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Abstract

In [6] a complete description was given for the location, number and
structural properties of attractors generated by the discrete dynamic
of the system (#,.4), where 6 is an arbitrary Gaussian integer with
norm N greater than one and canonical digit set A = {0,1,..., N—1}.
In this paper we shall extend this result to the integers in imaginary
quadratic fields. On the other hand it is also an extension of the result
of Kétai, B. Kovécs ([4]) and of Gilbert ([1]).

AMS classif.:11A63, 11Y55

1 Introduction

Let Q be the field of rational numbers, Q(¥) its extension generated by
v. Let Q] denote the integers of Q(J). Let # € Q[J] be an algebraic
integer for which # and all its conjugates have moduli greater than one. Let
N =| Norm(#) |> 2 and let A be a complete residue system modulo #. The
pair (0, A), A = {0,a4,...,ay 1} is called a number system in Q[?] if for
each v € Q[V] there exist an m € Ny and a; € A (j =0,1,...,m) such that

vy=ag+ af+ ...+ a,0™.

The uniqueness of the expansion follows from the assumption that any two
elements of A are incongruent modulo f. The problem of characterizing
number systems in various rings in general seems to be hard. In this note
we shall always consider the canonical digit set A = {0,1,...,N — 1} as it
appears to be the obvious generalization of the traditional number systems.
In this case all those integers # in quadratic number fields can be given for
which (6,.4) are number systems.



Theorem 1.1 (Kétai and B. Kovacs [3, 4], Gilbert [1]): Let 6 be a quadratic
integer with minimal polynomial 2> + Ex + F and A= {0,1,...,| F | —1}.
Then (6, .A) is a number system if and only if > 2 and -1 < EF < F.

The system (6, .A) can be used to represent all the integers v € Q[J] even if it
is not a number system. Clearly, for each v there exist a unique a; € A such
that 6 | v — a;. Let y; = 25% and let us define the function ® : Q[9] — Q[v]
by ®(y) = 7. Let ® denote the [-fold iterate of ®, ®°(y) = ~,. The
sequence of integer vectors ®7(yy) =, (j = 1,2,...) is called the path of the
dynamical system generated by ®. The concept of this kind of dynamic in
algebraic number fields can be extended to the lattices of the k-dimensional
Euclidean space. It was examined from algorithmical point of view in [5].

In the following we restrict our attention to the ring of integers in imagi-
nary quadratic fields.

Let D > 2 be a square-free integer. Let Q(iv/D) be an imaginary
quadratic extension of Q, I be the set of integers in Q(iv/D). It is known,
that if D # 3 (mod 4) then {1,d}, while for D =3 (mod 4) {1,w} is an
integer basis in I, where § = iV D, w = %. The lattice generated by the
basis {1,0} will be called d-lattice and the other one is w-lattice.

A set of vectors Vy;; C ZF is called j-canonical with respect to the integer
matrix M (1 < j < k) if all of its elements have the form ve;, where ¢; denotes
the j-th unit vector, v = 0,1,...,t—1 and ¢t =| det(M) |. In [5] the following
theorem was proved.

Theorem 1.2 Let M be an invertible expanding linear operator of R* map-
ping ZF into itself and let ¢ = [c1,¢a,...,cx]7 € ZF be the j-th column
of the adjoint of M. (Here adjoint means the integer matrix, for which
the elements are the adjoints of the appropriate subdeterminants.) Let
ky = (c,t) (I=1,..., k). Let furthermore 7, = ¢/k;. Then the set Vs ; forms
a complete residue system (CRS) modulo M if and only if lem(m,..., 1) = t.

Let oy =a+bd and oy = a+bw, a,b € Z, b#0, E = %. In these cases
the corresponding linear operators in Z* are

a —Db
b a

a —FEb

M1:
b a+b

and MQZ [

Clearly, det(M;) = a® + Db* and det(M,) = a® + ab + Eb?; the first column
of the adjoint of the matrices M; and M, are [a,—b]" and [a + b, —b]",
accordingly. Suppose that (a,b) > 1. Theorem 1.2 immediately shows that
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in these cases the sets {0,1,...,a>+Db*—1} and {0,1,...,a*+ab+ Eb>—1}
can not be complete residue systems modulo M; and M5, accordingly. Hence
the following lemma holds.

