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CANONICAL EXPANSIONS OF INTEGERS
IN REAL QUADRATIC FIELDS
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Dedicated to Professor Imre Kátai
on the occasion of his 65th birthday

Abstract. In [1, 2] a complete description was given for the location,

number and structural properties of attractors generated by the discrete

dynamics of the system (α, D), where α is an arbitrary integer in an

imaginary quadratic field with norm N ≥ 2 and D is the canonical digit

set {0, 1, . . . , N − 1}. In this paper we shall extend some of these results

to real quadratic fields.

1. Introduction

Let Q be the field of rational numbers, Q(ϑ) its extension generated by
an algebraic number ϑ. Let Q[ϑ] denote the integers of Q(ϑ). Let α ∈ Q[ϑ]
be an algebraic integer for which α and all its conjugates have moduli greater
than one. Let |Norm(α)| ≥ 2 and let D be a complete residue system modulo
α, for which 0 ∈ D. The pair (α, D) is called a number system in Q[ϑ] if for
each γ ∈ Q[ϑ] there exist an m ∈ N0 and aj ∈ D (j = 0, 1, . . . ,m) such that
γ = a0 + a1α + . . . + amαm. The uniqueness of the expansion follows from
the fact that any two elements of D are incongruent modulo α. The system
(α,D) can be used to represent all the integers γ ∈ Q[ϑ] even if it is not a
number system. Clearly, for each γ there exists a unique aj ∈ D such that
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α | γ − aj . Let γ1 = (γ − aj)/α and let us define the function Φ : Q[ϑ] → Q[ϑ]
by Φ(γ) = γ1. Let Φk denote the k-fold iterate of Φ, Φ0(γ) = γ0. The sequence
of integer vectors Φj(γ0) = γj (j = 1, 2, . . .) is called the path of the dynamical
system generated by Φ. An element π ∈ Q[ϑ] is called periodic if there exists
an l ∈ N such that Φl(π) = π. The smallest such l is the length of period of π
generated by Φ. Let P denote the set of all periodic elements. It is clear that
π ∈ P if and only if there is an l > 0 such that

(1) π = a0 + a1α + . . . + al−1α
l−1 + παl, aj ∈ D.

The basin of attraction of π ∈ P consists of all γ ∈ Q[ϑ] for which there
exists a j ∈ N0 such that Φj(γ) = π and is denoted by B(π). Let G(P) be
the directed graph defined on P by drawing an edge from π ∈ P to Φ(π).
Then G(P) is a disjoint union of directed cycles, where loops are allowed. The
concept of this kind of dynamics in algebraic number fields can be extended to
the lattices of Euclidean spaces [3].

Consider the quadratic fields. Let α be a quadratic integer with minimal
polynomial x2 +Ex+F and let D be the canonical digit set {0, 1, . . . , |F |−1}.
Then (α,D) is a number system if and only if F ≥ 2 and −1 ≤ E ≤ F [4,
5, 6]. Moreover, in imaginary fields using canonical digit sets the set G(P)
was completely described, i.e. the location, number and structure of periodic
elements was fully determined. The aim of this paper is to describe the location
of periodic elements in real quadratic fields.

2. Some lemmas

In the following we restrict our attention to the ring of integers in real
quadratic fields.

Let F ≥ 2 be a square-free integer. Let Q(
√

F ) be the real quadratic
extension of Q generated by

√
F , I be the set of integers in Q(

√
F ). It is

known, that if F 6≡ 1 (mod 4) then {1, δ}, while for F ≡ 1 (mod 4) {1, ω} is
an integer basis in I, where δ =

√
F, ω = (1 +

√
F )/2. The lattice generated

by the basis {1, δ} will be called δ-lattice (denoted by Λδ) and the other one
is ω-lattice (denoted by Λω). For an arbitrary element β = x + yδ ∈ I or
β = x + yω ∈ I we shall denote its rational part x by R(β) and its irrational
part y by I(β).
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Let α1 = a + bδ and α2 = a + bω, a, b ∈ Z, b 6= 0, E = (F − 1)/4. In these
cases the corresponding linear operators in Z2 are

M1 =
(

a Fb
b a

)
and M2 =

(
a Eb
b a + b

)
.

