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DIGITAL EXPANSION IN Q(v2)
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Dedicated to Prof. K.-H. Indlekofer on his 60th birthday

Abstract. One objective of our research is to extend the concept of
number system to various algebraic structures. A study of the quadratic
fields automatically raises the question: for what algebraic integers « can
we find such a digit set F,, where («, E,) is a number system.

1. Introduction

Let D be a square free (positive or negative) integer, or D = —1. The
quadratic fields Q (\/ﬁ) are classified: we say that it is an imaginary extension
of Q, if D < 0, while in the case D > 0 we say that it is a real extension field.
For some fixed D, let I denote the set of algebraic integers in Q (\/5)

Definition. Let o € I and E, (C I) be a complete residue system mod «
containing 0.

We say that (a, E,) is a coefficient system in I, the elements of E, are
digits and « is the base (number) of («a, Ey).

Definition. («, E,) is a number system in I if each v € I can be written
in a finite sum

(1.1) y=eg+era+... +epak,

where e; € E,, 1 =0,1,...,k.
Then « is the base (number) of the number system (o, E,,).
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Since F, is a complete residue system mod «, therefore the uniqueness of
the representation (1.1) is clear. Furthermore, it is obvious that for every v € I
there exists a unique f € E, for which

(1.2) Y=o -+ f

holds with a suitable v; € I.

Let J : I — I be the function defined by J(v) = 71, if 7,1 are related by
(1.2). Then we can define a directed graph over I, by drawing an edge from =
to 71, labeling it with f:

(1.3) v,

We say that 7 € I is a periodic element, if J*(7) = 7 holds for some
positive integer k. Let P be the set of periodic elements.

It is clear that (o, E,) is a number system, if P = {0}.

The question we are interested in is the following: what are those a € I in
some Q (\/5) for which (o, E,) is a number system with an appropriate digit
set F,.

The question was completely solved by G. Steidl for D = —1 [5], for
arbitrary imaginary quadratic fields by I. Katai. Namely they proved that «
is a base of a number system, if and only if o # 0 and «, 1 — o are not units.
The explicit construction of F, is given.

The case of real quadratic extension field seems to be harder due to the
fact that the module of o and its conjugate @ are not the same in general.

Assume that D > 0. If « is a base of a number system then clearly
a #0,
(1.4) a,1 —« are not units,
la] > 1, |a] > 1

should be satisfied.
It is true that « is a base of a number system if (1.4) holds?
The first named author proved it [4] if (1.4) holds in a stronger form:

la] >2, |a| > 2.

We shall improve this in the case D = 2.
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2. The formulation of our results

2.1. A previous achievement

The starting point of our investigation is a theorem published by I. Katai
in [1]. He proved for imaginary quadratic fields that « € I is a base of a number
system with an appropriate digit set E, if and only if

a #0,

a, 1 —a are not units and

lal, [af > 1,
where @ is the algebraic conjugate of «. In that paper the explicit construction
of digit set E, was given. The digit sets constructed in this way are called
K-type digit sets.

Our prospective purpose is to prove the same result in real quadratic fields.
In this paper we concentrate on the quadratic field Q (\/5)

2.2. The construction of the K-type digit sets

Let o = a + byv/2 be an arbitrary algebraic integer in Q (\/ﬁ), that is

a,b € Z, and d = a - @, where @ = a — b\/2 is the conjugate of . Then E((f’(s)
are the sets of those f = k + [v/2 (k,l € Z) for which

foa=(k+1v2) (a=bv2) = (ko — b12) + (la — kb) =+ 5v/2

satisfy the following conditions:

-if (e,0) = (1,1), then r, s € <_£d|,k;q ,

-if (e,6) = (—1,-1), then r, s € {_2d|, @) ,

- if (¢,0) = (—=1,1), then r € [_|d|,w|) , S €

—ld| |d|
2 72 2]

2
: _ —|d| |d] —|d| |d|
- if (,0) = (1, 1),thenr€( D) , S E 5 5 )
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We call the above constructed digit sets K-type digit sets. If we do not
specify the value of (g, ), then we denote with E,, an arbitrary element of the

set {E&l’l) Eél,fl) E,gfl’l) E&q,fl)}.

2.3. The construction of the F-type digit sets

For an arbitrary a € [ (g @(ﬂ) let E, be a K-type digit set. We
proved in [2] that if P\{0} is not empty, then either G (P\{0}) is a disjoint
union of loops, or a disjoint union of circles of length 2, which take the form:
L (—m) it 1

We shall construct the appropriate F-type digit set A, by modifying E,,
as follows.

