DIGITAL EXPANSION IN $\mathbb{Q}(\sqrt{2})$

G. Farkas and A. Kovács (Budapest, Hungary)

Dedicated to Prof. K.-H. Indlekofer on his 60th birthday

Abstract

One objective of our research is to extend the concept of number system to various algebraic structures. A study of the quadratic fields automatically raises the question: for what algebraic integers α can we find such a digit set E_{α} where $\left(\alpha, E_{\alpha}\right)$ is a number system.

1. Introduction

Let D be a square free (positive or negative) integer, or $D=-1$. The quadratic fields $\mathbb{Q}(\sqrt{D})$ are classified: we say that it is an imaginary extension of \mathbb{Q}, if $D<0$, while in the case $D>0$ we say that it is a real extension field. For some fixed D, let I denote the set of algebraic integers in $\mathbb{Q}(\sqrt{D})$.

Definition. Let $\alpha \in I$ and $E_{\alpha}(\subseteq I)$ be a complete residue system $\bmod \alpha$ containing 0 .

We say that $\left(\alpha, E_{\alpha}\right)$ is a coefficient system in I, the elements of E_{α} are digits and α is the base (number) of (α, E_{α}).

Definition. (α, E_{α}) is a number system in I if each $\gamma \in I$ can be written in a finite sum

$$
\begin{equation*}
\gamma=e_{0}+e_{1} \alpha+\ldots+e_{k} \alpha^{k} \tag{1.1}
\end{equation*}
$$

where $e_{i} \in E_{\alpha}, i=0,1, \ldots, k$.
Then α is the base (number) of the number system (α, E_{α}).

Since E_{α} is a complete residue system $\bmod \alpha$, therefore the uniqueness of the representation (1.1) is clear. Furthermore, it is obvious that for every $\gamma \in I$ there exists a unique $f \in E_{\alpha}$ for which

$$
\begin{equation*}
\gamma=\alpha \cdot \gamma_{1}+f \tag{1.2}
\end{equation*}
$$

holds with a suitable $\gamma_{1} \in I$.
Let $J: I \rightarrow I$ be the function defined by $J(\gamma)=\gamma_{1}$, if γ, γ_{1} are related by (1.2). Then we can define a directed graph over I, by drawing an edge from γ to γ_{1}, labeling it with f :

$$
\begin{equation*}
\gamma \xrightarrow{(f)} \gamma_{1} . \tag{1.3}
\end{equation*}
$$

We say that $\pi \in I$ is a periodic element, if $J^{k}(\pi)=\pi$ holds for some positive integer k. Let \mathcal{P} be the set of periodic elements.

It is clear that $\left(\alpha, E_{\alpha}\right)$ is a number system, if $\mathcal{P}=\{0\}$.
The question we are interested in is the following: what are those $\alpha \in I$ in some $\mathbb{Q}(\sqrt{D})$ for which $\left(\alpha, E_{\alpha}\right)$ is a number system with an appropriate digit set E_{α}.

The question was completely solved by G. Steidl for $D=-1$ [5], for arbitrary imaginary quadratic fields by I. Kátai. Namely they proved that α is a base of a number system, if and only if $\alpha \neq 0$ and $\alpha, 1-\alpha$ are not units. The explicit construction of E_{α} is given.

The case of real quadratic extension field seems to be harder due to the fact that the module of α and its conjugate $\bar{\alpha}$ are not the same in general.

Assume that $D>0$. If α is a base of a number system then clearly

$$
\left\{\begin{array}{l}
\alpha \neq 0, \tag{1.4}\\
\alpha, 1-\alpha \quad \text { are not units, } \\
|\alpha|>1,|\bar{\alpha}|>1
\end{array}\right.
$$

should be satisfied.
It is true that α is a base of a number system if (1.4) holds?
The first named author proved it [4] if (1.4) holds in a stronger form:

$$
|\alpha| \geq 2, \quad|\bar{\alpha}| \geq 2
$$

We shall improve this in the case $D=2$.

