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a b s t r a c t

Computational linguistics play an important role in modeling various applications.
Stochastic context-free grammars (SCFGs), for instance, are widely used in compiler
testing, natural language processing (NLP), speech recognition and bioinformatics. The
commonality of the former projects is that all require consistent SCFGs. This article
addresses the consistency problem of SCFGs. We introduce a criterion for deciding the
consistency and present a method for turning an inconsistent SCFG into consistent.
The feasibility of our theory is demonstrated on random test data generation for some
programming languages and formal notations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A stochastic (or probabilistic) context-free grammar (SCFG) is a context-free grammar wherein each production is
augmentedwith a probability. Derivation of a sentence in an SCFG can be interpreted as a stochastic string-rewriting process,
inwhich each step consists of replacing a nonterminal in the sentential formwith the right-hand side of a production, drawn
randomly according to the rule probabilities. The rewriting process satisfies the Markovian assumption, i.e. the probability
of rewriting a nonterminal depends only on the nonterminal itself and not on its surrounding context.
Probabilistic grammars have been originally proposed by Salomaa in [1], but the theory being used today is dedicated to

Booth and Thompson [2] who revised the definition, introduced the concept of consistency and proved important properties
of SCFGs using the theory of branching processes [3]. Themost remarkable contribution in [2] is the necessary and sufficient
condition for consistency. Recent studies show that SCFGs, as particular multitype branching processes (MTBPs), are closely
related to recursive Markov chains [4] and probabilistic pushdown systems [5]. For example, a single-exit recursive Markov
chain, where each component in the chain has exactly one exit, is equivalent to an SCFG.
Probabilistic grammars were originally thought for analyzing programming languages [6] but became widely accepted

in many research and development areas. SCFGs are used in NLP [7,8], speech recognition [9,10] and bioinformatics [11]
applications, mainly to create a simple, generative model representing a given set of sentences (corpus). Production
probabilities are learned from parse trees [9,6,12] or directly from sentences [13]. The training algorithms, such as the
Inside–Outside method [9,12] that was adapted from the forward–backward algorithm of hidden Markov models as well as
the relative (weighted) frequency method [6,13], are known to produce always consistent SCFGs [14,15,13]. An alternative
application of SCFGs is to generate random input data for testing [16]. In test data generation, however, there is no corpus
for inferring probability parameters. Thus, the rule probabilities need to be assigned a priori such that the obtained SCFG
shall produce adequate test data. The term adequate implies good error detection capabilities and coverage. The problem in
test data generation is that, as opposed to the above-mentioned training methods, this kind of rule probability assignment
is unlikely to produce consistent grammars.
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This article proposes a new criterion for checking SCFG consistency and compares it with the criteria in [2,4]. Then a new
algorithm is introduced for transforming an inconsistent SCFG to be consistent. The practical applicability of the presented
methods is demonstrated on some well-known grammars.

2. Definitions and notation

The reader is expected to be familiar with the fundamentals of formal languages and computer linguistics. The article
uses terminology from [17].

Definition 1 (Context-Free Grammar). A context-free grammar (CFG) is a quadruple G = 〈Σ,N, R, S〉whereΣ is a finite set
of terminal symbols, N is a finite set of nonterminal symbols such that N ∩Σ = ∅, R is a finite subset of rewriting rules in
form A→ ω where A ∈ N and ω ∈ (N ∪Σ)∗, and S ∈ N is the distinguished start symbol.

The language L(G) generated by a context-free grammar G is the set of all terminal strings derivable from S.

Definition 2 (Stochastic Context-Free Grammar). A stochastic context-free grammar (SCFG) is a tuple G = 〈Σ,N, R, S, P〉,
where 〈Σ,N, R, S〉 is a context-free grammar and P : R→ [0, 1] is a probability distribution on the rules.

Definition 3 (Proper CFG). A context-free grammar G = 〈Σ,N, R, S〉 is proper when it is

(1) cycle-free, i.e. does not contain productions in form A +⇒ A,
(2) ε-free, i.e. R has no ε-rules or R contains exactly one ε-rule S → ε and S does not appear on the right-hand side of any
rules in R, and

(3) contains no useless symbols. The symbol X is useless if there is no derivation S ∗⇒ wXy ∗⇒ wxy where X ∈ N ∪ Σ and
x, y, w ∈ Σ∗.

Definition 4 (Proper SCFG). A probabilistic context-free grammar G = 〈Σ,N, R, S, P〉 is proper if the CFG 〈Σ,N, R, S〉 is
proper, and for all Ni ∈ N∑

ω∈(Σ∪N)∗
Prob(Ni → ω) =

∑
k

pi,k = 1

where pi,k is the probability assigned to production k of Ni.

