
On canonical expansions of integers inimaginary quadratic �eldsAttila Kov�acsAbstractIn [6] a complete description was given for the location, number andstructural properties of attractors generated by the discrete dynamicof the system (�;A), where � is an arbitrary Gaussian integer withnorm N greater than one and canonical digit set A = f0; 1; : : : ; N�1g.In this paper we shall extend this result to the integers in imaginaryquadratic �elds. On the other hand it is also an extension of the resultof K�atai, B. Kov�acs ([4]) and of Gilbert ([1]).AMS classif.:11A63, 11Y551 IntroductionLet Q be the �eld of rational numbers, Q (#) its extension generated by#. Let Q [#] denote the integers of Q (#). Let � 2 Q [#] be an algebraicinteger for which � and all its conjugates have moduli greater than one. LetN =j Norm(�) j� 2 and let A be a complete residue system modulo �. Thepair (�;A); A = f0; a1; : : : ; aN�1g is called a number system in Q [#] if foreach  2 Q [#] there exist an m 2 N 0 and aj 2 A (j = 0; 1; : : : ; m) such that = a0 + a1� + : : :+ am�m:The uniqueness of the expansion follows from the assumption that any twoelements of A are incongruent modulo �. The problem of characterizingnumber systems in various rings in general seems to be hard. In this notewe shall always consider the canonical digit set A = f0; 1; : : : ; N � 1g as itappears to be the obvious generalization of the traditional number systems.In this case all those integers � in quadratic number �elds can be given forwhich (�;A) are number systems. 1



Theorem 1.1 (K�atai and B. Kov�acs [3, 4], Gilbert [1]): Let � be a quadraticinteger with minimal polynomial x2 + Ex + F and A = f0; 1; : : : ; j F j �1g.Then (�;A) is a number system if and only if F � 2 and �1 � E � F .The system (�;A) can be used to represent all the integers  2 Q [#] even if itis not a number system. Clearly, for each  there exist a unique aj 2 A suchthat � j � aj. Let 1 = �aj� and let us de�ne the function � : Q [#]! Q [#]by �() = 1. Let �l denote the l-fold iterate of �, �0() = 0. Thesequence of integer vectors �j(0) = j (j = 1; 2; : : :) is called the path of thedynamical system generated by �. The concept of this kind of dynamic inalgebraic number �elds can be extended to the lattices of the k-dimensionalEuclidean space. It was examined from algorithmical point of view in [5].In the following we restrict our attention to the ring of integers in imagi-nary quadratic �elds.Let D � 2 be a square-free integer. Let Q (ipD) be an imaginaryquadratic extension of Q , I be the set of integers in Q (ipD). It is known,that if D 6� 3 (mod 4) then f1; �g, while for D � 3 (mod 4) f1; !g is aninteger basis in I, where � = ipD; ! = 1+ipD2 . The lattice generated by thebasis f1; �g will be called �-lattice and the other one is !-lattice.A set of vectors VM;j � Zk is called j-canonical with respect to the integermatrixM (1 � j � k) if all of its elements have the form �ej, where ej denotesthe j-th unit vector, � = 0; 1; : : : ; t�1 and t =j det(M) j. In [5] the followingtheorem was proved.Theorem 1.2 Let M be an invertible expanding linear operator of Rk map-ping Zk into itself and let c = [c1; c2; : : : ; ck]T 2 Zk be the j-th columnof the adjoint of M . (Here adjoint means the integer matrix, for whichthe elements are the adjoints of the appropriate subdeterminants.) Let�l = (cl; t) (l = 1; : : : ; k). Let furthermore �l = t=�l. Then the set VM;j formsa complete residue system (CRS) moduloM if and only if lcm(�1; : : : ; �k) = t.Let �1 = a + b� and �2 = a + b!, a; b 2 Z, b 6= 0, E = D+14 . In these casesthe corresponding linear operators in Z2 areM1 = 24 a �Dbb a 35 and M2 = 24 a �Ebb a + b 35 :Clearly, det(M1) = a2 +Db2 and det(M2) = a2 + ab + Eb2; the �rst columnof the adjoint of the matrices M1 and M2 are [a;�b]T and [a + b;�b]T ,accordingly. Suppose that (a; b) > 1. Theorem 1.2 immediately shows that2