2. The formulation of our results

2.1. A previous achievement

The starting point of our investigation is a theorem published by I. Kátai in [1]. He proved for imaginary quadratic fields that $\alpha \in I$ is a base of a number system with an appropriate digit set E_{α} if and only if

$$
\begin{aligned}
& \alpha \neq 0 \\
& \alpha, 1-\alpha \text { are not units and } \\
& |\alpha|,|\bar{\alpha}|>1
\end{aligned}
$$

where $\bar{\alpha}$ is the algebraic conjugate of α. In that paper the explicit construction of digit set E_{α} was given. The digit sets constructed in this way are called K-type digit sets.

Our prospective purpose is to prove the same result in real quadratic fields. In this paper we concentrate on the quadratic field $\mathbb{Q}(\sqrt{2})$.

2.2. The construction of the K-type digit sets

Let $\alpha=a+b \sqrt{2}$ be an arbitrary algebraic integer in $\mathbb{Q}(\sqrt{2})$, that is $a, b \in \mathbb{Z}$, and $d=\alpha \cdot \bar{\alpha}$, where $\bar{\alpha}=a-b \sqrt{2}$ is the conjugate of α. Then $E_{\alpha}^{(\varepsilon, \delta)}$ are the sets of those $f=k+l \sqrt{2}(k, l \in \mathbb{Z})$ for which

$$
f \cdot \bar{\alpha}=(k+l \sqrt{2})(a-b \sqrt{2})=(k a-b l 2)+(l a-k b)=r+s \sqrt{2}
$$

satisfy the following conditions:

- if $(\varepsilon, \delta)=(1,1)$, then $r, s \in\left(\frac{-|d|}{2}, \frac{|d|}{2}\right]$,
- if $(\varepsilon, \delta)=(-1,-1)$, then $r, s \in\left[\frac{-|d|}{2}, \frac{|d|}{2}\right)$,
- if $(\varepsilon, \delta)=(-1,1)$, then $r \in\left[\frac{-|d|}{2}, \frac{|d|}{2}\right), s \in\left(\frac{-|d|}{2}, \frac{|d|}{2}\right]$,
- if $(\varepsilon, \delta)=(1,-1)$, then $r \in\left(\frac{-|d|}{2}, \frac{|d|}{2}\right], s \in\left[\frac{-|d|}{2}, \frac{|d|}{2}\right)$.

We call the above constructed digit sets K-type digit sets. If we do not specify the value of (ε, δ), then we denote with E_{α} an arbitrary element of the set $\left\{E_{\alpha}^{(1,1)}, E_{\alpha}^{(1,-1)}, E_{\alpha}^{(-1,1)}, E_{\alpha}^{(-1,-1)}\right\}$.

2.3. The construction of the F-type digit sets

For an arbitrary $\alpha \in I\left(\subseteq \mathbb{Q}(\sqrt{2})\right.$ let E_{α} be a K-type digit set. We proved in [2] that if $P \backslash\{0\}$ is not empty, then either $G(P \backslash\{0\})$ is a disjoint union of loops, or a disjoint union of circles of length 2, which take the form: $\pi \xrightarrow{f}(-\pi) \xrightarrow{-f} \pi$.

We shall construct the appropriate F-type digit set A_{α} by modifying E_{α} as follows.

1) If $\left(\alpha, E_{\alpha}\right)$ is a number system, then $A_{\alpha}=E_{\alpha}$.
2) If $f \in E_{\alpha}$ and either
a) $\pi \xrightarrow{f} \pi$ holds for some $\pi \in \mathcal{P}$
or
b) $\pi \xrightarrow{f}(\pi) \xrightarrow{-f} \pi$ holds for some $\pi \in \mathcal{P}$,
then let $f^{*} \in \mathcal{A}_{\alpha}$, where f^{*} is one of $f+\alpha, f-\alpha$, so that

$$
\left|\overline{f^{*}}\right|=||\bar{\alpha}|-|\bar{f}||
$$

holds.
Let the other elemenets of E_{α} belong to A_{α}.

2.4. The formulation of our Theorem

Theorem. Let $\alpha \in \mathbb{Q}(\sqrt{2})$ be an arbitrary algebraic integer and

$$
\begin{aligned}
& \alpha \neq 0 \\
& \alpha, 1-\alpha \text { not units and } \\
& |\alpha|,|\bar{\alpha}|>\sqrt{2}
\end{aligned}
$$

hold. Then α is a base of a number system.

3. The proof of our Theorem

Remark 1. We saw in [3] that we can assume, without injuring the generality that $|\alpha|>|\bar{\alpha}|$. In case $|\alpha|<|\bar{\alpha}|$ we can prove the same assertion in the same way.