These restrictions ensure that all nonterminals define probability measures over strings i.e. Prob(Ni
∗
⇒ w) is a proper

distribution overw for all Ni ∈ N andw ∈ Σ∗.

Example 1. Let G = 〈Σ,N, R, S, P〉,Σ = {+, ∗, (, ), a}, and N = {E, T , F}. Let furthermore the start symbol be E ∈ N and
the rewriting rules R have probability distributions in two different cases as follows.

Case 1 Case 2

RE,1 : E → E + T p1,1 =
1
2
p1,1 =

3
5

RE,2 : E → T p1,2 =
1
2
p1,2 =

2
5

RT ,1 : T → T ∗ F p2,1 =
1
2
p2,1 =

1
2

RT ,2 : T → F p2,2 =
1
2
p2,2 =

1
2

RF ,1 : F → (E) p3,1 =
1
2
p3,1 =

1
6

RF ,2 : F → a p3,2 =
1
2
p3,2 =

5
6
.

The SCFGs in both cases are proper. �

Within the scope of this article each CFG and SCFG must always be proper. A recursive SCFG has an inherent problem
with respect to the stochastic derivation process, i.e. derivationmay ormay not terminate having completed a finite number
of rewritings [2,18,4,16]. This dilemma is expressed by the consistency property of SCFGs.

Definition 5 (Consistent SCFG). SCFG G is consistent1 if the probabilities assigned to all words derivable from G sum to 1.

1 In NLP literature the proper term is used to denote consistency [7].
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Loosely speaking, the SCFG is consistent if and only if the stochastic string-rewriting process terminates after a finite
number of steps with probability 1. It is important to note that a non-recursive SCFG is always consistent since its
corresponding language consists of finite number of finite length words.
Recall that a grammar is in Chomsky normal form (CNF) if it contains productions only in form Ni → NjNk and Ni → Tl,

where Ni,Nj,Nk ∈ N and Tl ∈ Σ . Any CFG or SCFG can be converted into CNF which generates exactly the same language.
In both languages the same sentences have the same probability and any parse in the original grammar is reconstructible
from any parse in the CNF grammar. Consider a proper stochastic context-free grammar G = 〈Σ,N, R, S, P〉 expressed in
CNF. Assign a random variable ξi to each nonterminal Ni describing the change in length caused by the applied production
during rewriting the nonterminal Ni; ξ1 shall be assigned to the start symbol S. Note that ξi is independent of the position
of Ni within the sentential form. E(ξi) describes the ‘‘expected word length’’ starting from Ni. It can be observed for the two
kinds of productions of G that

E
(
ξi | Ni → NjNk

)
= E

(
ξj
)
+ E(ξk) and E(ξi | Ni → Tj) = 1 (1)

since the random variables ξi are independent. Denoting li = E(ξi) the expected word length of the derivation process can
be expressed with

li =
∑
∀j

mi,jlj + vi wheremi,j =
ri∑
k=1

pi,kni,j,k, vi =
ri∑
k=1

pi,kti,k and (2)

ri: Number of productions with Ni ∈ N premise,
pi,k: Probability assigned to production k of Ni,
ni,j,k: Number of occurrence of Nj ∈ N in production k of Ni,
ti,k: Number of terminal symbols appearing in production k of Ni.

Calculating li for all i yields a system of linear equations which describes the expected length of words derivable starting
from each nonterminal of the stochastic context-free grammar G. Eq. (2) can be written in matrix form

l = M · l+ v (3)

by defining the column vectors l = [li], v = [vi], and the matrixM = [mi,j], where 0 < i, j ≤ |N|.

Definition 6 (Expectation Matrix of SCFG). The matrixM = [mi,j] is the expectation matrix of the SCFG.

In other words, the (i, j) element of the stochastic expectation matrix tells how many Njs to expect when rewriting Ni.

Example 2 (Cont.). The general form of the expectation matrix for the expression grammar G in Example 1 is

M =

[p1,1 p1,1 + p1,2 0
0 p2,1 p2,1 + p2,2
p3,1 0 0

]
=

[p1,1 1 0
0 p2,1 1
p3,1 0 0

]
.

In the two cases Eq. (3) can be written as

l(1) =


1
2

1 0

0
1
2
1

1
2

0 0

 · l(1) +

1
2
1
2
3
2

 , and l(2) =


3
5

1 0

0
1
2
1

1
6

0 0

 · l(2) +

3
5
1
2
7
6

 .

