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Abstract. We present algorithms for the decision and classi�cation
of generalized number systems. In the �rst part of the article, an algo-
rithm using an enclosing parallelepiped for the set of fractions is considered.
We mainly focus on minimizing the number of lattice points in the paral-
lelepiped by choosing the basis optimally. In the second part we generalize
Brunotte's canonical number system decision algorithm for generalized sys-
tems and we extend the results for the classi�cation problem. Finally, we
compare the algorithms by their performances in practice.

1. Introduction

Let M ∈ GL(n,Z), called the base, and 0 ∈ D ⊆ Zn a �nite set, called
the digit set. The pair (M,D) is called a generalized number system (GNS) if

every x ∈ Zn has a unique �nite representation in the form x =
k∑

i=0

M idji with
dji ∈ D. The following necessary conditions must hold in order to form a GNS
([14]).

• M must be expansive, i.e. |λ| > 1 for every eigenvalue λ.
• D is a complete residue system mod M , i.e. |D| = |det M | and, for

distinct d, d′ ∈ D, we have d− d′ 6∈ MZn ,
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• det(M − I) 6= ±1 , where I denotes the identity matrix.

All of these properties can easily be checked for a given M and D. For details
and other known results cf. the surveys [1] or [8]. Throughout the paper we
will assume that the pair (M, D) meets these conditions.

A reformulation of the unique representation property is possible using the
function φ : Zn → Zn, x 7→ M−1(x− d) for the unique d ∈ D satisfying x ≡ d
(mod M). Since M−1 is contractive and D is �nite, there exists a norm on
Zn and a constant C such that the orbit of every x ∈ Zn eventually enters the
�nite set S = {x ∈ Zk | ‖x‖ < C} for the repeated application of φ. This
means that the sequence x, φ(x), φ2(x), . . . is eventually periodic for all x ∈ Zn.

Clearly, (M, D) is a GNS i� for every x ∈ Zn the orbit of x eventually
reaches 0. A point x is called periodic if φk(x) = x for some k > 0. The orbit
of a periodic point is called a cycle. Hence (M,D) is a GNS i� the only periodic
point is 0, or equivalently, the only cycle is 0 → 0. In this paper we investigate
the following two problems. The decision problem for (M,D) asks if they form
a GNS or not. The more general classi�cation problem means �nding all cycles.

No general fast algorithm is known for these problems. Special cases have
been treated with success. A digit set is called canonical if

D = {(i, 0, 0, . . . , 0)T | 0 ≤ i < |detM |}.
A GNS is a canonical number system (CNS), if M is the companion matrix of
a monic, integer polynomial, and the digit set is canonical. Important results
are known for the canonical case. Quadratic CNS-polynomials were classi�ed
by I. Kátai and B. Kovács [9, 10] and independently by W.J. Gilbert [7]. Cubic
and quartic CNS-polynomials were investigated by S. Akiyama, H. Brunotte,
A. Peth® [2], H. Brunotte [5], and K. Scheicher, J.M. Thuswaldner [17].

The following was discovered by B. Kovács for irreducible polynomials [12],
and slightly generalized by A. Peth® [16]. Let c(x) = c0+c1x+. . .+cn−1x

n−1+
+xn ∈ Zn. If c0 ≥ 2, cn−1 ≤ · · · ≤ c1 ≤ c0 and c(x) is not divisible by a
cyclotomic polynomial, then c(x) is a CNS-polynomial. S. Akiyama, A. Peth®
[3], S. Akiyama, H. Rao [4] and K. Scheicher, J.M. Thuswaldner [17] showed
characterization results under the �dominant� condition c0 > |c1|+ · · ·+ |cn−1|.

In this paper we give two algorithms for the decision/classi�cation problem
in the general case. The original version of the �rst method, using a covering
of the set of fractions, was �rst applied by the second author [13]. It gives
lower and upper bounds on the coordinates of periodic points. The method
is combined here with a basis transformation using a randomized algorithm in
order to improve the bounds.