Lemma 1 For a given a € Q[iv/D] (a = a+ b or a = a + bw) there exist a
canonical digit set A = {0,1,...,Norm(«) — 1} if and only if (a,b) = 1.

Throughout this article we shall always assume that (a b) = 1. Let
« (= ajoray) € I,(a,b) = 1,N = Norm(a), L = |a‘ = |a| + 1. Then
A=1{0,1,...,N — 1} is a complete residue system modulo a. Obviously, if
7S L then | ®() |< 2L = Lif | 7 [> L then | d(y) |< 2N <] 5

for every v € I. Since the| ‘inequality | & |< L holds only for ﬁn‘1t|ely many
integers x € I, therefore the path v, ®(v), ®*(v),... is ultimately periodic
for all v € I. An element m € [ is called periodic if there exist a 7 € N
such that ®/(r) = 7. The smallest such j is the length of the period of 7
generated by ®. Let P denote the set of all periodic elements. The basin of
attraction of m € P consists of all v € I for which there exists a j € Ny such
that ®/(y) = m and is denoted by B(7). Tt is also clear that 7 € P if and
only if there is an [ > 0 such that

T=ay+aa+... a7 +1al, a; € A, (1)

Let G(P) be the directed graph defined on P by drawing an edge from
m € P to ®(m). Then G(P) is a disjoint union of directed cycles, where loops
are allowed. G(P) is also called the attractor of I generated by ®. In this
paper we give a complete description of the location, number and structural
properties of the attractors generated by the discrete dynamic of the system
(a, A), where « € T.

2 Periodic elements of period length one

Consider the d-lattice and let « = a + b, a,b # 0, (a,b) =

Lemma 2.1 The loops in the system («,.A) are 7; = h “:ij, j=0,...,k
where k = L(l — a, b)(l + 2()71)2D)J

Proof: It follows from (1) that 7 € P is a loop if and only if 7 = d + «
for some d € A. It means that (1 — a)r = d € A, hence 7 = % =

a d(; szD + 05 a)db+b2D. Since 7 € I therefore (1 — a)? 4+ 0?D | d(1 — a,b).

)
On the other hand 0 <d < a%®+b>D — 1 by which the proof is completed.O




Consider now the w-lattice. Let « = a + bw, b # 0, (a,b) = 1, N =
Norm(a) = a® + ab + b*E, E = %. IfE=1,a=0b=+1or F=1,a=
—b = +1 then | @ |= 1, so in the following we always excude these cases.
Using the same idea as before the next lemma can be easily proved. We leave
it to the reader.

Lemma 2.2 The loops in the system (o, A) are 7; = ==t 505 — ok

(—a bb)J
where k= (1 —a —b,b)(1 + (1_a)22_“;{b__a§b+b2E)J.

Remarks

(1) Let b > 0 be fixed. From these lemmas we can calculate the maximal
number of loops. In the d-lattice this can be achieved by b | a — 1, a > 1,
in which case it is b + 1. In the w-lattice we have two cases depending on
the value of E. If E > 2 then the maximal number of loops is b + 1 by
b|la—1,2a+b>2 1If E =1 then this value is b+ 2, by a = 1 or by
b>1,a=b+1.

(2) If a is positive then the element 1 — a + bJ € P of period length one. In
the w-lattice, if 2a+b > 2 then the element 1 —a—b+0bw € P of period length
one. Moreover, if E = 1,#P =b+2 then (1—a—0)(b+1)/b+ (b+1)w € P
of period length one.

3 Location of periodic elements

Before we continue our analysis, we have some useful observations.
(1) Let ye I, y=0mod o,y =7+, o=v+y, =,y € A Then

‘I’(%) = @(72)- (2)

(2) Let € I, m € P, that is, 7 = ag + ey + ... + a;_1a'~' + 7al, a; € A
Then

T=a+ma+...+aq @ '+7a, a; €A (3)

It means that if 7 € P in (o, A) then T € P in (a, A). If & = a + bd then
a=a—>bd,if a =a+ bw then @ = a + b — bw, so it is enough to examine
the cases b > 1.

(3) Tt is known (see e.g. [5]) that if 7 € P then



for some d; € A. It means that

d > | d; N —1 1 ol +1 1
TS T TGS N S LIRS
al T ol o> 1- || ||
Hence
@ 1
Sy - <14 —. 4
‘ TN T Ta @

Statement 1 Let o« € I (¢ =a+bf or @« = a + bw), (a,b) =1, e € Z. If
« | e then N = aa | e.