in these cases the sets f0; 1; : : : ; a2+Db2�1g and f0; 1; : : : ; a2+ab+Eb2�1gcan not be complete residue systems moduloM1 andM2, accordingly. Hencethe following lemma holds.Lemma 1 For a given � 2 Q [ipD] (� = a+ b� or � = a+ b!) there exist acanonical digit set A = f0; 1; : : : ;Norm(�)� 1g if and only if (a; b) = 1.Throughout this article we shall always assume that (a; b) = 1. Let� (= �1 or �2) 2 I; (a; b) = 1; N = Norm(�); L = N�1j�j�1 = j�j + 1. ThenA = f0; 1; : : : ; N � 1g is a complete residue system modulo �. Obviously, ifj  j� L then j �() j� L+N�1j�j = L, if j  j> L then j �() j� jj+N�1j�j <j  jfor every  2 I. Since the inequality j � j� L holds only for �nitely manyintegers � 2 I, therefore the path ;�();�2(); : : : is ultimately periodicfor all  2 I. An element � 2 I is called periodic if there exist a j 2 Nsuch that �j(�) = �. The smallest such j is the length of the period of �generated by �. Let P denote the set of all periodic elements. The basin ofattraction of � 2 P consists of all  2 I for which there exists a j 2 N 0 suchthat �j() = � and is denoted by B(�). It is also clear that � 2 P if andonly if there is an l > 0 such that� = a0 + a1� + : : :+ al�1�l�1 + ��l; aj 2 A; (1)Let G(P) be the directed graph de�ned on P by drawing an edge from� 2 P to �(�). Then G(P) is a disjoint union of directed cycles, where loopsare allowed. G(P) is also called the attractor of I generated by �. In thispaper we give a complete description of the location, number and structuralproperties of the attractors generated by the discrete dynamic of the system(�;A), where � 2 I.2 Periodic elements of period length oneConsider the �-lattice and let � = a+ b�; a; b 6= 0; (a; b) = 1.Lemma 2.1 The loops in the system (�;A) are �j = 1�a+b�(1�a;b) j; j = 0; : : : ; k,where k = b(1� a; b)(1 + 2 a�1(1�a)2+b2D )c.Proof: It follows from (1) that � 2 P is a loop if and only if � = d + ��for some d 2 A. It means that (1 � �)� = d 2 A, hence � = d1�� =d(1�a)(1�a)2+b2D + � db(1�a)2+b2D . Since � 2 I therefore (1 � a)2 + b2D j d(1 � a; b).On the other hand 0 � d � a2 + b2D � 1 by which the proof is completed.23



Consider now the !-lattice. Let � = a + b!; b 6= 0; (a; b) = 1; N =Norm(�) = a2 + ab + b2E; E = D+14 . If E = 1, a = 0; b = �1 or E = 1; a =�b = �1 then j � j= 1, so in the following we always excude these cases.Using the same idea as before the next lemma can be easily proved. We leaveit to the reader.Lemma 2.2 The loops in the system (�;A) are �j = 1�a�b+b!(1�a�b;b) j; j = 0; : : : ; k,where k = b(1� a� b; b)(1 + 2a+b�2(1�a)2�(1�a)b+b2E )c. 2Remarks(1) Let b > 0 be �xed. From these lemmas we can calculate the maximalnumber of loops. In the �-lattice this can be achieved by b j a � 1; a � 1,in which case it is b + 1. In the !-lattice we have two cases depending onthe value of E. If E � 2 then the maximal number of loops is b + 1 byb j a � 1; 2a + b � 2. If E = 1 then this value is b + 2, by a = 1 or byb � 1; a = b + 1.(2) If a is positive then the element 1� a + b� 2 P of period length one. Inthe !-lattice, if 2a+b � 2 then the element 1�a�b+b! 2 P of period lengthone. Moreover, if E = 1;#P = b+2 then (1� a� b)(b+1)=b+(b+1)! 2 Pof period length one.3 Location of periodic elementsBefore we continue our analysis, we have some useful observations.(1) Let  2 I;  � 0 mod �; 1 =  + x; 2 =  + y; x; y 2 A. Then�(1) = �(2): (2)(2) Let � 2 I; � 2 P, that is, � = a0 + a1� + : : : + al�1�l�1 + ��l; aj 2 A.Then � = a0 + a1� + : : :+ al�1�l�1 + ��l; aj 2 A: (3)It means that if � 2 P in (�;A) then � 2 P in (�;A). If � = a + b� then� = a � b�, if � = a + b! then � = a + b � b!, so it is enough to examinethe cases b � 1.(3) It is known (see e.g. [5]) that if � 2 P then�� = d1� + d2�2 + d3�3 + � � � 4



for some di 2 A. It means that����� � � d1� ���� � 1Xi=2 j di jj � ji � (N � 1)j � j2 11� 1j�j = j � j +1j � j = 1 + 1j � j :Hence����� � � d1�N ���� � 1 + 1j � j : (4)Statement 1 Let � 2 I (� = a + b� or � = a + b!); (a; b) = 1; e 2 Z. If� j e then N = �� j e.Proof If a+ b� = � j e then (a+ b�)(c+ d�) = ac� bdD+ (ad+ bc)� = e forsome c; d 2 Z. Since (a; b) = 1 therefore c = ap and d = �bp for some p 2 Z.Hence a2p+ b2Dp = e, which means that a2+ b2D j e. If a+ b! = � j e then(a+ b!)(c+ d!) = ac� bdE + (ad+ bc+ bd)! = e for some c; d 2 Z. Again,since (a; b) = 1 therefore c = (a+ b)p and d = �bp for some p 2 Z. It meansthat a(a + b)p+ Eb2p = e, by which the proof is �nished. 23.1 Case � = a+ ibpDLet � = U + V � 2 P and let �(�) = U1 + V1�. By the de�nition of � wehave the following equations:U = d+ aU1 � bDV1 (5)V = bU1 + aV1; (6)for some d 2 A. On the other hand using (4) we have that������ U � d1aN �+ �� V + d1bN ������ � 1 + 1j � j : (7)Theorem 3.1 Let � = a + b�; f = �a; b � 1; S1 = fU + V �; �a + 1 �U � 0; 0 � V � bg; S2 = fU + V �; 0 � U � f; 0 � V � b � 1g. Let� = U + V � 2 P. If a � 1 then � 2 S1, if �a � 1 then � 2 S2.Proof Let j � j� 2. Suppose that j U j�j a j +2. Then using (7) we get thatj a j +2 �j U j� 32 + j d1a jN � 32 + N � 1N j a j;5