The second method is a generalization of Brunotte's CNS decision algorithm
[5]. We show how one can modify it so that it handles arbitrary digit sets and
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the classi�cation problem. We also give detailed pseudocode implementation
of the algorithm. In order to distinguish between the two methods, we refer to
the �rst one as algorithm α and the second one as algorithm β.

Finally, we compare the methods by their practical performance.

2. Covering the set of fractions

The method is based on a covering construction that appeared in [13]. We
will refer to it as algorithm α. The set of fractions is de�ned as

H =

{ ∞∑

i=1

M−idji | dji ∈ D

}
.

Let x be a periodic point, with period length k. Then φk(x) = x, thus, from

the de�nition of φ, M−kx = x+
k∑

i=1

M−idji
for some ji. If we denote the n×n

identity matrix by I, we have

−x =
(
I −M−k

)−1

(
k∑

i=1

M−idji

)
=

=
(
I + M−k + M−2k + · · · )

(
k∑

i=1

M−idji

)
=

=
∞∑

l=0

k∑

i=1

M−lk−idji ∈ H ,

where the absolute convergence and the validity of the calculation follows from
the expansivity of M .

If we �nd lower and upper bounds lm, um (m = 1, . . . , n), such that −H ⊆
⊆ T = {(x1, x2, . . . , xn) | li ≤ xi ≤ ui}, then all periodic points lie in the brick
T . We brie�y describe a method for �nding such bounds.

Let ‖·‖ denote the maximum norm in Rn. Choose a positive real number
c < 1 and k ∈ N with

∥∥M−k
∥∥ = δ ≤ c.

Let pm : Rn → R denote the projection in the mth coordinate for m =
= 1, . . . , n. Let

am,j = min
d∈D

pm(M−jd) and

bm,j = max
d∈D

pm(M−jd)
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for j = 1, . . . , k. Let

W =



(x1, . . . , xn)T

∣∣∣∣∣∣
−

k∑

j=1

bm,j ≤ xm ≤ −
k∑

j=1

am,j



 .

Clearly, −
k∑

i=1

M−idi ∈ W for an arbitrary sequence di ∈ D. So −H ⊆ W +

+M−kW + M−2kW + · · · . Now let A be the largest absolute value among the∑
am,j and

∑
bm,j . We have ‖x‖ ≤ A for every x ∈ W , and

∥∥M−ik
∥∥ ≤ δi for

i ≥ 1. Let γ = A(δ + δ2 + · · · ) = A δ
1−δ . Then

lm = −
k∑

j=1

bm,j − γ , and

um =
k∑

j=1

am,j + γ

are appropriate lower and upper bounds. The number of periodic lattice points
is bounded by Vol(M, D) =

n∏
m=1

bum − lm + 1c. Classi�cation can be done by
examining the points in the brick determined by these bounds. The running
time of the classi�cation is roughly proportional to Vol(M, D). Choosing δ
su�ciently small (0.1 seemed reasonable in our experiments) guarantees that
the bounds obtained from the covering brick are almost always sharp. We
cannot directly reduce the value of Vol(M,D). Clearly, a basis transformation
(applied to both M and D) does not a�ect the periodicity of points. Hence
we can perform a basis transformation before calculating Vol(M,D). Below,
we give an algorithm for choosing a basis that yields signi�cant decrease in the
value of Vol(M, D). If T is a transformation matrix, we will simply denote
Vol(TMT−1, TD) by Vol(T ) (M and D are �xed). For a matrix U , we denote
by incr(U, i, j) and decr(U, i, j) the matrix that di�ers from U only at posi-
tion (i, j) by +1 and −1, respectively. The main algorithm uses the following
routine:
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Function Change-at-position(M, D, i, j, T )
U ← T ;1
OldVol ← Vol(T ) ;2
while Vol(incr(U, i, j)) < OldVol do3

U ← incr(U, i, j) ;4
OldVol ← Vol(U) ;5

end6
V ← T ;7
OldVol ← Vol(T ) ;8
while Vol(decr(V, i, j)) < OldVol do9

V ← decr(V, i, j) ;10
OldVol ← Vol(V ) ;11

end12
return [U, V ]13

This function increases (decreases) Ti,j as long as smaller volumes are re-
ceived. The best matrix is put into U (resp. V ).