The solutions of these linear systems are the expectedword length of the derivation processes, namely l(1) = [−9,−5,−3]T
and l(2) = [59, 23, 11]T . �

3. Parameter assignment and consistency

Production probabilities play key role in SCFG consistency. SCFG applications typically

(1) seek the probability of generating a sentence,
(2) try to determine whether a given sentence belongs to the grammar,
(3) search for the most probable parse of a sentence,
(4) derive a set of random sentences, or
(5) are used to generate the given sentences with proper likelihood.
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Problems (1)–(4) require properly set production probabilities. Problem (5) itself deals with the assignment of
probabilities. The rule probabilities are obtained froma set of parse trees (treebank) or directly froma corpus of the language.
Chaudhuri et al. prove in [14] that an SCFG is consistent if production probabilities are learned from samples of the language
of the grammar by calculating the relative frequencies of using various productions during derivation of the sentences.
Sánchez and Benedí prove in [15] that if production probabilities are learned from Inside–Outside algorithm then the
obtained SCFG is always consistent. The relativeweighted frequencymethod introduced in [13] also results consistent SCFGs
both for initial parameter assignment and renormalization of inconsistent SCFG rule probabilities. It can thus be concluded
that all cited training methods are known to produce always consistent SCFG.
In test data generation (4), however, neither the corpus nor a treebank is available, especially if the language under test

is new. Unlike in problem (5), the goal here is to generate valid input2 including not only common but rare sentences, too.
Production probabilities can be set randomly ormanually (e.g. by an expert) in order to achieve good fault detection.Without
restricting the generality of this article, assume that rule probabilities are assigned such that each applicable production is
chosen with equal chance pi,k = 1/rk. This way the SCFG is expected to produce large deviation, which contributes to
an increase in both fault detection and stress of the implementation under test. In contrast to the above cited training
algorithms, this intuitive parameter assignment does not guarantee that the resulting SCFG gets consistent. On the contrary,
the obtained SCFG is often inconsistent.
Booth and Thompson define the notion of consistency and give a necessary and sufficient condition for its validity in [2].

SCFG consistency is usually checked either by definition or using the former criterion. The criterion states that a proper
SCFG is consistent if the spectral radius ρ = ρ(M) of the expectation matrix M , i.e. the modulus of the largest eigenvalue
of M , is smaller than one. In case of ρ = 1 the stochastic derivation process is on the stability boundary and this criterion
tells nothing about consistency. Etessami and Yannakakis, however, argue in [4] that a spectral radius of unit magnitude
also yields consistent SCFG. This case, which is analogous to critical MTBPs, is unsatisfactory in practical applications since
the expected length of the generated sentence can be arbitrary large. Therefore we restrict our investigation to strongly
consistent SCFGs.

Definition 7 (Strong Consistency). SCFG G is strongly consistent if and only if the spectral radius ρ of the expectation matrix
of G is strictly smaller than 1.

Example 3 (Cont.). The first SCFG in Example 1, for instance, has ρ = 1.157 meaning that the expression grammar
augmented with equally distributed probabilities is inconsistent. The second SCFG has ρ = 0.968, therefore this grammar
is (strongly) consistent. �

It can be observed that most grammars of programming languages branch rarely as most nonterminals contain only a
couple of productions. The productions refer to relatively few other nonterminals, yielding a sparse expectation matrix.
This observation can be extended with the following: the expectation matrix of an SCFG is mostly a random, asymmetric,
sparsematrix with always non-negative coefficients. Booth and Thompson prove that the averageword length of a language
generated by a consistent SCFG is always positive [2]. On the other hand it was noted in [19] that the expected frequency
of some words gets negative if the SCFG fails to be consistent. These properties combined with Eq. (3) lead to another
consistency condition.

Theorem 1 (Consistency Criterion). A proper SCFG is strongly consistent if and only if there is exactly one positive solution of
equation (3).

Proof. The following elementary proof does not require the theory of branching processes. Consider Eq. (3) as

u = A · u+ v, (4)

where A is the stochastic expectationmatrix of a proper SCFG. Clearly, A is non-negative. Moreover, since the SCFG is proper,
therefore v is strictly positive. First suppose that the given SCFG is strongly consistent.Wehave to prove that there is a unique
positive solution u of (4). Since ρ(A) < 1 therefore (I − A)−1 exists and it can be expressed as a convergent series

(I − A)−1 = I + A+ A2 + · · · + Am + · · · . (5)

Hence

u = (I − A)−1v = Iv + Av + A2v + · · · Amv + · · · ,

which is an infinite sumof positive vectors, sou is unique andpositive. Since the right-hand side of (5) is convergent therefore
u is also finite. Now suppose that a unique solution u of (4) exists and it is positive.We have to prove that the SCFG is strongly
consistent, i.e. ρ(A) < 1. If (I − A) is singular then ρ(A) = 1 and Eq. (4) has no or infinitely many solutions. This case
cannot happen. If (I − A) is regular then (I − A)−1 exists, therefore u is unique and finite. On the other hand the sequence