Proof If a + b5 = | e then (a + bd)(c+ dd) = ac — bdD + (ad + bc)d = e for
some ¢, d € Z. Since (a,b) = 1 therefore ¢ = ap and d = —bp for some p € Z.
Hence a’p + b*>Dp = e, which means that a®> +0’D | e. If a+ bw = a | e then
(a+bw)(c+ dw) = ac — bdE + (ad + bc + bd)w = e for some ¢,d € Z. Again,
since (a,b) = 1 therefore ¢ = (a + b)p and d = —bp for some p € Z. It means
that a(a + b)p + Eb?p = e, by which the proof is finished. O

3.1 Case a=a+ibv/D

Let 1 =U + Vd € P and let ®(r) = U; + V1. By the definition of ® we
have the following equations:

U = d+al, —bDV, (5)
vV = bU1+aV1, (6)

for some d € A. On the other hand using (4) we have that

dla d1b>‘ 1
-U-— — — )5 <14+ —.

‘( v N>+< VAN o=t 9
Theorem 3.1 Let « =a+b), f=—a, b>1, S, ={U+Vd, —a+1<
U<0,0<V<b}, Sa={U+Vs 0<U<[f,0<V <b—-1}. Let
T=U+4+VieP. Ifa>1thenm €Sy, if —a>1 then 7 € 5.

Proof Let | « |> 2. Suppose that | U |>| a | +2. Then using (7) we get that

|d1a| 3 N -1
N 2 N
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which is a contradiction. Therefore | U |<| a | +1. Now suppose that D > 4
and |V [>| b | +1. Then
3 |dilb_ 3 N-1
b+1<|VI< + < + b,
SWIsest N Swpt W
which is a contradiction again. Hence, if D > 4 then | V' |< b. In the same
way, if D = 2 then it is easy to see that | V' |< b+ 1. On the other hand it
follows from (7) that
dla
—U—-—|<
-U-F<s
therefore if a > 0 then U < 1, if a < 0 then U > —1. It is obvious as well
that

3

3
VENI=asp
hence if D > 2 then V >0, if D = 2 then V > —1.

Case a > 1. Let D = 2. Consider equation (6) and suppose that V] =
b+ 1. Then we have that V = b(a + U;) + a < b+ 1, therefore either
Uy = 0,a =1or Uy < —a. In the first case, if @ = 1 then b > 1 and
by (5) we get that U < —bD(b+ 1)+ N -1 = —-bD < -2 = —(a + 1)
which is a contradiction. It means that (b + 1)d can not be periodic. On
the other hand, if Uy = —a then a < b+ 1, therefore if a > 3 then U <
—a?=bD(b+1)+ N—-1=-bD—-1<(—a+1)D—1=-2a+1< —(a+1)
which is not possible as well. If a = 2 then a = b + 1, therefore b = 1 and
it is easy to check that in this case G(P) = {-1+0 — —1+ 6,0 — 0}.
Ifa=1,b>2then U < —2b — 1 < —5 which is a contradiction again. If
U =-a—-1thenU < —a’>—a—bD(b+1)+N—-1=—a-bD—-1< —(a+1).
We conclude that —(a+c¢)+ (b+1)d (¢ = 0,1) can not be periodic. Hence if
U+V§ € P then V< b. Suppose now that D = 2 and V; = —1. Then by (6)
we get that —1 <V = bU; —a, therefore U; > 0. It is easy to see that in this
case U > aU;+bD > 2 which is a contradiction. We have that if U+V ¢ € P
then 0 <V <b. Let D > 2 and suppose that U; = 1. Then by (6) we have
that V' = b+ aV; < b. Hence Vi = 0, but obviously 1 can not be periodic.
Suppose that U; = —a—1. Then (6) shows that V' < —b which is impossible.
If Uy = —a then we have that V; = b. Then, it follows from Statement 1, (2)
and from Remark 2.2 that if x € A then —z — 14+ « € B(1 —@). Finally,
since 2a + 1 < a? 4+ b?D, therefore —a + b6 can not be periodic.