Clearly, det(M1) = a2 − Fb2 and det(M2) = a2 + ab − Eb2 and the first
columns of the adjoint of the matrices M1 and M2 are [a,−b]T and [a+b,−b]T ,
accordingly. Suppose that (a, b) > 1. If follows from [3] (Theorem 7) that in
these cases the sets {0, 1, . . . , |a2−Fb2| − 1} and {0, 1, . . . , |a2 + ab−Eb2| − 1}
cannot be complete residue systems modulo M1 and M2, accordingly. Hence
the following lemma holds.

Lemma 1. For α ∈ Q[
√

F ] (α = a + bδ or α = a + bω) the set D =
= {0, 1, . . . , |αα| − 1} is a complete residue system if and only if (a, b) = 1.

Let N = αα. Further we always consider canonical digit sets, hence we
assume that (a, b) = 1, b 6= 0, N 6= ±1. The following lemma gives some
information about the dynamics of the system (α,D).

Lemma 2. Let α ∈ I, π ∈ P in the system (α, D). (a) If γ ∈ I, γ ≡
≡ 0 mod α, γ1 = γ + d1, γ2 = γ + d2, d1, d2 ∈ D, then Φ(γ1) = Φ(γ2). (b) If
π ∈ P in (α, D) then π ∈ P in (α,D).

Proof. (a) is obvious. Concerning (b) one can easily see that if π =
= a0 +a1α+ . . .+al−1α

l−1 +παl, aj ∈ D then π = a0 +a1α+ . . .+al−1α
l−1 +

+π αl, aj ∈ D.

Since if α = a + bδ then α = a− bδ and if α = a + bω then α = a + b− bω,
therefore it is enough to examine the cases b ≥ 1. Further we always assume
that b ≥ 1. In addition, we examine only those expansions for which 1−α, 1−α
are not units. The following lemma gives a lower estimation for the number of
elements in D.

Lemma 3. Consider the system (α, D), where α = a + bδ or α = a + bω.
If α + 1 is a unit then in the δ-lattice |N | = 2|a| and in the ω-lattice |N | =
= |2a + b|. In all the other cases, in the δ-lattice |N | ≥ 2|a| + 1 and in the
ω-lattice |N | ≥ |2a + b|+ 1.

Proof. Let α = a+bδ. We examine the following cases: (a) α, α > 0. Then
a > 0 and 0 < (α−1)(α−1) = N −2a+1, which is always greater than 1 since
1−α is not a unit. (b) α, α < 0. Then a < 0 and 0 < (α+1)(α+1) = N+2a+1.
If α + 1 is a unit then N = 2|a|. (c) sgn(a) = sgn(α) 6= sgn(α). Then N < 0
and |α| = |a+bδ| = |2a−α| = |2a|+ |α|. Hence |N | = |αα| > |α| > |2a|+1. (d)
sgn(a) = sgn(α) 6= sgn(α). Then N < 0 again and |α| = |a− bδ| = |2a− α| =
= |2a|+ |α|. Hence |N | = |αα| > |α| > |2a|+ 1.
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Let α = a + bω. Again, we have the following cases: (a) α, α > 0. Then
2a+b > 0 and 0 < (α−1)(α−1) = N−2a−b+1 which is always greater than 1,
since 1−α is not a unit. (b) α, α < 0. Then 2a+b < 0 and 0 < (α+1)(α+1) =
= N +2a+b+1. If α+1 is a unit then N = |2a+b|. (c) sgn(2a+b) = sgn(α) 6=
6= sgn(α). Then N < 0 and |α| = |a + bω| = |2a + b − α| = |2a + b| + |α|.
Hence |N | = |αα| > |α| > |2a + b| + 1. (d) sgn(2a + b) = sgn(α) 6= sgn(α).
Then N < 0 and |α| = |a + b − bω| = |2a + b − α| = |2a + b| + |α|. Hence
|N | = |αα| > |α| > |2a + b|+ 1.