2 Invalid input for negative test is not considered in this article.



494 R. Gecse, A. Kovács / Mathematical and Computer Modelling 52 (2010) 490–500

〈u, Au, A2u, A3u, . . . , Aku, . . .〉 is a strictly decreasing sequence of positive vectors, which means that Ak is convergent as k
tends to infinity. Let λ be an eigenvalue of A and x be the corresponding eigenvector. Suppose that there exists an eigenvalue
λ of A for which |λ| > 1. Then the sequence 〈x, Ax, A2x, . . . , Akx, . . .〉 is divergent, which means that Ak tends to infinity as
k→∞. This case cannot happen as well. Hence lim Ak = 0 as k tends to infinity, by which ρ(A) < 1. �

4. Comparison of methods for checking the consistency

The consistency theorem in [2] and the algorithm in [4] require the spectral radius of the stochastic expectation
matrix. The calculation of eigenvalues for non-symmetrical random matrix is a complicated procedure since there is no
generic method. Solving eigenvalue problems always depend on the peculiarities of the given problem such as matrix size,
sparseness, differences between magnitude of coefficients and so on. Eigenvalue calculation is also known to be highly
sensitive to small changes in coefficients, which can lead to significant computational errors. Thus, the solution usually
involves balancing and a number of well-chosen similarity transformations until some easy-to-solvematrix form is reached.
Fortunately, the calculation of all eigenvalues is not necessary for getting the spectral radius. It is sufficient to ensure that
the expectation matrix is contractive. Wetherell [6] and Sarkar [20] rely on the combination of the power method and
Gerschgorin’s algorithm (see e.g. [21]) in their consistency check implementations. This requires the calculation of matrix
powers between successive iterations but, in worst case, tells nothing about the spectral radius, since the convergence of the
Gerschgorin test depends highly on the matrix coefficients. Etessami and Yannakakis present a polynomial time algorithm
for analyzing the consistency of SCFGs [4]. This algorithm is based on eigenvalue characterizations, including a conversion
into Jacobian matrix form, together with graph theoretic techniques.
There are some better, always convergent methods to obtain the spectral radius. Let us denote the number of

nonterminals by n. Then the Lehmer–Schur method (see e.g. in [22]), for instance, requires only O(n2) multiplications to
determine if a complex polynomial of degree n has roots greater than 1 inmagnitude. The drawback of this method is that it
operates on the characteristic polynomial of the expectationmatrix. The calculation of characteristic polynomial coefficients
from an n×n expectationmatrix itself is O(n3) complexity. Although, there is a wide variety of direct and iterative methods
for determining the spectral radius, their worst-case complexity is at least O(n3).
Theorem 1 requires the computation of the roots of a system of linear equations. The direct methods, i.e. Gaussian or

Gauss–Jordan elimination as well as LU decomposition are all of O(n3) operation complexity. It seems that all consistency
criteria have the same asymptotic worst-case complexity. The operations count can, however, show significant difference
due to the neglected constant factors in the O notation.
Let us compare our consistency criterion with those in [2,4], which rely on spectral radius calculation, using the SCFG

model of some popular programming languages and formal notations such as ANSI C, ISO C++, C#, OMG Interface Description
Language (IDL) and ETSI Test and Test Control Notation version 3 (TTCN-3)3 by assigning evenly distributed probability
parameters. The calculations required for consistency checkswere carried out inMATLAB4with the results shown in Table 1.
The measurements conducted with sparse matrices show significant advantage of direct elimination methods over both

direct and iterative spectral radius calculations. Although the asymptotic worst-case operations complexity is the same, the
criterion in Theorem 1 is computationally more effective than the theorem given by Booth and Thompson [2] as the direct
algorithms for solving systems of linear equations work significantly better for random, real-valued, asymmetric, sparse
matrices than state-of-the-art iterative algorithms for spectral radius calculation.

5. Making an SCFG strongly consistent

Test data generation requires strongly consistent SCFG. If the input grammar is inconsistent then the derivation algorithm
is likely to get into infinite loop while trying to generate an infinite length word. This section presents the construction of
an algorithm for making an inconsistent SCFG strongly consistent without annihilating any rules of the grammar.