Remark 2. In [4] we proved that if $|\alpha|,|\bar{\alpha}| \geq 2$ and the conditions of our Theorem hold then $\left(\alpha, E_{\alpha}\right)$ is a number system, where E_{α} is the appropriate K-type digit set.

Remark 3. If $|\alpha|,|\bar{\alpha}|<2$ then $1-\alpha$ is a unit. Thus we have to prove our Theorem when the inequalities

$$
\min (|\alpha|,|\bar{\alpha}|)<2 \quad \text { and } \quad \max (|\alpha|,|\bar{\alpha}|)>2
$$

are simultaneously valid.
Remark 4. Relying on the data included in the appendix of [3], the validity of our Theorem can be easily verified for case $\max (|\alpha|,|\bar{\alpha}|) \leq 6+3 \sqrt{2}$.

In line with the Remarks we have made so far, in the following we assume that

$$
\begin{aligned}
|\alpha| & >6+3 \sqrt{2} \quad \text { and } \\
\sqrt{2}<|\bar{\alpha}| & <2
\end{aligned}
$$

inequalities hold true.
In [3], [4] we proved some useful assertions assuming that $1+\alpha$ is not a unit. In order to use these results in this paper we present the following lemma:

Lemma 1. If $1+\alpha$ is a unit in I then

$$
|\bar{\alpha}|<\sqrt{2}
$$

Proof. It is a well-known fact in number theory that a number β is a unit in an arbitrary quadratic field if and only if either $\beta \cdot \bar{\beta}=1$ or $\beta \cdot \bar{\beta}=-1$. Let us consider the following product. Assume that $1+\alpha$ is a unit. Then $M=(1+\alpha)(1+\bar{\alpha})= \pm 1$, that is $M=1+2 a+d$, where naturally $\alpha=a+b \sqrt{2}$ and $\alpha \cdot \bar{\alpha}=d$.
There are four cases:

1. If $\alpha, \bar{\alpha}>0$ then $M=1$.
2. If $\alpha<0, \bar{\alpha}>0$ then $M=-1$, that is $2 a+d=-2$.

It is clear that both cases yield a contradiction.
3. If $\alpha>0, \bar{\alpha}<0$ then $M=-1$, that is $a=-\frac{d}{2}-1$.

Since $|\bar{\alpha}|=|b| \sqrt{2}-|a|$, therefore $|\alpha|=|a|+|b| \sqrt{2}=2|a|+|\bar{\alpha}|$. Thus $|\alpha|=|\alpha|-2+|\bar{\alpha}|$. We get from $|d|=|\alpha||\bar{\alpha}|$ that

$$
\begin{aligned}
|\alpha|+2-|\bar{\alpha}| & =|\alpha||\bar{\alpha}|, \quad \text { that is } \\
|\bar{\alpha}| & =1+\frac{2-|\bar{\alpha}|}{|\alpha|}<\sqrt{2} .
\end{aligned}
$$

4. If $\alpha, \bar{\alpha}<0$ then $M=1$, that is $a=\frac{-d}{2}$. We get that $|\alpha|=|d|-|\bar{\alpha}|$ and from this

$$
|\alpha|+|\bar{\alpha}|=|\alpha||\bar{\alpha}| .
$$

Then

$$
|\bar{\alpha}|=1+\frac{|\bar{\alpha}|}{|\alpha|}<\sqrt{2}
$$

is true completing the proof of the Lemma 1. Thus, we can use the results of our previous papers, without losing the generality, because $1+\alpha$ never is unit.

The following assertions are related to the estimation of the modulus of the digits and their conjugates.