Algorithm Find-basis-transformation(M,D)
Input: M , D, CandNum, ProbeNum, NoImprLim, TargetVol
Output: Upper triangular basis transformation matrix T
Candidates ← CandNum sized list of identity matrices ;1
NoImpr ← 0 ;2
while NoImpr < NoImprLim and Vol(Candidates[1]) > TargetVol do3

NewCands ← [ ] ;4
forall T ∈ Candidates do5

for k ← 1 to ProbeNum do6
Choose random position (i, j) above the diagonal ;7
[U, V ] ← Change-at-position(M, D, i, j, T ) ;8
NewCands ← NewCands + [U, V ] ;9

end10
end11
Sort NewCands increasingly by values of Vol(T )12
if Vol(NewCands[1]) < Vol(Candidates[1]) then13

NoImpr ← 0 ;14
else15

NoImpr ← NoImpr+1 ;16
Copy �rst CandNum elements of NewCands into Candidates ;17

end18
return Candidates[1]19

The computation goes along several branches. It keeps track of the best
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CandNum transformation matrix candidates and, in each iteration, it tries to
improve them probeNum times. The computation ends when no improvement
occurs for NoImprLim consecutive iterations, or when a su�ciently small vol-
ume, lower than TargetVol is reached.

Below we give a detailed example of the algorithm.
We use the shorthand ((i1, j1, x1), ..., (ik, jk, xk)) to denote a matrix that

di�ers from the identity matrix at positions (ih, jh), holding the values xh,
(h = 1 . . . k).

We input

M =




0 0 0 0 −7
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




,

D is canonical, CandNum = 2 , ProbeNum = 2, NoImprLim = 3, TargetVol =
= 5000. The initial volume is 17500.

After the �rst iteration of the while loop (lines 3�18) we have Candidates=
= [((3, 4,−1)), ((4, 5,−1))], Vol(Candidates) = [10500, 10500].

This means that the random method found two distinct positions where a
change in the matrix results in a smaller volume.

In the next iteration it tries to improve the �rst element of Candidates.
No improvement is found for this matrix. For the second one, however, posi-
tions (3, 4) and (1, 4) were chosen, both positions are incremented and decre-
mented. Incrementing at position (3, 4) does not improve, but decrement-
ing it to −1 yields volume 6525, incrementing it further gives 10500. Decre-
menting at position (1, 4) does not improve (12375 for −1), but increment-
ing it yields the volumes 9000, 7875, 6750, 6000 and 4500, after the next
iteration the volume becomes 6750. After sorting, we have Candidates =
= [((4, 5,−1), (1, 4, 5)), ((4, 5,−1), (3, 4,−1))], Vol(Candidates) = [4500, 6525].

Since 4500 is smaller than TargetVol, we stop. We succeeded in reducing the
size of the covering set to 4500 from the original volume 17500. The transformed
matrix is




0 0 5 0 −7
1 0 0 −5 1
0 1 0 0 0
0 0 1 −1 −1
0 0 0 1 1




,
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and the digit set remains canonical. We note that letting the algorithm run a
bit longer (through playing with the parameters) gives an even smaller volume,
below 1000.

We give two more examples in Figure 1.
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Figure 1: Decreasing the volume of the covering set

Example (a) shows M =
`

1 −2
1 3

´
with D = {(0, 0), (1, 0), (0, 1), (4, 1), (−7, 6)}.

Changing the basis to {(1, 0), (1, 1)} decreases the volume from 42 to 24. Example
(b) shows M =

`
0 −7
1 6

´
with canonical digit set. Replacing basis vector (0, 1) with

(−5, 1) gives volume 4 instead of 64. In both pictures, grey areas represent −H. The
circles represent the set E in Brunotte's algorithm (cf. function Construct-set-E).

In order to test the algorithm on a large data set, we used algorithms in
[6] for the generation of random expansive polynomials. Figure 2 shows the
average improvement in orders of magnitude, as the constant term takes values
6, . . . , 100, and dimension is changed from 3 to 8.

