. 5
is complete.♦

6. Location and number of periodic elements

Let π, ρ ∈ P , π → π1, ρ → ρ1 and D = A − A = {−(N − 1), . . . ,
. . . , N − 1}. Clearly, π − ρ = d + θ(π1 − ρ1), where d ∈ D. Let M =
= maxπ,ρ∈P |π − ρ| = |π1 − ρ1|. Then |θ|M ≤ M + (N − 1). This shows
that M ≤ N−1

|θ|−1
= L. It means that the periodic elements are ‘close’

together. But even more is true.
Theorem 6. Let θ = A + Bi, A, B ≥ 2, (A,B) = 1 and let S+

1 =
= {x + yi ∈ Z[i], −A ≤ x ≤ 0, 0 < y ≤ B − 1}, S+

2 = {0, 1 − θ}. If
A 6= B +1 then P ⊆ S+

1 ∪ S+
2 else P ⊆ S+

1 ∪ S+
2 ∪ {−A+Ai}, where

0, 1− θ,−A + Ai ∈ P with period length one.



188 A. Kovács

Proof. First we observe that the only real periodic element is 0. Indeed,
if π ∈ Z then π ∈ LB, and by Lemma 4 and Th. 4 we obtain that π = 0.
Let π = P +Qi, ρ = U +V i and κ = X +Y i be three arbitrary periodic
elements, such that Φ(π) = ρ, Φ(ρ) = κ. Then with suitable b1, b2 ∈ A
we have

P = b1 + AU −BV, Q = AV + BU(24)

U = b2 + AX −BY, V = AY + BX(25)

By (15) it is also clear that

(26) | π |2, | ρ |2, | κ |2≤ L2 = (| θ | +1)2 < A2 + B2 + 1 + 2(A + B).

From (24) it follows that if P = 0, Q < 0 then U < 0, else if P = 0, Q > 0
then V > 0. Hence it follows that there does not exist periodic element in
the first, the fourth and the third quadrant. Indeed, if sgn (U) = sgn (V ),
| U |, | V | > 0 then | Q | ≥ A+B, if U > 0, V < 0 then P ≥ b1 +A+B,
| Q |> 0. It means that | π |2= P 2+Q2 ≥ (A+B)2+1 = A2+B2+2AB+1
which contradicts to (26) since if A, B ≥ 2 then A + B ≤ AB. We
can also observe by (25) that if X = 0 and Y < 0 then V < 0, so
the negative imaginary axis do not contain any periodic element. Let
U ≤ 0, V > 0, Q > 0. Suppose that | U |≥ A+1. Then by (24) we have
that AV ≥ 1 + B | U |≥ 1 + B(A + 1), therefore V ≥ B + 1 but in this
case U2 + V 2 > L2. It remains that | U |≤ A. Using (24) we can also
observe that −BU = AV −Q ≥ A(V − 1), therefore BA ≥ A(V − 1). So
we have that V ≤ B + 1. Let −A ≤ P, U ≤ 0, Q = B + 1. In virtue of
(24) we have that AV −AB ≤ Q, therefore AV ≤ B(A + 1) + 1. Hence,
V ≤ B + 1 and equality holds if and only if A = B + 1. Th. 1 shows
that in this case the Gaussian integer η = −A + Ai ∈ P with period
length one, and, since η + 1 ≡ 0 and Φ(η + 1) = i there does not exist
any other periodic element with imaginary part B + 1. The case Q = B
was fully described by Th. 4 by which the only periodic element is 1− θ
with period length one. Suppose that Q ≤ B − 1. Then by (24) we have
that AV + BU ≤ B − 1, hence V ≤ B − 1. The proof of Theorem 6 is
complete.♦
Theorem 7. Let θ = A + Bi, A = −E, E, B ≥ 2, (A,B) = 1 and let
S−1 = {x + yi ∈ Z[i], 0 ≤ x ≤ E, 0 < y ≤ B − 1}, S−2 = {0}. Then
P ⊆ S−1 ∪ S−2 .
Proof. Th. 5 tells us that the only real periodic element is 0. Let
π = P + Qi, ρ = U + V i and κ = X + Y i be three arbitrary periodic
elements, such that Φ(π) = ρ, Φ(ρ) = κ as before. Then with suitable
b1, b2 ∈ A we have
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P = b1 − EU −BV, Q = BU − EV(27)

U = b2 − EX −BY, V = BX − EY(28)

Clearly, if P = 0 and Q < 0 then V > 0 else if P = 0 and Q > 0 then
U > 0. Let us observe that if E = 1 then L < B +1. By (27) we get that
if sgn (U) 6= sgn (V ) then | Q |≥ E +B. If U, V < 0 then P ≥ b1 +E +B,
therefore P 2 + Q2 > L2 which is a contradiction. Hence it follows that
there does not exist any periodic element in the second, the third and in
the fourth quadrant. Suppose that U = 0. Then P,Q > 0, V < 0 and by
(27) Q ≥ E,P ≥ B + b1. If b1 = 0 then B | E which is a contradiction.
So b1 ≥ 1. If | V | > 1 then P 2 +Q2 > L2 which is a contradiction again.
If V = −1 then using (28) we can deduce that X ≤ E and Y ≤ B. It
is easy to check that if P ≤ E and Q ≤ B then U ≤ E and V ≤ B. So
there does not exist any periodic element in the imaginary axis (except
0). Suppose that U ≥ E +1. The case V = B was completely described.
If V > B then E2 + B2 − 1 ≥ b1 = P + EU + BV > P + E(E + 1) + B2