‘ dqb
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Case —a = f > 1. Suppose that D = 2 and V; = b+ 1. Then —1 <
V=00, — f(b+1) = bU, — f) — f, therefore f —1 < b(U; — f), so
Uy=f=1orU > f+1. In the first case it follows from (5) that U <
—1-bD(b+1)+N—1 = —bD—1 < —1 which is a contradiction. In the second
case, if Uy = f+1thenU < —f?— f—bD(b+1)+ N—-1=—f—bD—1 < —1
which is not possible as well. Hence if U +V¢§ € P then V' < b. Now suppose
that D = 2 and V; = —1. Then by (6) we get that V = bU; + f < b,
therefore Uy < 0 and if Uy = 0 then f < b, if U; = —1 then f < 2b. Hence,
it follows from (5) that f +1 > U > —fU; + bD > 2f. Since (f,b) =1
therefore it is a contradiction. It is also clear that a +x +bd € B(0) (z € A)
and 2f + 2 < f? + 2D, therefore by (2) we have that V; < b — 1. Hence,
fU+VéePthen)0 <V <b-—1 IfU, = —1then 0 <V = —b— V],
therefore V; < 0, which is a contradiction. Suppose that Uy = f + 1. Then
using (6) we get that V' =0b(f + 1) — fV}; < b— 1, therefore V; > b, which is
a contradiction as well.

If | @ |< 2 then keeping in mind Theorem 1.1 we have to check only the
case a = 1,0 = 1,D = 2. It is easy to see that in this case G(P) = {6 —
3,0 — 0}. The proof is complete. O

Lemma 3.1 If a > 1 then #P < b+ 1, if —a > 1 then #P <b.

Proof We have seen that ifa > 1and # =U +bd € P then 7 =1 —a. It is
obvious that d € B(0) for each d € A. Now we shall examine the expansion
of —1. Clearly, =1 = =14+ N —a@ and —& = —2a+ «. Since a > 1 therefore
—2a+a=—-2a+N —aa+a. Moreover, ) < N—2a < N—land1—-a@ € P
therefore —1 € B(1 — @). Hence the only rational integer periodic element
is 0. Now, Theorem 3.1 and Statement 1 show that there does not exist any
p € S1USs, (p#0) for which p =0 («). In virtue of (2) and Statement 1 it
is easy to see that if U +V'§ € P then there is not any Z, (Z # U) for which
Z + V4 € P. The proof is finished. O

3.2 Case a=a+bw
Let 1 =U + Vw € P and let ®(r) = U; + Viw. By the definition of & we

have the equations
U = d+aU, —bEV; (8)
Vo= bU +W)+a, (9)



for some d € A. On the other hand using (4) we have that

(-o-t ) (v it

Theorem 3.2 Let a =a+bw, f = —a,b > 1, T ={U+Vw, —a—b+1<
U<0,0<V<b-1},To={U+Vw,0<U<f—b 0<V<b—1}. Let
T=U+VwewP.
fE=1a=1thenme Ty U{l —@,—-b—1+ (b+ 1)w},
fE=1la=b+1thenmrehU{l—a,—a—b—1+4 (b+ 1)w},
ifE>2or E=1,a>1and a# b+ 1 then 7 € T U {1 —a},
if1<f<band 2a+b>2then 7 e Ty U{l —a},
if 1 < f<band2a+b<2then €T,
if f > bthen 7 €T,.
Proof Let | a |> 3. Suppose that | U [>| a+b | +2. Then using (10) we get
that
4 di(a+b 4 N-1

|a+b|+2§|U|§§+%§—+T|a+b|,
which is a contradiction. Therefore | U |<| a4+ b | +1. Suppose that E > 2
and | V' |>| b | +1. Then

4 |di|b_ 4 N-1
b+1<|VI< + < + b,
<| |_3|w| N T 3VE N
which is a contradiction again. Hence, if E > 2 then | V' |< b. In the same
way, if ' =1 then it is easy to see that | V |< b+ 1. On the other hand it
follows from (10) that

d1 (Cl + b)
N

therefore if a +b > 0 then U <1, if a4+ b < 0 then U > —1. It is obvious as
well that