A possible way to improve the algorithm is to perform the algorithm for
the transformed system with a lower triangular transformation matrix as well,
and combine the two transformations. We performed it in four di�erent ways:
only upper, only lower, upper followed by lower and lower followed by upper
triangular transformation matrices. The average reduction in orders of mag-
nitude were 3.218, 0.603, 3.417 and 3.168, respectively. The smaller �gure at
lower triangular matrices may be due to the special form of test cases: for their
importance only companion matrices were considered. We will continue our
experiments with arbitrary matrices to see if this caused the di�erence. Gen-
erating random expansive matrices seems di�cult. One can apply an integer
basis transformation to the companion matrix of a polynomial, but we know
from [15] and [18] that this method generates all expansive matrices only if the
class number of the order corresponding to the polynomial is 1.



148 P. Burcsi, A. Kovács and Zs. Papp-Varga

3. Generalization of Brunotte's algorithm

3.1. The decision algorithm

Brunotte's canonical number system decision algorithm �rst appeared in [5].
An alternative treatment of the algorithm can be found in [4]. We reformulate
and prove Brunotte's results on decision in the case of arbitrary generalized
number systems. We refer to this family of algorithms as method β. The
statement of the theorem and the proof idea are slightly modi�ed compared to
the original version. The generalized algorithm starts with the construction of
a set E. We use the function φ de�ned in the introduction.
Function Construct-set-E(M, D)

E ← D , E′ ← ∅ ;1
while E 6= E′ do2

E′ ← E ;3
forall e ∈ E and d ∈ D do4

put φ(e + d) into E ;5
end6

end7
return E8

Proposition 3.1. The above algorithm terminates.
Proof. Let x ∈ Zn, and let d ∈ D be the digit with φ(x) = M−1(x −

−d). Since M−1 is contractive, there exists a norm in Rn with induced norm∥∥M−1
∥∥ = r < 1. Let m = max

d,d′∈D
‖d− d′‖. If ‖x‖ ≤ mr/(1 − r), then

‖φ(x + d′)‖ =
∥∥M−1(x + d′ − d)

∥∥ ≤ r ‖x‖+rm ≤ mr2/(1−r)+mr = mr/(1−
−r). Thus, no vector with ‖x‖ > mr/(1− r) will ever get into E.

Lemma 3.1. Let us assume that every vector in E has �nite expansion.
Let e ∈ E and x =

k∑
i=0

M idji an arbitrary vector with �nite expansion. Then
e + x has �nite expansion as well.

Proof. The proof goes by induction on k. If k = 0, then x ∈ D. Thus,
φ(e + x) ∈ E by the construction of E, and it has �nite expansion by the
assumption. Then x + e has �nite expansion as well.

If k > 0, then put y = φ(x), so that x = My + dj0 . By the construction of
E, e + dj0 = Me′ + d′ for some e′ ∈ E and d′ ∈ D, giving

φ(e + x) = φ(e + My + dj0) = φ(My + Me′ + d′) = y + e′ .
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Improvement in orders of magnitude
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Figure 2: The average improvement in the volume of the covering set after algorithm
Find-basis-transformation, expressed in orders of magnitude (base 10).

It su�ces to show that y + e′ has �nite expansion, but that follows from the
induction hypothesis.

The above lemma and proof are best understood if we look at E as the set
of possible carries that occur when two points with �nite expansion are added.
We can now give the generalized algorithm for number system decision. Let the
set B = {(0, . . . , 0,±1, 0, . . . , 0)} (i.e. the n basis vectors and their opposites).
Function Simple-decide(M, D)

E ← Construct-set-E(M,D) ;1
forall p ∈ B ∪ E do2

if p has no �nite expansion then3
return false4

5
end6
return true7

Theorem 3.1. Algorithm Simple-decide returns true if and only if (M,D)
is a number system.
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Proof. It is clear that a vector with no �nite expansion yields rejection. On
the other hand, if every vector in E has �nite expansion, then, by Lemma 3.1,
vectors with �nite expansion form an additive sub-semigroup S ≤ Zn. Take a
set that generates the whole lattice as a semigroup, like B. If this set has �nite
expansion, then S contains it, giving S = Zn.