1) If (o, E) is a number system, then A, = E,.
2) I f € E, and either

a) T L, 7 holds for some 7 € P

or

b) i>(7r) I, 7 holds for some 7 € P,

then let f* € A, where f* is one of f + «, f — «, so that
[F*| = |[al = I ]]

holds.
Let the other elemenets of F, belong to A,.

2.4. The formulation of our Theorem

Theorem. Let o € Q (\/5) be an arbitrary algebraic integer and

a #0,

a, 1 —a not units and

. [a] > v2

hold. Then « is a base of a number system.
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3. The proof of our Theorem

Remark 1. We saw in [3] that we can assume, without injuring the
generality that |a| > |[@|. In case |a| < |@| we can prove the same assertion in
the same way.

Remark 2. In [4] we proved that if |, |@| > 2 and the conditions of our
Theorem hold then («, E,) is a number system, where E,, is the appropriate
K-type digit set.

Remark 3. If |, |@| < 2 then 1 — « is a unit. Thus we have to prove our
Theorem when the inequalities

min (Ja,[@]) <2 and max (|af,|@]) > 2

are simultaneously valid.

Remark 4. Relying on the data included in the appendix of [3], the
validity of our Theorem can be easily verified for case max (|a/, |a@]) < 6+ 3v/2.

In line with the Remarks we have made so far, in the following we assume
that
la| > 6+ 3v2 and

V2 < [a] <2

inequalities hold true.
In [3], [4] we proved some useful assertions assuming that 1 + « is not a
unit. In order to use these results in this paper we present the following lemma:

Lemma 1. If 1 + « is a unit in I then
al < v2.

Proof. It is a well-known fact in number theory that a number 3 is a unit
in an arbitrary quadratic field if and only if either -5 =1or 3-8 = —1.
Let us consider the following product. Assume that 1 4+ « is a unit. Then
M = (14a) (1 +@) = 1, that is M = 1+2a+d, where naturally o = a+bv/2
and o - @ =d.
There are four cases:

1. If o, > 0 then M = 1.

2. If a <0, @>0then M = —1, that is 2a +d = —2.
It is clear that both cases yield a contradiction.
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d
3. Ifa>0,@<OthenM:—1,thatisa:—§—1.

Since |a@| = |b|v/2 — |a|, therefore |a| = |a| + |b|v/2 = 2|a| + |@]. Thus
la| = o] — 2 + |@]. We get from |d| = |a||a] that

la| + 2 — @] = |o|@|, that is

2—|a
la| =1+ ] < va.

—d
4. If a,@ < 0 then M =1, that is a = - We get that |a| = |d] — |a]
and from this

ol + [ = |af[al.

Then
[
lal =1+ Jal <V2
|
is true completing the proof of the Lemma 1. Thus, we can use the results of
our previous papers, without losing the generality, because 1 + « never is unit.

The following assertions are related to the estimation of the modulus of
the digits and their conjugates.

Lemma 2. If f* € A, and f* & E, then
71 < (3= v2) lal +1

and o
|f*] < [e] - 1.

Proof. If f* ¢ E,, then there exists a digit f in F, for which either
ff=f+aor ff = f—« holds, thus

(3.1) [FT <1+ e

f* & E, implies further that there exists a m = p + ¢v/2 in («, E,), for which
either

(3.2) f=m(l—a) or f=n(l+a)

is true. From this follows that

/ _
(33) < ol ad i<



Digital expansion in Q(v/2) 89

Let _
_ Il /]
S = \a|71+|a|—1'

(3.3) implies that
|7 7 = 2lglv2 < |n| + 7] < 8.

The construction of E,, leads to

— d
\f~a\:|r+5\f2|, |f'04|:|r75\@\ and |r\,\s\§%.

Now we can compute easily that

1+v2 o N V2 o
2 al-1 2 Ja—-1 ’

V2 o L V2+1 o

if then § < — .
if sgn(r) # sgn(s) then S < 3 Ta[—1 3 a1

if sgn(r) = sgn(s) then S <

S
Since |¢| £ —= we get that

N
lg| < 2.
In [3] we saw that |7| = |p + ¢v/2| < 2 and £1 ¢ P, thus either
7/ =v2-1 or |n|=2-V2
can be valid. Then, it follows from (3.1) and (3.2) that
1< (2= v2) (lal + D)+ ol = (3= v2) ol +2- V2,

that is

7 < (3= v2)lal +1

holds.
What can we say about |f*|? We have to consider two cases. If || = v/2—1
then || = v/2 + 1 and

ITI=(1+\/§)(|E|—1)>(1+W2) (\/5—1):1.
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If |7| = 2 — v/2 then [7| = 2 + /2 and

?|=(2+\/§)(\a|—1)>(2+\/§) (ﬂ—l):ﬂ.