4
U - < =
\ <3

4

dib
< Y
“ 3w

Ve

hence if £ > 2 then V >0, if E =1 then V > —1.
Case a > 1. Let E = 1. Consider equation (9) and suppose that V; =
b+ 1. Then we have that V =0(U; +a+b+ 1)+ a < b+ 1. Hence either
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a=1U=-b—1lorUj=—-a-b—-1,1<a<b+1.Ifa=1U;=-b—-1
then by Lemma 2.2 we have that —b — 1 + (b + 1)w € P of period length
one. If Uy = —a — b — 1 then by (8),(9) we get that 1 <V =a < b+ 1 and
U= —a—0b—1. Now, suppose that Uy = —a — b —1,V; = a. In virtue of
(9) we have that —1 <V = —b* — b+ a?. It means that b(b+ 1) < a*+ 1,
therefore a = b+ 1. Hence, if a = 1 then —b— 14 (b+ 1)w € P, ifa > 2
and @ = b+ 1 then —a —b— 1+ (b+ 1)w € P of period length one and
does not exist any other periodic element X + Yw with ¥ = b+ 1. Let
E =1and V; = —1. Then by (9) we have that —1 < V = b(U; — 1) — a,
therefore Uy = 1,a = 1. Using (8) we get that U > b+ 1 > 2 which is
a contradiction. Let furthermore E > 1. Since 2a + b > 2 always holds,
therefore by Remark 2.2 the element 1 —a — b+ bw € P of period length
one. Clearly, a® + ab + b>E > 2a + b + 1 therefore there is not any other
element X +Yw € P with Y = b. Suppose that U; = 1 Then by (9) we have
that 0 <V = Vi(a+b) + b < b — 1 which is a contradiction. Suppose that
Uy=—-a—-b—c(c=-1,0,1)and 0 < V; < b—1. Then by (9) we get that
V=bl-a—-b—c+V)+aVi <b(—a—1—-¢c)+ab—a=—-a—b—bc<0
which is a contradiction again.

Case —a = f > 1. Let E = 1. Suppose that V; = b+ 1. Then by
(9) we have that —1 <V =b(U; +b— f+1) — f < b+ 1, therefore either
[f=1U=-b< -4,V =—1orU; > f—b. In the first case using (8) we get
that U <b—0b(b+1)+ N —1 = —b. Suppose that U; = —b,V; = -1, f = 1.
It follows from (9) that V' = —b?* —b+1 < —1 which is a contradiction. In the
second case, by (8) we get that U < —fU; —b(b+ 1)+ N—-1< —-b—1< —b
which is a contradiction as well. Hence if U + Vw € P then V < b. Suppose
that V3 = —1. Then using (9) we have that —1 <V =b(U; — 1)+ f < b
therefore U; < 1. Since U > — fU; + b therefore Uy > 0. If U; = 0 then
b—1< f <2band by (9) we get that V' = f —b. Suppose that U; > b,V; =
f—0b. Then by (9) we have that V = b(U;+f—b)— f(f—b) = 2fb—f?>+bc < b
(¢ > 0). It means that ¢ = 0 or 1. Moreover, in both cases the only solution
is 2b = f, which contradicts either to (f,b) =1 or to | a |> 3. Suppose that
Uy =1,V; = —1. Tt follows from (8), (9) that U > b— fand V = f < b.
This can happen iff b = f + 1. Now, suppose that U; = 1,V; =b— 1. Then
using (9) we get that V = b> — f(b — 1) = b+ f, which is not possible. It
means that if U+ Vw € P then 0 < V < b. Let furthermore £ > 1. Suppose
that Vi = 0. Clearly, it is enough to consider the expansion of —1. Since
—1=—-14+N—a@, —a@ = a—2a— b therefore if 2a+b < 0 then —1 € B(0),
if 2a+b >0 then —a@a =a —2a— b+ N — aa. Obviously 2a+b < N — 1
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and 1 — @ = a — 2a — b+ 1 therefore we can conclude that if 2a +b > 2 then
—1 € B(1—@) else —1 € B(0). Suppose that V; = b. It follows from (9) that
V =b(Uy+b—f) < b. Clearly, it is enough to consider the case Uy = f—b+1.
The previous deduction shows that U; + Viw € P iff 2a+b > 2. We can also
notice that there is not other periodic element with V; = b.

Subcase f < b. Suppose that U; = 1. Then by (9) we have that V' =
Vi(b— f) + b < b, therefore Vi = 0 which is a known case. Suppose that
U=f=b—c(c=0,1). Now0 <V =Vi(b— f)+b(f —b—c) < b, therefore
Vi = b,c = 0 which is known as well. It means that if f <band U+Vw € P
then f —b+1<U <0.