Lemma 2. If $f^{*} \in A_{\alpha}$ and $f^{*} \notin E_{\alpha}$ then

$$
\left|f^{*}\right|<(3-\sqrt{2})|\alpha|+1
$$

and

$$
\left|\overline{f^{*}}\right|<|\bar{\alpha}|-1
$$

Proof. If $f^{*} \notin E_{\alpha}$, then there exists a digit f in E_{α} for which either $f^{*}=f+\alpha$ or $f^{*}=f-\alpha$ holds, thus

$$
\begin{equation*}
\left|f^{*}\right| \leq|f|+|\alpha| . \tag{3.1}
\end{equation*}
$$

$f^{*} \notin E_{\alpha}$ implies further that there exists a $\pi=p+q \sqrt{2}$ in $\left(\alpha, E_{\alpha}\right)$, for which either

$$
\begin{equation*}
f=\pi(1-\alpha) \quad \text { or } \quad f=\pi(1+\alpha) \tag{3.2}
\end{equation*}
$$

is true. From this follows that

$$
\begin{equation*}
|\pi| \leq \frac{|f|}{|\alpha|-1} \quad \text { and } \quad|\bar{\pi}| \leq \frac{|\bar{f}|}{|\bar{\alpha}|-1} \tag{3.3}
\end{equation*}
$$

Let

$$
S:=\frac{|f|}{|\alpha|-1}+\frac{|\bar{f}|}{|\bar{\alpha}|-1} .
$$

(3.3) implies that

$$
|\pi-\bar{\pi}|=2|q| \sqrt{2} \leq|\pi|+|\bar{\pi}| \leq S
$$

The construction of E_{α} leads to

$$
|f \cdot \bar{\alpha}|=|r+s \sqrt{2}|, \quad|\bar{f} \cdot \alpha|=|r-s \sqrt{2}| \quad \text { and } \quad|r|,|s| \leq \frac{|d|}{2} .
$$

Now we can compute easily that
if $\operatorname{sgn}(r)=\operatorname{sgn}(s)$ then $S \leq \frac{1+\sqrt{2}}{2} \frac{|\alpha|}{|\alpha|-1}+\frac{\sqrt{2}}{2} \frac{|\bar{\alpha}|}{|\bar{\alpha}|-1}$ and,
if $\operatorname{sgn}(r) \neq \operatorname{sgn}(s)$ then $S \leq \frac{\sqrt{2}}{2} \frac{|\alpha|}{|\alpha|-1}+\frac{\sqrt{2}+1}{2} \frac{|\bar{\alpha}|}{|\bar{\alpha}|-1}$.
Since $|q| \leq \frac{S}{2 \sqrt{2}}$ we get that

$$
|q|<2
$$

In [3] we saw that $|\pi|=|p+q \sqrt{2}|<2$ and $\pm 1 \notin \mathcal{P}$, thus either

$$
|\pi|=\sqrt{2}-1 \quad \text { or } \quad|\pi|=2-\sqrt{2}
$$

can be valid. Then, it follows from (3.1) and (3.2) that

$$
\left|f^{*}\right| \leq(2-\sqrt{2})(|\alpha|+1)+|\alpha|=(3-\sqrt{2})|\alpha|+2-\sqrt{2},
$$

that is

$$
\left|f^{*}\right|<(3-\sqrt{2})|\alpha|+1
$$

holds.
What can we say about $\left|\overline{f^{*}}\right|$? We have to consider two cases. If $|\pi|=\sqrt{2}-1$ then $|\bar{\pi}|=\sqrt{2}+1$ and

$$
|\bar{f}|=(1+\sqrt{2})(|\bar{\alpha}|-1)>(1+\sqrt{2})(\sqrt{2}-1)=1 .
$$

If $|\pi|=2-\sqrt{2}$ then $|\bar{\pi}|=2+\sqrt{2}$ and

$$
|\bar{f}|=(2+\sqrt{2})(|\bar{\alpha}|-1)>(2+\sqrt{2})(\sqrt{2}-1)=\sqrt{2}
$$

Thus we get that if $|\bar{f}|>|\bar{\alpha}|$ then

$$
\left|\overline{f^{*}}\right|=|\bar{f}|-|\bar{\alpha}| \geq \frac{1+\sqrt{2}}{2}|\bar{\alpha}|-|\bar{\alpha}|
$$

that is

$$
\left|\overline{f^{*}}\right|<\sqrt{2}-1
$$

and if $|\bar{f}|<|\bar{\alpha}|$ then

$$
\left|\overline{f^{*}}\right|=|\bar{\alpha}|-|\bar{f}|<|\bar{\alpha}|-1
$$

We can see that in both cases $\left|\overline{f^{*}}\right|<|\bar{\alpha}|-1$, therefore we proved Lemma 2.