The following lemma shows that if a rational integer is a multiple of α
then it is a multiple of αα as well.

Lemma 4. Let α ∈ I (α = a + bδ or α = a + bω), (a, b) = 1, f ∈ Z. If
α | f then N = αα | f .

Proof. If a + bδ = α | f then (a+ bδ)(c + dδ) = ac+ bdF +(ad+ bc)δ = f
for some c, d ∈ Z. Since (a, b) = 1 therefore c = ap and d = −bp for some
p ∈ Z. Hence a2p− b2Fp = f , which means that a2− b2F | f . If a+ bω = α | f
then (a + bω)(c + dω) = ac + bdE + (ad + bc + bd)ω = f for some c, d ∈ Z.
Again, since (a, b) = 1 therefore c = (a + b)p and d = −bp for some p ∈ Z. It
means that a(a + b)p− Eb2p = f , by which the proof is finished.

3. Periodic elements with period length one

The following two lemmas show the number and location of periodic
elements with period length one. First consider the δ-lattice and let α =
= a + bδ, a, b 6= 0, (a, b) = 1.

Lemma 5. Let Lδ = {πj} (j = 0, . . . , k), where πj = (1−a+bδ)j/(1−a, b)
and k = b(1−a, b)(|N |−1)/|(1−a)2− b2F |c. If sgnα = sgnα then the periodic
elements with period length one in the system (α,D) are the elements of Lδ, if
sgnα 6= sgnα then the periodic elements with period length one are the elements
of −Lδ.

Proof. It follows from (1) that π → π is a loop if and only if π = d + απ
for some d ∈ D. It means that (1 − α)π = d ∈ D, hence π = d/(1 − α) =
= d(1− a)/((1− a)2 − b2F ) + δdb/((1− a)2 − b2F ). Since π ∈ I therefore (1−
−a)2 − b2F | d(1 − a, b). On the other hand 0 ≤ d ≤ |N | − 1 and the signum
of N − 2a + 1 is determined by sgn(α) and sgn(α). The proof is completed.

Consider now the ω-lattice. Let α = a + bω, b 6= 0, (a, b) = 1, N =
= a2 + ab− b2E, E = (F − 1)/4. Using the same idea as by Lemma 5 the next
result can easily be proved. We leave it to the reader.
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Lemma 6. Let Lω = {πj} (j = 0, . . . , k), where πj = (1−a−b+bω)j/(1−
−a−b, b) and k = b(1−a−b, b)(|N |−1)/|(1−a)(1−a−b)−b2E|c. If sgnα = sgnα
then the periodic elements with period length one in the system (α,D) are the
elements of Lω, if sgnα 6= sgnα then the periodic elements with period length
one are the elements of −Lω.

4. Location of periodic elements

It is not hard to see that the method for determining the location of
periodic elements, which was used in imaginary quadratic fields, cannot be used
here, since α or α can be very close to one in module, hence the convergence
of M−i

1 or M−i
2 (i = 1, 2, . . . ,∞) can be very slow. Our new method is

based on the following idea: it is well-known (see e.g. in [3]) that all the

periodic elements are inside the set −H, where H =
{ ∞∑

i=1

M−idi, di ∈ D

}
.

First we prove a closed form for M−k (k ∈ N), then we shall compute
the values min{x | [x, y]T ∈ H}, max{x | [x, y]T ∈ H}, min{y | [x, y]T ∈
∈ H}, max{y | [x, y]T ∈ H}.

4.1. Expansions in Λδ

In the δ-lattice we shall work with the matrix

M1 =
(

a Fb
b a

)
.

Assertion 1. With the notations introduced earlier we have

(2) M−k
1 =

1
2Nk

(
αk + αk −√F (αk − αk)

− 1√
F

(αk − αk) αk + αk

)
.