which implies that P < −E and this is a contradiction. If B > V then
Q ≥ E + B and | P | ≥ E(E + 1) + B but in this case P 2 + Q2 > L2 and
it is a contradiction again. Therefore U ≤ E. Suppose that V ≥ B + 1.
Then Q = BU − EV ≤ BE − V E = E(B − V ) ≤ −E and this is a
contradiction as well. It means that V ≤ B. The proof is completed.♦
Lemma 7. Let θ = A + Bi, (A,B) = 1, B ≥ 2. Let furthermore
α = U + V i, β = α + 1 ∈ Z[i]. If A ≥ 2, α, β ∈ S+

1 or A = −E, E ≥ 1,
α, β ∈ S−1 then Φ(α) = Φ(β).

Proof. If β ≡ c (mod θ), c ∈ A, c 6= 0 then α = β−1 ≡ c−1 (mod θ),
hence Φ(α) = Φ(β). If β ≡ 0 (mod θ) then β = θγ for some γ ∈ Z[i]. It
would mean that Norm(β) = Norm(θ) Norm(γ), so Norm(β) ≥ Norm(θ)
which contradicts to β ∈ (S+

1 ∪ S−1 ).♦
Let θ = A+Bi, (A, B) = 1, B ≥ 2 and let us denote the number of

periodic elements in a set S by #p(S). Clearly, the number of all periodic
elements #p(P) is equal to #P . Lemma 7 shows that #p(S

+
1 ) ≤ B − 1

and #p(S
−
1 ) ≤ B − 1. On the other hand we have seen in section 5 that

for each δ|B and for each j = 0, 1, . . . , lδ − 1 there exists at least one

period-cycle in L(j)
δ . The length of a period in L(j)

δ is a multiple of tδ, so
it is at least tδ. This means that #P ≥ ∑

δ|B tδlδ. Since tδlδ = ϕ(Bδ)
therefore

(29) #P ≥
∑

δ|B
ϕ(

B

δ
) = B.
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The Lemmas 1, 4 and Ths. 4, 5 show that if A ≥ 2 then #p(LB) = 2, if
A = −E, E ≥ 1 then #p(LB) = 1. This fact together with (29) and with
the theorems and lemmas proved in this paper provide our next result.
Theorem 8. If A ≥ 2 and A = B + 1 then

G(P ) = {(−1 + i)j → (−1 + i)j, j = 0, 1, . . . , A}.
If A ≥ 1 and A 6= B + 1 then #P = |B| + 1. If A = −E, E ≥ 1 then
#P = |B|.
Remarks. In Lδ the length of all period-cycle is tδ. Recall that if a and
m are relative prime positive integers then the least positive integer x
such that ax ≡ 1 (mod m) is called the order of a modulo m. The usual
notation is x = ordm a. Let a := A (mod B). Using this notation it is
easy to see that tδ = ordBδ

a. In other words for each δ, δ|B, δ < |B|
there exist ϕ(Bδ)/ ordBδ

a cycles in Lδ with period length ordBδ
a.

If Bδ is prime then there is only one cycle in Lδ with period length
Bδ − 1.

If a ≡ 1 (mod Bδ) then there are only loops in Lδ and the number
of them is ϕ(Bδ).

7. Example

If one wants to determine the imaginary parts of the elements of Lδ

one has to perform some greatest common divisor computations. Ths. 6
and 7 suggest a much faster way, namely using the sieve of Erathostenes.
Then, one has to compute the orders to get the imaginary parts of the
decomposition of Lδ. Finally, equation (18) gives also the real parts of
the periodic elements.

Let A = 5 and B = 12. If δ = 1 then ϕ(B1) = 4, ordB1 A = 2.
Therefore there are two cycles with period lenght 2. The periodic ele-
ments are i → −2 + 5i → i and −2 + 7i → −4 + 11i → −2 + 7i.

If δ = 2 then ϕ(B2) = 2, ordB2 A = 2. Therefore there is one cycle
with period length 2, namely 2i → −4 + 10i → 2i.

If δ = 3 then ϕ(B3) = 2, ordB3 A = 1. There are two cycles with
period length 1, namely −1 + 3i → −1 + 3i and −3 + 9i → −3 + 9i.

If δ = 4 then ϕ(B4) = 2, ordB4 A = 2. Therefore there is one cycle
with period length 2, namely −1 + 4i → −3 + 8i → −1 + 4i.

If δ = 6 then ϕ(B6) = 1, ordB6 A = 1. Therefore there is one cycle
with period length 1, namely −2 + 6i → −2 + 6i.

If δ = 12 then there are two cycles with period length 1, namely
0 → 0 and −4 + 12i → −4 + 12i.
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[13] KOVÁCS, A.: On computation of attractors for invertible expanding linear
operators in Zk, Proc. of the Numbers, Functions, Equations ’98, Noszvaj,
Hungary. Two pages abstract in: Leaflets in Mathematics, Janus Pannonius
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