5.1. Categorizing rules and nonterminals

Consistency depends on rule structure and rule probability distribution. Let us investigate how structural grammar
properties influence the consistency. If a rule with terminals only is picked during derivation, then the number of
nonterminals decreases in that step by one. This kind of production is referred to as good rule. When a nonterminal has
good rules only then it does not affect consistency regardless of the assigned probabilities. If a self-loop rule of form

A→ ω : ω ∈ (N ∪Σ)∗A(N ∪Σ)∗ and A ∈ N (6)

is chosen then the number of nonterminals cannot decrease. This kind of rule is called bad rule. It is important to mention
that proper grammars must not contain nonterminals with bad rules only. In other situations, when a rule does neither

3 The ANSI C grammar is attributed to Jeff Lee, the C++ grammar was obtained from the Ph.D. thesis of E.D. Willink, the C# grammar is a work of James
Power. The IDL and TTCN-3 grammars are properties of Ericsson Hungary Ltd.
4 MATLAB is the registered trademark of The MathWorks, Inc.
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Table 1
Comparison of consistency criteria inMATLAB—spectral radius calculation vs. solving a systemof linear equations. n represents the number of nonterminals
of the grammar,which determinesmatrix size. Spectral radius is obtained in twodifferentways. The firstmethoduses theeig function for direct eigenvalue
calculation. The secondmethod relies on the random iterativeeigs function to obtain a spectral radius estimation. The lattermethod is also combinedwith
sparse data representation. The system of linear equations is solved with Gaussian elimination. The dense and sparse columns contain calculations carried
out in dense and sparse matrix data representations. The measurement results are given in kflops, as measured using the flops function of MATLAB. The
displayed figures contain the mean of 100 measurements to avoid the variance of iterative methods.

n Spectral radius calculation Gaussian elim.
eig eigs eigs sparse Dense Sparse

ANSI C 63 1810 2714 2096 199 5
IDL 126 2703 3562 2487 1462 18
ANSI C++ 211 43604 10783 4980 6625 51
C# 235 43289 14287 6159 9103 63
TTCN-3 463 253883 19975 4069 67911 232

Fig. 1. Directed graph representation of the grammar in Example 1 with Case 1 probabilities (left) and with (strongly) consistent probabilities (right). The
grammar was made strongly consistent by increasing the probability of the good rule of F , which is the only α-symbol of the grammar.

contain a self-loop (6) nor all symbols in its consequence are terminals, anything can happen. This kind of rule is named
neutral rule. Each rule of the grammar is thus either a good, bad or neutral rule.
Nonterminals can also be categorized depending on their rules. Nonterminals with at least one good rule are called

distinctively α-symbols. The rest of the nonterminals, i.e. those without any good rule, are called β-symbols.

5.2. Graphical representation of SCFG

SCFGs can be visualized using directed graphs, which not only show the expectations but also refer to the applicable
rules, making the representation suitable for analyzing consistency.

Definition 8 (Directed Graph Representation of SCFG). The nodes correspond to the nonterminals, α-symbols are
distinguished from β-symbols with double circles, the start symbol is also marked. The edges represent rules, such that
an (A, B) directed edge is present if A has some rules with B in their consequence: RA,i : A→ ω andω ∈ (N∪Σ)∗B(N∪Σ)∗.
The (A, B) edges are labeledwith the sequence of i indices of the RA,i rules. Labels can be omittedwhen a nonterminal appears
in the consequence of all of its rules. The entries of the expectation matrix appear on the edges in parentheses.

Example 4 (Cont.). Fig. 1 presents the directed graph representations of the SCFG of Example 1. Expectations are shown in
parentheses. �

5.3. Decomposing the problem

The directed graph representation may contain strongly connected components (SCCs). An important property of SCCs
is that once the derivation exits a component it can never return. Decomposing the original SCFG into subgrammars
corresponding to its SCCs leads to a simplification of the problem.

Definition 9 (Subgrammar). Consider SCFGs G = 〈ΣG,NG, RG, SG, PG〉 and F = 〈ΣF ,NF , RF , SF , PF 〉. Let τ 6∈ (ΣG ∪NG). F is a
subgrammar of G ifΣF ⊆ ΣG ∪ {τ }, NF ⊆ NG, RF ⊆ RG such that RG : A→ ψBω gets RF : A→ ψτω if A ∈ NF , B ∈ NG \ NF ,
ψ,ω ∈ (ΣF ∪ NF )∗, SF ∈ NF and PF ⊆ PG.
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Fig. 2. Strongly connected components of the SCFG in Example 5.

Consider the SCCs of the directed graph representation of the SCFG. The subgrammar contains all nonterminals and
productions belonging to the respective SCC and the terminals occurring in the inherited rules. Those nonterminals in the
rules of the original SCFG, which are absent from the current SCC, are replaced with a single special terminal symbol τ . The
start symbol of the subgrammar can be any nonterminal, which acts as an entry point of the SCC.