Proof. The proof is by induction. For the case k = 1 we have

M−1
1 =

1
2N

(
2a −2bF
−2b 2a

)
,

which is exactly the inverse of M1. Suppose that (2) is true for k. We prove
that (2) holds also for k+1. Since M

−(k+1)
1 = M−1

1 ·M−k
1 we have the following

equations:
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a

N

(
αk + αk

2Nk

)
+

b

N

(
αk − αk

2Nk

)√
F =

αk+1 + αk+1

2Nk+1
,

−Fb

N

(
αk + αk

2Nk

)
− a

N

(
αk − αk

2Nk

)√
F = −αk+1 − αk+1

2Nk+1

√
F,

− a

N

(
αk − αk

2
√

FNk

)
− b

N

(
αk + αk

2Nk

)
= −αk+1 − αk+1

2
√

FNk+1
,

F b

N

(
αk − αk

2
√

FNk

)
+

a

N

(
αk + αk

2Nk

)
=

αk+1 + αk+1

2Nk+1
.

The proof is finished.

Let γ1 = 1
2

∞∑
j=1

(α2j + α2j)/N2j , γ2 = 1
2

∞∑
j=1

(α2j−1 + α2j−1)/N2j−1, γ3 =

= 1
2
√

F

∞∑
j=1

(α2j − α2j)/N2j and γ4 = 1
2
√

F

∞∑
j=1

(α2j−1 − α2j−1)/N2j−1. Further

we examine some subcases. Computing the sums the computer algebra software
Maple was used.

4.1.1. Case α, α > 0

Since each member of γ1 and γ2 is positive, therefore

A1 := min{x | [x, y]T ∈ H} = 0, and

B1 := max{x | [x, y]T ∈ H} =
1
2
(|N | − 1)

∞∑

j=1

αj + αj

N j
=

(a− 1)(αα− 1)
(α− 1)(α− 1)

.

Recall that b > 0, hence α > α. Clearly, each member of γ3 and γ4 is positive,
by which

A2 := min{y | [x, y]T ∈ H} = − 1
2
√

F
(|N | − 1)

∞∑

j=1

αj − αj

N j
=

b(1− αα)
(α− 1)(α− 1)

,

B2 := max{y | [x, y]T ∈ H} = 0.

We got that if π ∈ P then −B1 ≤ R(π) ≤ 0 and 0 ≤ I(π) ≤ −A2.
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4.1.2. Case α, α < 0

In this case each member of γ1 is positive and each member of γ2 is
negative, hence

A3 := min{x | [x, y]T ∈ H} = γ2(|N | − 1) =
a(αα− 1)2

(α2 − 1)(α2 − 1)
,

B3 := max{x | [x, y]T ∈ H} = γ1(|N | − 1) =
(a2 + b2F − 1)(αα− 1)

(α2 − 1)(α2 − 1)
.

In the same way, each member of γ3 is negative and each member of γ4 is
positive, hence

A4 := min{y | [x, y]T ∈ H} = −γ4(|N | − 1) =
b(1− α2α2)

(α2 − 1)(α2 − 1)
and

B4 := max{y | [x, y]T ∈ H} = −γ3(|N | − 1) =
2ab(1− αα)

(α2 − 1)(α2 − 1)
.

We have that if π ∈ P then −B3 ≤ R(π) ≤ −A3 and −B4 ≤ I(π) ≤ −A4.

4.1.3. Case α > 0, α < 0, |α| > |α|
Clearly, each member of γ1 is positive and each member of γ2 is negative.

We have that

A5 := min{x | [x, y]T ∈ H} = γ2(|N | − 1) =
a(αα− 1)(|αα| − 1)

(α2 − 1)(α2 − 1)
, and

B5 := max{x | [x, y]T ∈ H} = γ1(|N | − 1) =
(a2 + b2F − 1)(|αα| − 1)

(α2 − 1)(α2 − 1)
.