Lemma 3. In $\left(\alpha, A_{\alpha}\right)$ for an aribtrary $\pi(=p+q \sqrt{2}) \in \mathcal{P}$

$$
|p| \leq 2 \quad \text { and } \quad|q| \leq 1
$$

hold.
Proof. Let π_{1} be a periodic element of maximal modulus. There exists a transition

$$
\pi=\pi_{1} \alpha+f^{*}
$$

with suitable $\pi \in \mathcal{P}$ and $p^{*} \in A_{\alpha}$.
Consequently, we can carry out the following deduction:

$$
\begin{aligned}
& \pi_{1} \alpha=\pi-f^{*} \\
& \left|\pi_{1}\right| \leq \frac{|\pi|+\left|f^{*}\right|}{|\alpha|} \leq \frac{\left|\pi_{1}\right|+\left|f^{*}\right|}{|\alpha|} \\
& \left|\pi_{1}\right|\left(1-\frac{1}{|\alpha|}\right) \leq \frac{\left|f^{*}\right|}{|\alpha|} \\
& \left|\pi_{1}\right| \leq \frac{\left|f^{*}\right|}{|\alpha|-1}
\end{aligned}
$$

In the same way we get that

$$
\left|\bar{\pi}_{1}\right| \leq \frac{\left|\overline{f^{*}}\right|}{|\bar{\alpha}|-1}
$$

In order to estimate the value of $|p|$ and $|q|$, we use the method described in the proof of the Lemma 2. Thus let

$$
S_{\max }=\max _{f^{*} \in A_{\alpha}}\left(\frac{\left|f^{*}\right|}{|\alpha|-1}+\frac{\left|\overline{f^{*}}\right|}{|\bar{\alpha}|-1}\right) .
$$

We know that

$$
|\pi+\bar{\pi}|=2|p| \leq S_{\max }
$$

and

$$
|\pi-\bar{\pi}|=2|q \sqrt{2}| \leq S_{\max }
$$

If $f^{*} \in E_{\alpha}$, then we have already proved that $|p| \leq 2,|q| \leq 1$, since $|\bar{\alpha}|>\sqrt{2}$ and $|\alpha|>10$.

If $f^{*} \notin E_{\alpha}$, then we get from Lemma 2 that

$$
S_{\max }<\frac{(3-\sqrt{2})|\alpha|+1}{|\alpha|-1}+\frac{|\bar{\alpha}|-1}{|\bar{\alpha}|-1}<3 .
$$

The proof is completed.
The next assertion helps to describe the structure of $G(\mathcal{P} \backslash\{0\})$.
Lemma 4. In $\left(\alpha, A_{\alpha}\right) G(\mathcal{P} \backslash\{0\})$ does not contain loops, and circles of the form $\pi \xrightarrow{f^{*}}(-\pi) \xrightarrow{-f^{*}} \pi$, or in case $\bar{\alpha}>0$ a transition with form $-\pi \xrightarrow{f^{*}} \pi$.

Proof. Assume first that for same $\pi \in \mathcal{P}$ and $f^{*} \in A_{\alpha}$

$$
\pi=\pi \cdot \alpha+f^{*}
$$

holds, i.e. there exists a loop in $G(\mathcal{P} \backslash\{0\})$. Thus we get

$$
f^{*}=\pi(1-\alpha) .
$$

If $\bar{\alpha}>0$ then $1-\alpha \mid f^{*}$, which implies that either

$$
1-\alpha \mid f+\alpha \quad \text { or } \quad 1-\alpha \mid f-\alpha
$$

for the appropriate $f \in E_{\alpha}$. Let us observe that this is a contradiction because in this case $1-\alpha$ is a unit.

If $\bar{\alpha}<0$, then the inequality

$$
\left|\overline{f^{*}}\right|=|\bar{\pi}|(|\bar{\alpha}|+1) \geq \sqrt{2}(|\bar{\alpha}|+1)
$$

is true, which yields a contradiction, since $\left|\overline{f^{*}}\right|<|\bar{\alpha}|-1$. Thus we have proved that there dose not exist a loop.

Now let us assume that the equation

$$
-\pi=\pi \cdot \alpha+f^{*}
$$

holds for some $f^{*} \in A_{\alpha}$, and also $-f^{*} \in A_{\alpha}$. It is obvious that
if $\bar{\alpha}>0$, then $\left|f^{*}\right|=|\bar{\pi}|(|\bar{\alpha}|+1)$, and
if $\bar{\alpha}<0$, then $1+\alpha$ is a unit, which can be proved in the above mentioned way.