Thus we get that if | f| > |@| then

1++2

Pl =17l -al = —

| — |al,
that is o
IF ] <v2-1,
and if |f| < |@| then
|f*[ = lal = [f] < |af - 1.

We can see that in both cases |f*| < [@| — 1, therefore we proved Lemma

Lemma 3. In (o, A,) for an aribtrary ™ (: p+ q\/ﬁ) epP
p| <2 and |q| <1

hold.

Proof. Let m; be a periodic element of maximal modulus. There exists a
transition
T=ma+ [~

with suitable w € P and p* € A,,.
Consequently, we can carry out the following deduction:
ma=m— [,

w4 1] mil+ 1]

|m1] < :
|at| |af
|7T1| (1 - 1) S |f ‘7
|af |af
|f]

< .
Iml< 5i=3

In the same way we get that
| *

ol -1

[71] <
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In order to estimate the value of |p| and |g|, we use the method described
in the proof of the Lemma 2. Thus let

1/~ ]
Sm X — — .
ax = LA, <|a| —1 @ -1

We know that
|+ 7| = 2|p| < Smax

and
|7T 7f| = 2‘(1\/5‘ S Smax-

If f* € E,, then we have already proved that |[p| < 2, |¢| < 1, since
|a| > v/2 and |a| > 10.
If f* € E,, then we get from Lemma 2 that

(3=v2)|a[+1 @l -1 _,

Smax < — )
* laf =1 ol — 1

The proof is completed.
The next assertion helps to describe the structure of G (P\{0}).

Lemma 4. In (o, A,) G (P\{0}) does not contain loops, and circles of
IS -5 r

the form m —(—7m) =7, or in case @ > 0 a transition with form —m —— 7.
Proof. Assume first that for same 7 € P and f* € A,
T=m-a+ f*
holds, i.e. there exists a loop in G (P\{0}). Thus we get
ff=n(l-a).
If @ > 0 then 1 — « | f*, which implies that either

l—a|f+a or 1—al|f—-a

for the appropriate f € E,. Let us observe that this is a contradiction because
in this case 1 — « is a unit.

If @ < 0, then the inequality

[ = I7l (fal + 1) = V2 (jal + 1)
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is true, which yields a contradiction, since |f*| < |@| — 1. Thus we have proved
that there dose not exist a loop.

Now let us assume that the equation
—r=7r-a+f*

holds for some f* € A,, and also —f* € A,. It is obvious that

if @ > 0, then |f*| = [7| (|la] + 1), and

if @ < 0, then 1+ « is a unit, which can be proved in the above mentioned
way.

Although we have proved Lemma 4, in case @ < 0 there may exist
transition with form —m EAN .

Summing up the results we have reached so far, and taking into account
that +1 ¢ P, we can include the possible elements of P in this table:

(3.4)

IR Rl A

=l R e

|7 7|

V2 V2
V2—-1 | V2+1

2 2
2—v2 | 242

As a matter of fact our last assertion completes the proof of the Theorem,
namely:

Lemma 5. P = {0}.
Proof. Let us observe that +2 ¢ P, otherwise the equation

1] = 2[a] = [f7]
would be valid, but this means that
| > 2la] — (3 . \/5) o] — 1,
and we would get that

|7r1|>(\/§—1)|a|—1>2,

which is a contradiction.
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Now let us assume that m; € P such that || = v/2. According to Lemma
4 it must be a transition
T =7 -+ f*a

where || # /2, that is 7| > v/2 + 1. Then we get that the inequalities

V241

5 lal > [ > (V2 + Dlal - v2

hold and these imply that

2+1 2+1
\/52\[;- |§|>\[2+ \[27

which is impossible, thus +v/2 ¢ P.
Now, we only have to concentrate on the 2nd and 4th rows of the table
(3.4). In accordance with Lemma 4 there must exist a transition

m=7-a+ f¥,

where 71| = 14+ /2 and |7| = 2 + /2, but then

2w > ] = (24 V2) fal - vE- 1

is true and we get from this that

3 2 3 2
142> +2f\a| > +2\f¢§.

Obviously, this is a contradiction, therefore P = {0}.
This concludes the proof of Lemma 5 as well as that of our Theorem.
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