Since each member of γ3 is positive and each member of γ4 is negative, therefore

A6 := min{y | [x, y]T ∈ H} = −γ3(|N | − 1) =
2ab(1− |αα|)

(α2 − 1)(α2 − 1)
, and

B6 := max{y | [x, y]T ∈ H} = −γ4(|N | − 1) =
b(|αα| − 1)2

(α2 − 1)(α2 − 1)
.

We have that if π ∈ P then −B5 ≤ R(π) ≤ −A5 and −B6 ≤ I(π) ≤ −A6.



130 A. Kovács and G. Farkas

4.1.4. Case α > 0, α < 0, |α| < |α|
Observe that each member of γ1 and γ2 is positive. Hence

A7 := min{x | [x, y]T ∈ H} = 0, and

B7 := max{x | [x, y]T ∈ H} =
1
2
(|N | − 1)

∞∑

j=1

αj + αj

N j
=

(a− 1)(|αα| − 1)
(α− 1)(α− 1)

.

Clearly, each member of γ3 and γ4 is negative, therefore

A8 := min{y | [x, y]T ∈ H} = 0, and

B8 := max{y | [x, y]T ∈ H} =
1

2
√

F
(|N | − 1)

∞∑

j=1

αj − αj

N j
=

b(|αα| − 1)
(α− 1)(1− α)

.

We have that if π ∈ P then −B7 ≤ R(π) ≤ 0 and −B8 ≤ I(π) ≤ 0.

4.1.5. Case α > 0, α < 0, |α| = |α|
In this case a = 0 and b = 1. Clearly, each member of γ1 is positive and

each member of γ2 is 0. Therefore

A9 := min{x | [x, y]T ∈ H} = 0, and

B9 := max{x | [x, y]T ∈ H} = (|N | − 1)γ1 = (|N | − 1)
∞∑

i=1

1
α2j

=
|N | − 1
α2 − 1

= 1.

In the same way, each member of γ3 is 0 and each member of γ4 is negative.
Hence,

A10 := min{y | [x, y]T ∈ H} = 0, and

B10 := max{y | [x, y]T ∈ H} = −(|N | − 1)γ4 =
|N | − 1√

F

∞∑

i=1

1
α2j−1

=
α√
F

= 1.

It means that if π ∈ P then −1 ≤ R(π) ≤ 0 and −1 ≤ I(π) ≤ 0. Lemma
5 shows that 0 ∈ P and −1 − δ ∈ P. Let us see the expansion of −1. Since
−1 = −αα − 1 + αα and α = 0 − α therefore G(P) = {0 → 0,−1 − δ →
→ −1− δ,−1 → α → −1}.



Canonical expansions of integers in real quadratic fields 131

4.2. Expansions in Λω

In this case the appropriate matrix is

M2 =
(

a Eb
b a + b

)
.

It is easy to see that ω2 = ω + E, ω = (1−√F )/2 = 1− ω and ωω = −E.

Assertion 2. With the notations above we have

(3) M−k
2 =

1√
FNk

(
αkω − αkω −E(αk − αk)
−(αk − αk) αkω − αkω

)
.

Proof. The proof is by induction. For the case k = 1 we have the following
equations: αω−αα =

√
F (a+ b), E(α−α) =

√
FEb, αω−αω = a

√
F . Hence,

M−1
2 =

1
N

(
a + b −Eb
−b a

)
,

which is exactly the inverse of M2. Suppose that (3) is true for k. We prove
that it holds also for k+1. Since M

−(k+1)
2 = M−1

2 ·M−k
2 , we have the following

equations:
(αkω − αkω)(a + b) + Eb(αk − αk) =

= αk(aω + bω2)− αk((a + b)ω + Eb) = αk+1ω − αk+1ω,

−Eb(αkω − αkω)− Ea(αk − αk) =

= −E(αk(bω + a)− αk(bω + a)) = −E(αk+1 − αk+1),

−(αk − αk)(a + b)− b(αkω − αkω) =

= −αk(a + b− bω) + αk(a + b− bω) = −αk+1 + αk+1,

Eb(αk − αk) + a(αkω − αkω) =

= αk(aω − Eb)− αk(aω − Eb) = αk+1ω − αk+1ω,

by which the proof is completed.