3.2. The classi�cation algorithm

For classi�cation, one needs to �nd all periodic points. Of course, if the
decision algorithm accepts (M,D), we know that the origin is the only periodic
point. If it rejects, we have a point without �nite expansion, which is either a
point of the semigroup-basis, or a point in set E. Thus, following the orbit of
this point, we also �nd a non-zero periodic point, a witness.

A �rst idea for classi�cation is to search the set E ∪ B for points with no
�nite expansion. Unfortunately, there can be periodic points that evade this
search. We show this by the following simple example. Take the expansive
polynomial 3− 3x + x2 with canonical digit set. Then there are two non-zero
periodic points, both of period 1: (−4, 2) and (−2, 1). Only the latter one is in
the set E ∪B. 5− 4x + x2 is another example.

The idea of the classi�cation algorithm is to increase the set E so that it
contains all periodic points. This is done by iterating the function Construct-
set-E several times, replacing set D by a larger set including already known
periodic points.

We now give the algorithm for classi�cation.

Function Simple-Classify(M, D)
D ← D ;1
�nished ← false ;2
while not �nished do3

E ← Construct-set-E(M,D) ;4
�nished ← true ;5
forall p ∈ E ∪B do6

if p does not run eventually into D then7
put newly found periodic points into D ;8
�nished ← false ;9

10
end11

end12
return D \D (the set of non-zero periodic points)13

Lemma 3.2. The classi�cation algorithm terminates.
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Proof. Note that D may only contain periodic points and digits, so
Construct-set-E is only called a �nite number of times. It remains to show
that the execution of this call terminates for any D. This follows from the
�niteness of D in the same way as in proposition 3.1.

Lemma 3.3. Assume that every vector in E eventually runs into D. Let
e ∈ E, and x =

k−1∑
i=0

M idji
+ Mkd an arbitrary vector that runs into D (i.e.

d ∈ D). Then e + x also runs into D eventually.

Proof. The proof goes by induction on k. The case k = 0 follows from the
construction of E . If k > 0, then let y = φ(x). We know that e+dj0 = Me′+d′

for some e′ ∈ E and d′ ∈ D, giving

φ(e + x) = φ(e + My + dj0) = φ(My + Me′ + d′) = y + e′ ,

so the lemma holds by the induction hypothesis for e′ and y.

Theorem 3.2. Algorithm Simple-Classify is correct.

Proof. The only thing to show is that on termination D contains every periodic
point. We show that every vector in Zn eventually runs into D. This is true
for E by the previous lemma, so the points eventually running into D form an
additive semigroup. Since this semigroup contains B, the proof is complete.

3.3. Implementation

We give directly programmable pseudocode below that optimizes the deci-
sion and classi�cation algorithms.

We will use the notation φ(X + Y ) = {φ(x + y) | x ∈ X, y ∈ Y }. Suppose
that the loop in lines 4�6 of function Construct-set-E is executed exactly k
times. Let us denote the set E before the ith execution of the loop by Ei, let
E0 = ∅ and ∆Ei = Ei \ Ei−1. Then we have

D = E1 ( E1 ( E2 . . . ( Ek ,

and

Ei+1 = φ(Ei + D) = φ((Ei−1 ∪∆Ei) + D) =
= φ(Ei−1 + D) ∪ φ(∆Ei + D) = Ei ∪ φ(∆Ei + D)

for i = 0, 1, . . . , k− 1. This shows that in order to obtain Ei+1, the calculation
of φ(e + D) for e ∈ ∆Ei is su�cient. This observation suggests the following
algorithm.
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Algorithm Decide(M,D)
forall b ∈ B do1

if b has no �nite expansion then2
return false3

4
end5
E ← D, old∆E ← D, ∆E ← ∅ ;6
while old∆E 6= ∅ do7

forall e ∈ old∆E, d ∈ D do8
Orbit ← ∅, p ← φ(e + d) ;9
while p 6∈ Orbit and p 6∈ E do10

Orbit ← Orbit ∪ {p} ;11
∆E ← ∆E ∪ {p} ;12
p ← φ(p) ;13

end14
if p ∈ Orbit then15

return false16
else17

E ← E ∪Orbit ;18
19

end20
old∆E ← ∆E ;21
∆E ← ∅ ;22

end23
return true24

When the while loop in lines 7�23 is entered for the ith time, the variables
take the following values: E = Ei and old∆E = Ei \ Ei−1. This is easily seen
by induction, showing that our algorithm is correct.