Subcase b < f. Suppose that U; = —1. Then using (9) we have that
0 <V =Vi(b—f)—b < btherefore V; < 0 which is a contradiction. Suppose
that Uy = f—b+1. Then 0 <V =V (b—f)+b(f —b+1) <b, hence V; =b
which is a known case.

If | @ |< 3 then by Lemma 1 and by Theorem 1.1 the following cases
remain. If ¢ = 2,b = 1,F = 1 then —4 4+ 2w, -2 + w,0 € P of period
length one, if @ = 2,0 = 1, F = 2 then —2 + w,0 € P of period length
one, if a = 1,b = 1,F = 1 then =2 + 2w, —1 + w,0 € P of period length
one,ifa=1,0=1,F =2,...,6 then —1 + w,0 € P of period length one,
ifa=10=2F =1 then -3+ 3w, -2+ 2w,—1 4+ w,0 € P of period
length one, if a = —1,b = 2, E = 1,2 then w,0 € P of period length one,
ifa =—-1,b = 3,EF =1 then G(P) = {w - -1+ 2w — w,0 — 0}, if
a=—-2,b=3,FE =1 then 2w,w,0 € P of period length one, if a = —3,b =
2,F =1 then 1+ w,0 € P of period length one. The proof is completed. O

Lemma 3.21f F=1,a=1orif E=1,a=b+1then #P < b+2,if £ > 2
orE=1,a>1,a#b+1orl1<f<band2a+b>2then #P < b+ 1, else
#P <b.

Proof Since there does not exist any p € Ty (resp. Tz), (p # 0) for which
p =0 («) therefore by Statement 1, (2) and by Theorem 3.2 we have that if
U + Vw € P then there is not any 7, (7 # U) for which Z +Vw e P. O

4 Structure of periodic elements

Let b > 2 and let £, = {P+ Q6 € I, (b,Q) = p}. Obviously, I = U, Ly
Now, we shall examine the case ;1 < b. In virtue of (6) and (9) it is easy to
see that if (V,b) = p then (V4,b) = p. Hence the function ® maps £, to £,
for each p | b. Let b, = b/p.
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Theorem 4 There is a finite decomposition of £,, into Eg), (1=0,...,0,—1)
for which if 7 € Eg) then ®(7) € Eg) for every m € P. The length of period
of m € P is ¢(b,)/l,, where ¢ denotes the Euler totient function.

Proof Let X = V/u, Xy = Vi/p. Then from (6) we have that X = b,U; +
aX; and from (9) we get that X = b,(U; +V}) 4+ aX,. Clearly, in both cases
X =aX; (modby), (X,b,) = (Xi1,b,) = 1. Let us denote by Z, the set of
reduced residue classes modulo by, ie., Z; = {m (mod b,), (m,b,) =1}
Let T), denotes the cyclic subgroup < a > in Z, and let ¢, = ord(a). By
Lagrange theorem, ¢(b,) = l,1,, hence the order of the factor group Z; /T,
is /,. So we have a decomposition ZZM = HyUH,U...UH;, 1, where Hy =T,.
Let EE{) ={y=P+Q5 ye L, Q/ir (modbd,) € H;}. Finally, we have
the decomposition by £, = LOULP U...UL . The proof is completed.
O

Remark

Consider the graph G(P). Theorem 4 states that for a fixed a and b (b > 2)
there are 7(b) different sets £,, in each there exist [, = ¢(b,)/ ord,, a cycles
with period length ¢, = ord,,. If b, is prime then there is only one cycle in
L, with period length b, — 1. If a =1 (mod b,) then there are only loops
in £,, and the number of them is ¢(b,).

5 Number of periodic elements

We have seen in the previous section that for each p | b and for each j =
0,1,...,1, — 1 there exist at least one period-cycle in Eg). The length of a
period in Eg) is a multiple of ¢, so it is at least ¢,. This means that #P >
Sl tuly. Since t,l, = @(b,) therefore #P > 3, o(b/p) = b. Keeping in
mind the theorems and lemmas proved in this paper we have the following
result.

Theorem 5 Let b > 1. Let a =a+bd. If a > 1 then #P =b+1,if —a > 1
then #P =b. Let a=a+bw. f E=1,a=1orif E =1,a =b+ 1 then
#P=b+2,if E>20or E=1,a>1,a#b+1or1 < f<band2a+b>2
then #P = b+ 1, else #P = b. If b < —1 then apply (3).
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