Let γ5 = 1√
F

∞∑
j=1

(α2jω2j + α2jω2j)/N2j , γ6 = 1√
F

∞∑
j=1

(α2j−1ω2j−1 +

+α2j−1ω2j−1)/N2j−1, γ7 = 1√
F

∞∑
j=1

(α2j − α2j)/N2j and γ8 = 1√
F

∞∑
j=1

(α2j−1 −

−α2j−1)/N2j−1.
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4.2.1. Case α, α > 0

It is easy to see that in this case α > α. Since each member of γ5 and γ6

is positive, therefore

A11 := min{x | [x, y]T ∈ H} = 0, and

B11 := max{x | [x, y]T ∈ H} =
1√
F

(|N | − 1)
∞∑

j=1

αjωj − αjωj

N j
=

=
(a + b− 1)(αα− 1)

(α− 1)(α− 1)
.

Clearly, each member of γ7 and γ8 is positive, by which

A12 := min{y | [x, y]T ∈ H} = − 1√
F

(|N | − 1)
∞∑

j=1

αj − αj

N j
=

=
b(1− αα)

(α− 1)(α− 1)
,

B12 := max{y | [x, y]T ∈ H} = 0.

We got that if π ∈ P then −B11 ≤ R(π) ≤ 0 and 0 ≤ I(π) ≤ −A12.

4.2.2. Case α, α < 0

In this case each member of γ5 is positive and each member of γ6 is
negative, hence

A13 := min{x | [x, y]T ∈ H} = γ6(|N | − 1) =
(αα(a + b)− a)(αα− 1)

(α2 − 1)(α2 − 1)
,

B13 := max{x | [x, y]T ∈ H} = γ5(|N | − 1) =
((a + b)2 + b2E − 1)(αα− 1)

(α2 − 1)(α2 − 1)
.

In the same way, each member of γ7 is negative and each member of γ8 is
positive, hence

A14 := min{y | [x, y]T ∈ H} = −γ8(|N | − 1) =
b(1− α2α2)

(α2 − 1)(α2 − 1)
,

B14 := max{y | [x, y]T ∈ H} = −γ7(|N | − 1) =
b(2a + b)(1− αα)
(α2 − 1)(α2 − 1)

.
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We have that if π ∈ P then −B13 ≤ R(π) ≤ −A13 and −B14 ≤ I(π) ≤ −A14.

4.2.3. Case α > 0, α < 0, |α| > |α|
Clearly, each member of γ5 is positive and each member of γ6 is negative.

We have that

A15 := min{x | [x, y]T ∈ H} = γ6(|N | − 1) =
(αα(a + b)− a)(|αα| − 1)

(α2 − 1)(α2 − 1)
,

B15 := max{x | [x, y]T ∈ H} = γ5(|N | − 1) =
((a + b)2 + b2E − 1)(|αα| − 1)

(α2 − 1)(α2 − 1)
.

Since each member of γ7 is positive and each member of γ8 is negative, therefore

A16 := min{y | [x, y]T ∈ H} = −γ7(|N | − 1) =
b(2a + b)(1− |αα|)
(α2 − 1)(α2 − 1)

,

B16 := max{y | [x, y]T ∈ H} = −γ8(|N | − 1) =
b(|αα| − 1)2

(α2 − 1)(α2 − 1)
.

We have that if π ∈ P then −B15 ≤ R(π) ≤ −A15 and −B16 ≤ I(π) ≤ −A16.

4.2.4. Case α > 0, α < 0, |α| < |α|
Obviously, each member of γ5 is positive. Regarding γ6 we have the

following possibilities. Suppose that αω − αω ≥ 0. Then there is an odd
integer C ∈ N for which

ω

ω
≤

(
α

α

)C

, but
ω

ω
>

(
α

α

)C+2

.