Example 5. The following artificial SCFG contains two SCCs components, which are shown in Fig. 2. The component to the
left is inconsistent, while the one on the right is strongly consistent.

RA,1 : A→ BBBBE p1,1 =
1
2

RE,1 : E → Ea p5,1 =
1
3

RA,2 : A→ aC p1,2 =
1
2

RE,2 : E → aF p5,2 =
1
3

RB,1 : B→ Ba p2,1 =
1
2

RE,3 : E → a p5,3 =
1
3

RB,2 : B→ aD p2,2 =
1
2

RF ,1 : F → Ea p6,1 = 1

RC,1 : C → D p3,1 =
1
2

RC,2 : C → a p3,2 =
1
2

RD,1 : D→ AA p4,1 =
1
2

RD,2 : D→ Ea p4,2 =
1
2
.

The subgrammar corresponding to the left component contains symbolsA, B, C ,D and their rules. ProductionsA→ BBBBE
and D → Ea refer to nonterminal E, which is outside the SCC, hence it is replaced in both rules with the special terminal
symbol τ . The relevant rules in the subgrammar are changed to A → BBBBτ and D → τa. The subgrammar of the other
component contains symbols E, F and their productions. There is no change in the rules because these refer to nonterminals
within the SCC only. �

The SCCs of subgrammars are independent. Accordingly, the consistency of the original SCFG depends on the consistency
of its subgrammars.

Lemma 1. An SCFG is consistent if and only if all subgrammars corresponding to SCCs of the grammar are consistent.

Proof. A real n × n matrix M with non-negative entries (such as an expectation matrix) is said to be irreducible if every
element, labeled as a row–column pair (i, j), is greater than zero in some finite power of M . It means that in this case for
every pair (i, j) there is a positive k such that (Mk)ij > 0. The adjacency matrix A of a strongly connected graph component
is irreducible since (Ak)ij is exactly the number of paths from i to j of length k. If a graph is not strongly connected then
it is reducible. Perron–Frobenius theorem [23] tells us that the set of eigenvalues of a reducible matrix is the union of the
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eigenvalues of its irreducible subgraphs. In order to see why, let us consider the reducible matrix

M =


C11 D12 · · · D1n
0 C22 · · · D2n
...

...
. . .

...
0 0 · · · Cnn

 ,
where Cii is the adjacency sub-matrix of the SCC i. The off-diagonal elements Dij represent the inter-SCC links. Using
topological ordering every reducible matrix can be arranged in this way. The eigenvalues of M have a simple structure,
namely det(M − λI) = det(C11 − λI) · det(C22 − λI) · · · det(Cnn − λI). Thus, the eigenvalues of M are the union of the
eigenvalues belonging to each of the irreducible components. This means that the connections between SCCs do not alter
the eigenvalue spectrum. �

5.4. Elementary procedures of making the SCFG consistent

The easiest way to turn a subgrammar strongly consistent is to increase the probabilities of rules leading out from the
SCC. The α-symbols always have at least one good rule by definition. The α-symbols can therefore be easily eliminated
during derivation. Indeed, some SCFG can bemade strongly consistent by increasing probabilities of these productions only.

Example 6. Inconsistency of the SCFG of Example 1 with Case 1 probabilities (Fig. 1 left) is caused by the dominance of the
F → E feedback. Symbol F , which is the only α-symbol of the grammar, has a single good rule F → a. Increasing the p3,2
probability to 4/5 decreases the expectation on the (F , E) edge – and thereby the positive feedback caused by the F → (E)
production – and the grammar gets strongly consistent (Fig. 1 right). �

Nevertheless, not only the α-symbols but all nonterminals of the grammar influence consistency. Therefore, the previous
approach is not always sufficient to make an SCFG consistent. The solution is to involve the β-symbols in the process and
force the derivation toward α-symbols. The easiest way of doing this is to prefer a single rule during derivation at each
β-symbol. The preferred or best rule among the neutral rules of a β-symbol is the rule that requires the least number of
rewriting steps to reach a sentential form consisting of α-symbols and terminals only. Observe that the best rule is not
necessarily unique.

Definition 10 (Hop Count). The hop count of some nonterminal A is the smallest number of rewriting steps required to reach
a sentential form containing of α-symbols and terminals only. Formally:

hop(A) = min(k : A k
⇒ ω) such that ω ∈ (α-symbol ∪Σ)∗ and A ∈ N.