Consider the classi�cation algorithm. We reformulate the algorithm in a
recursive manner as follows. Let E1 = D1 = D, and

Ei+1 = φ(Ei +Di) ,

Di+1 = { periodic points in Ei } .

Clearly, these sequences are eventually stable.
Let ∆Ei = Ei \ Ei−1 and ∆Di = Di \ Di−1. Then

φ(Ei +Di) = φ(Ei−1 +Di−1) + φ(∆Ei +Di−1) + φ(Ei + ∆Di) =
= Ei + φ(∆Ei +Di−1) + φ(Ei + ∆Di) ,

and Ei is already known.
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We note that putting one periodic point per cycle into the set D is su�cient.
This is because running into that point or running into the cycle is equivalent.
Algorithm Classify(M, D)
D ← D ∪ { periodic points on the orbits of B} ;1
E ← D ;2
old∆E ← E , old∆D ← D ;3
PrevD ← ∅ ;4
while old∆E 6= ∅ do5

∆E ← ∅, ∆D ← ∅ ;6
CurrE ← E ;7
forall (e, d) ∈ CurrE × old∆D ∪ old∆E × PrevD do8

Orbit ← ∅, p ← φ(e + d) ;9
while p 6∈ Orbit and p 6∈ E do10

Orbit ← Orbit ∪ {p} ;11
∆E ← ∆E ∪ {p} ;12
p ← φ(p) ;13

end14
if p ∈ Orbit then15

∆D ← ∆D ∪ {p} ;16
E ← E ∪Orbit ;17

end18
old∆E ← ∆E ;19
old∆D ← ∆D ;20
PrevD ← D ;21
D ← D ∪∆D ;22

end23
return D \D, which contains one point from every non-zero cycle24

When we enter the main loop for the ith time, E = Ei, old∆E =∆Ei, D = Di,
old∆D=∆Di and PrevD=Di−1. This can be proved by induction, establishing
the correctness of the algorithm.

4. Comparison of the algorithms

In the article [6] the authors determine all binary canonical number system
polynomials in higher degrees. The decision algorithms described in the present
article were used to decide the number system property. We summarize our
experiences below.
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• Both algorithms α and β �nd some of the non-zero periodic points quickly,
if such points exist. That is, if (M,D) is not a number system, the
decision algorithms are fast.

• Both algorithms become exponentially memory and CPU-expensive in
the worst cases as the degree of the polynomials grows. The largest set E
we encountered was of size 21 223 091, for the polynomial 2 + 3x + 3x2 +
+3x3 +3x4 +3x5 +3x6 +3x7 +3x8 +2x9 +x10. Storing such a large set of
10 dimensional vectors required smart programming tricks. The largest
brick size we computed was even larger.

• We cannot say that either algorithm outperforms the other. In many
cases, e.g. for polynomials ful�lling the monotonity condition of [12],
Brunotte's algorithm is faster. In many cases, e.g. for the polynomial
2 + x3 + x7 + x10, the algorithm using bricks is faster. Two small ex-
amples showing the set of fractions together with the set E are seen in
Figure 1.

• The decision using covering bricks is easily parallelized, with no commu-
nication between processing units. This seems the only way to attack
degree 12 for binary CNS-polynomials.

5. Further work

We are currently working on both algorithms. We try to give a determin-
istic version of Find-basis-transformation. In the generalized version of
Brunotte's algorithm, we try to address the memory problems we encountered
in practice. Making the algorithm more memory-e�cient is possible through
space-time tradeo�.
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