Clearly, αkω − αkω ≥ 0 for every odd k, 1 ≤ k ≤ C and αkω − αkω < 0 for
every odd k, k ≥ C + 2. Hence,

A17 := min{x | [x, y]T ∈ H} = (|N | − 1)




(C+1)/2∑

j=1

α2j−1ω − α2j−1ω

N2j−1


 =

=
(|αα| − 1)((1− α2)(1/αC − α)ω − (1− α2)(1/αC − α)ω)

(α2 − 1)(α2 − 1)
√

F
and

B17 := max{x | [x, y]T ∈ H} = (|N | − 1)(γ5 +
∞∑

j=(C+3)/2

α2j−1ω − α2j−1ω

N2j−1
) =
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=
((a + b)2 + b2E − 1)(|αα| − 1)

(α2 − 1)(α2 − 1)
+

((1− α2)ω/αC + (α2 − 1)ω/αC)(|αα| − 1)
(α2 − 1)(α2 − 1)

√
F

.

If αω < αω then each member of γ6 is positive. Therefore

A17 := min{x | [x, y]T ∈ H} = 0, and

B17 := max{x | [x, y]T ∈ H} =
(a + b− 1)(|αα| − 1)

(α− 1)(α− 1)
.

Clearly, each member of γ7 and γ8 is negative, by which

A18 := min{y | [x, y]T ∈ H} = 0, and

B18 := max{y | [x, y]T ∈ H} =
b(1− |αα|)

(α− 1)(α− 1)
.

We got that if π ∈ P then −B17 ≤ R(π) ≤ −A17 and −B18 ≤ I(π) ≤ 0.

4.2.5. Case α > 0, α < 0, |α| = |α|
In this case b = −2a. Since (a, b) = 1 and b > 0 therefore a = −1 and

b = 2. Clearly, each member of γ5 is positive and each member of γ6 is negative.
Hence

A19 := min{x | [x, y]T ∈ H} = γ6(|N | − 1) = − (|αα| − 1)2

(α2 − 1)(α2 − 1)
= −1, and

B19 := max{x | [x, y]T ∈ H} = γ5(|N | − 1) =
(b2E)(|αα| − 1)
(α2 − 1)(α2 − 1)

= 1.

Since each member of γ7 is 0 and each member of γ8 is negative, therefore

A20 := min{y | [x, y]T ∈ H} = 0,

B20 := max{y | [x, y]T ∈ H} = −γ8(|N | − 1) =
b(|αα| − 1)2

(α2 − 1)(α2 − 1)
= 2.

We have that if π ∈ P then −1 ≤ R(π) ≤ 1 and −2 ≤ I(π) ≤ 0. By
Lemma 5 we have that 0,−ω,−2ω ∈ P. Clearly, −1 = −1 − αα + αα and
α = 1 − 2ω = 0 − α. Keeping in mind Lemma 1 and 2 it is easy to see that
since α ≡ 0 (mod α), therefore Φ(−1− 2ω) = −2ω, since |αα| = 4E + 1 and
−2E − ω ≡ 0 (mod α), therefore Φ(−1 − ω) = Φ(1 − ω) = −ω. Obviously,
Φ(1) = 0. Putting everything together we have that G(P) = {0 → 0,−ω →
→ −ω,−2ω → −2ω,−1 → α → −1}.
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Remark. The estimated values min{x | [x, y]T ∈ H}, max{x | [x, y]T ∈
∈ H}, min{y | [x, y]T ∈ H},max{y | [x, y]T ∈ H} are sharp. These values can
be used to plot or to compute some topological properties of the set H.

We can formulate the results proved in this section in a theorem.

Theorem. If π ∈ P in (α,D) then there are constants ci ∈ R (i =
= 1, . . . , 4) for which c1 ≤ R(π) ≤ c2, c3 ≤ I(π) ≤ c4 and ci can explicitly be
given.
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