The best rules of β-symbols can be found using Algorithm 1 employing a bottom–up technique involving the hop count
of nonterminals. X0 is initialized with the α-symbols of the grammar, which always have zero hop count. Next, the self-loop
rules have to be removed because a bad rule can never be the best. The β-symbols are then taken one by one, such that all
nonterminals within the rules of the chosen symbol (B) can be found in the solution set (this can always be done for proper
SCFG). Calculate the sum of hop counts of all nonterminals for each rule of B. The best rule is the one with the lowest hop
count sum. The hop count of B is one more than the hop count sum of its best rule. The best rule is marked, the solution set
is expanded with B and the procedure continues until the best rule is found for all β-symbols.
The hop count can be obtained from the directed graph representation, too. In each hop one needs to choose a rule for

rewriting the current nonterminal. When the selected rule contains more than one nonterminals then the graph branches
and derivation has to follow all edges of the corresponding rule concurrently. The traversal finishes when all branches reach
an α-symbol of the SCC. The hop count will be the number of edges traversed.

Example 7. Let us find the best rules of β-symbols for the first subgrammar of Example 5 as shown in Fig. 2. The β-symbols
are A and B. The first rule of A refers to B, thus the best rule of B needs to be determined first. B has two rules. The first
contains self-loop therefore the second rule must be preferred. The second rule B→ aD refers to an α-symbol, thus the hop
count of Bwill be 1. Proceeding with A, the first rule A→ BBBBτ introduces four Bs, implying hop count 5 for A. The second
rule A → aC , however, leads directly to an α-symbol, which means that the hop count of A is 1. The best rules of the two
β-symbols are thus B→ aD and A→ aC . �

5.5. The algorithm

This sectionpresents an algorithm (Algorithm2) for turning a proper SCFG strongly consistent. Ourmethod first simplifies
the problem by decomposing the input SCFG into subgrammars corresponding to its SCCs. The obtained subgrammars are
processed one by one.When a subgrammar is not strongly consistent then Algorithm 2 first determines itsα and β-symbols.
Then, it marks all good rules of α-symbols and the best rules of each β-symbol using Algorithm 1. The principle of the
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Algorithm 1 Finding the best rule of each β-symbol in a subgrammar.
1: function FindBestRules(G) F G is a proper SCFG
2: i← 0
3: Mi ← ∅ F The set of marked best rules
4: Xi ← {α-symbols} F Initialize the solution set
5: R∗ ← R \ {self-loop rules} F Removing self-loops
6: repeat
7: i← i+ 1
8: B← next β-symbol such that ∀j RHS of R∗B,j ∈ (Xi−1 ∪Σ)

∗

9: for all rule R∗B,j do
10: hB,j ←

∑
(nonterminal hop counts in RHS of R∗B,j)

11: end for
12: Mi ← Mi−1 ∪ {R∗B,j : hB,j = min(hB,j)} FMark best rule of B
13: hop(B)← min(hB,j)+ 1 F Save hop count
14: Xi ← Xi−1 ∪ {B} F Update the solution set
15: until Xi = Xi−1 F i.e. all β-symbols are processed
16: returnMi
17: end function

algorithm relies on altering production probabilities such that the marked rules are taken more likely during derivation.
It increases the probabilities of these rules using a set SF of strictly increasing amending functions. Then, normalization
makes sure that the sum of all production probabilities remains 1 after applying the amending functions. It is important to
note the greediness of the algorithm, which is manifested in the fact that the probabilities of all marked rules are increased
simultaneously. This happens because it cannot be determined which productions are directly responsible for inconsistency.
These undesired rules are, however, surely among the unmarked productions. Increasing the probabilities of marked rules
will thus decrease the probabilities of the remaining neutral and bad rules. The execution takes as many iterations as
necessary to make the subgrammar strongly consistent. The number of iterations as well as the convergence of the process
depends on the employed amending functions. Theoretically, arbitrary strictly increasing, from above unbounded function
can be used for this purpose. Exaggeratedly, one could select different amending functions for each rule aswell. The practical
choice depends on the peculiarities of the given problem. When the aim is, for instance, to find a solution swiftly then the
employed set of SF functions should increase aggressively. If the expectation of the lengths of generated sentences should be
large then it is recommended to pick slowly increasing amending functions instead. Experiments show that adequate results
can be achieved by systematically applying the function f (x) = 2x and then normalizing the probabilities. The altered
probabilities of the strongly consistent subgrammar need to be written back into the original SCFG. When the algorithm
finishes processing all subgrammars, the original SCFG will be strongly consistent.