Although we have proved Lemma 4, in case $\bar{\alpha}<0$ there may exist transition with form $-\pi \xrightarrow{f^{*}} \pi$.

Summing up the results we have reached so far, and taking into account that $\pm 1 \notin \mathcal{P}$, we can include the possible elements of \mathcal{P} in this table:

$\|p\|$	$\|q\|$	$\|\pi\|$	$\|\bar{\pi}\|$
0	1	$\sqrt{2}$	$\sqrt{2}$
1	1	$\sqrt{2}-1$	$\sqrt{2}+1$
2	0	2	2
2	1	$2-\sqrt{2}$	$2+\sqrt{2}$

As a matter of fact our last assertion completes the proof of the Theorem, namely:

Lemma 5. $\mathcal{P}=\{0\}$.
Proof. Let us observe that $\pm 2 \notin \mathcal{P}$, otherwise the equation

$$
\left|\pi_{1}\right|=2|\alpha|-\left|f^{*}\right|
$$

would be valid, but this means that

$$
\left|\pi_{1}\right|>2|\alpha|-(3-\sqrt{2})|\alpha|-1
$$

and we would get that

$$
\left|\pi_{1}\right|>(\sqrt{2}-1)|\alpha|-1>2,
$$

which is a contradiction.

Now let us assume that $\pi_{1} \in \mathcal{P}$ such that $\left|\pi_{1}\right|=\sqrt{2}$. According to Lemma 4 it must be a transition

$$
\pi_{1}=\pi \cdot \alpha+f^{*}
$$

where $|\pi| \neq \sqrt{2}$, that is $|\bar{\pi}| \geq \sqrt{2}+1$. Then we get that the inequalities

$$
\frac{\sqrt{2}+1}{2}|\bar{\alpha}| \geq\left|\overline{f^{*}}\right| \geq(\sqrt{2}+1)|\bar{\alpha}|-\sqrt{2}
$$

hold and these imply that

$$
\sqrt{2} \geq \frac{\sqrt{2}+1}{2}|\bar{\alpha}|>\frac{\sqrt{2}+1}{2} \sqrt{2}
$$

which is impossible, thus $\pm \sqrt{2} \notin \mathcal{P}$.
Now, we only have to concentrate on the 2 nd and 4 th rows of the table (3.4). In accordance with Lemma 4 there must exist a transition

$$
\pi_{1}=\pi \cdot \alpha+f^{*}
$$

where $\left|\bar{\pi}_{1}\right|=1+\sqrt{2}$ and $|\bar{\pi}|=2+\sqrt{2}$, but then

$$
\frac{\sqrt{2}+1}{2}|\bar{\alpha}| \geq\left|\overline{f^{*}}\right|=(2+\sqrt{2})|\bar{\alpha}|-\sqrt{2}-1
$$

is true and we get from this that

$$
1+\sqrt{2} \geq \frac{3+\sqrt{2}}{2}|\bar{\alpha}|>\frac{3+\sqrt{2}}{2} \sqrt{2}
$$

Obviously, this is a contradiction, therefore $\mathcal{P}=\{0\}$.
This concludes the proof of Lemma 5 as well as that of our Theorem.

References

[1] Kátai I., Number systems in imaginary quadratic fields, Annales Univ. Sci. Budapest. Sect. Comp., 14 (1994), 159-164.
[2] Farkas G., Digital expansion in real algebraic quadratic fields, Mathematica Pannonica, 10 (2) (1999), 235-248.
[3] Farkas G., Location and number of periodic elements in $\mathbb{Q}(\sqrt{2})$, Annales Univ. Sci. Budapest. Sect. Comp., 20 (2001), 133-146.
[4] Farkas G., Number systems in real quadratic fields, Annales Univ. Sci. Budapest. Sect. Comp., 18 (1999), 47-60.
[5] Steidl G., On symmetric representation of Gaussian integers, BIT, 29 (1989), 563-571.
G. Farkas and A. Kovács

Department of Computer Algebra
Eötvös Loránd University
XI. Pázmány P. sét. 1/C.

H-1117 Budapest, Hungary