Algorithm 2 Turning the grammar strongly consistent.
1: procedureMakeStronglyConsistent(G, SF )
2: Detect SCCs
3: for all SCC do
4: Create subgrammar
5: Check consistency
6: if not strongly consistent then
7: Categorize rules and symbols
8: Mark all good rules of α-symbols
9: Find and mark the best rule of β-symbols with Algorithm 1
10: repeat
11: Increase the probabilities of marked rules using the set SF
12: Normalize rule probabilities
13: until subgrammar gets strongly consistent
14: Write back rule probabilities into the original grammar
15: end if
16: end for
17: Output is a strongly consistent grammar
18: end procedure

Example 8. Applying Algorithm 2 to the grammar of Example 5 first detects the SCCs in Fig. 2 and spawns the respective
subgrammars. The right component is strongly consistent thus probabilities of its subgrammar remain unchanged. The
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Fig. 3. Sample grammar of Example 4 with strongly consistent weights.

Table 2
Results of Algorithm 2 on the grammars of Table 1; the SCC column contains the SCCs of the grammar. ColumnN shows the number of nonterminals within
the component. The next column notes whether the original subgrammar is strongly consistent or not. The last column holds the number of iteration steps
taken in Algorithm 2 using systematically the function f (x) = 2x for making the subgrammar strongly consistent.

Grammar SCC N Strongly consistent Steps

ANSI C SCC-1 38 No 4
SCC-2 2 No 1
SCC-3 6 Yes 0

IDL SCC-1 9 No 2
SCC-2 5 Yes 0
SCC-3 9 Yes 0
SCC-4 3 Yes 0

ANSI C++ SCC-1 168 No 4

C# SCC-1 5 Yes 0
SCC-2 45 No 2
SCC-3 28 Yes 0
SCC-4 11 Yes 0
SCC-5 5 Yes 0

TTCN-3 SCC-1 96 No 5
SCC-2 12 Yes 0
SCC-3 31 Yes 0
SCC-4 3 Yes 0

component to the left is, however, inconsistent. While categorizing its nonterminals, C and D turn out to be α-symbols.
Their good rules are C → a and D → τa. Nonterminals A and B are β-symbols. Their best rules have been determined in
Example 7. Multiplying these rules’ probabilities using the suggested function f leaves the SCC inconsistent. It takes another
iteration to make the subgrammar strongly consistent. Writing back the rule probabilities results the strongly consistent
grammar in Fig. 3. �

Table 2 summarizes the result of measurements performed with Algorithm 2 on the grammars in Table 1.

Theorem 2 (Turning SCFGs Strongly Consistent). Every proper, inconsistent SCFG can be transformed into a strongly consistent
one.

Proof. Constructive. Algorithm 2 gradually increases the probability of those productions that do not contribute to
recursions. Therefore the probability of engaging into a recursion loop decreases provided there is at least one production
that leads out from each recursion. Since the CFG part of the observed SCFG is assumed to be proper, it satisfies this condition
thus the introduced method works for all proper SCFGs. �

5.6. Performance considerations

The execution performance of Algorithm 2 can be estimated based on the computational complexity of its elementary
operations. Detecting the SCCs of G = (V , E) graph requires linear timeΘ(V+E) if the graph is represented as an adjacency
list. In case of the directed graph representation of SCFG the performance isΘ(|N|+ |R|). Creating a subgrammar of an SCFG
happens in linear time as well. The consistency check algorithm takes O(|N|3) execution time as discussed in Section 4. It is
important tomention that consistency check runs every time on differentM since some production probabilities are altered
in each iteration step. The (re)construction of the expectation matrix takes O(|N|3) operations. Finding the best rules of
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β-symbols is linear if the β-symbols can be taken in reverse breadth-first search order, which takes O(|N| + |R|)
computations. Hence, the execution performance of Algorithm 2 depends mainly on the set SF . The invocation of the
expensive consistency check algorithm – and the rest of linear time operations within the body of the loop – can be kept
low when the likelihood of marked rules is increased as suggested in Section 5.5. Then the procedure (i.e. turning the SCFG
strongly consistent) converges fast as confirmed by our experiments (see results in Table 2).

6. Summary

We presented a new method for determining consistency, which is slightly better in both execution performance and
accuracy than the consistency criterion of Booth and Thompson. The efficiency is based on the fact that solving a system of
sparse linear equations with non-negative coefficients is faster than calculating the eigenvalue of highest magnitude.
Weproved that a proper, inconsistent SCFG can always be transformed into a strongly consistent one just by altering some

production probabilities. The execution time of our algorithm makes practical problems tractable. Potential applications
include stochastic test data generation for automated testing.
Our results can also be applied to testing protocols with simple behavior but complicated syntax where data type

hierarchy ismodeledwith SCFG and rule probabilities are assigned a priori. If the initial grammar is inconsistent then it needs
to be made strongly consistent with the introduced algorithm. The obtained strongly consistent SCFG is used to generate
syntactically correct type skeletons of messages. The type skeletons are then filled with values according to predefined
constraints resulting in semantically valid messages. Remaining details are subject to further study.
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