which is a contradiction. Therefore j U j�j a j +1. Now suppose that D � 4and j V j�j b j +1. Thenb+ 1 �j V j� 32 j � j + j d1 j bN � 32pD + N � 1N b;which is a contradiction again. Hence, if D � 4 then j V j� b. In the sameway, if D = 2 then it is easy to see that j V j� b + 1. On the other hand itfollows from (7) that����� U � d1aN ���� � 32 ;therefore if a > 0 then U � 1, if a < 0 then U � �1. It is obvious as wellthat ����� V + d1bN ���� � 32 j � j ;hence if D > 2 then V � 0, if D = 2 then V � �1.Case a � 1. Let D = 2. Consider equation (6) and suppose that V1 =b + 1. Then we have that V = b(a + U1) + a � b + 1, therefore eitherU1 = 0; a = 1 or U1 � �a. In the �rst case, if a = 1 then b > 1 andby (5) we get that U � �bD(b + 1) + N � 1 = �bD < �2 = �(a + 1)which is a contradiction. It means that (b + 1)� can not be periodic. Onthe other hand, if U1 = �a then a � b + 1, therefore if a � 3 then U ��a2� bD(b+1)+N � 1 = �bD� 1 � (�a+1)D� 1 = �2a+1 < �(a+1)which is not possible as well. If a = 2 then a = b + 1, therefore b = 1 andit is easy to check that in this case G(P) = f�1 + � ! �1 + �; 0 ! 0g.If a = 1; b � 2 then U � �2b � 1 � �5 which is a contradiction again. IfU1 = �a�1 then U � �a2�a�bD(b+1)+N �1 = �a�bD�1 < �(a+1).We conclude that �(a+ c)+ (b+1)� (c = 0; 1) can not be periodic. Hence ifU+V � 2 P then V � b. Suppose now that D = 2 and V1 = �1. Then by (6)we get that �1 � V = bU1�a, therefore U1 � 0. It is easy to see that in thiscase U � aU1+bD � 2 which is a contradiction. We have that if U+V � 2 Pthen 0 � V � b. Let D � 2 and suppose that U1 = 1. Then by (6) we havethat V = b + aV1 � b. Hence V1 = 0, but obviously 1 can not be periodic.Suppose that U1 = �a�1. Then (6) shows that V � �b which is impossible.If U1 = �a then we have that V1 = b. Then, it follows from Statement 1, (2)and from Remark 2.2 that if x 2 A then �x � 1 + � 2 B(1 � �). Finally,since 2a+ 1 � a2 + b2D, therefore �a + b� can not be periodic.6



Case �a = f � 1. Suppose that D = 2 and V1 = b + 1. Then �1 �V = bU1 � f(b + 1) = b(U1 � f) � f , therefore f � 1 � b(U1 � f), soU1 = f = 1 or U1 � f + 1. In the �rst case it follows from (5) that U ��1�bD(b+1)+N�1 = �bD�1 < �1 which is a contradiction. In the secondcase, if U1 = f+1 then U � �f 2�f�bD(b+1)+N�1 = �f�bD�1 < �1which is not possible as well. Hence if U +V � 2 P then V � b. Now supposethat D = 2 and V1 = �1. Then by (6) we get that V = bU1 + f � b,therefore U1 � 0 and if U1 = 0 then f � b, if U1 = �1 then f � 2b. Hence,it follows from (5) that f + 1 � U � �fU1 + bD � 2f . Since (f; b) = 1therefore it is a contradiction. It is also clear that a+ x+ b� 2 B(0) (x 2 A)and 2f + 2 � f 2 + b2D, therefore by (2) we have that V1 � b � 1. Hence,if U + V � 2 P then 0 � V � b � 1. If U1 = �1 then 0 � V = �b � fV1,therefore V1 < 0, which is a contradiction. Suppose that U1 = f + 1. Thenusing (6) we get that V = b(f + 1)� fV1 � b� 1, therefore V1 > b, which isa contradiction as well.If j � j< 2 then keeping in mind Theorem 1.1 we have to check only thecase a = 1; b = 1; D = 2. It is easy to see that in this case G(P) = f� !�; 0! 0g. The proof is complete. 2Lemma 3.1 If a � 1 then #P � b + 1, if �a � 1 then #P � b.Proof We have seen that if a � 1 and � = U + b� 2 P then � = 1� �. It isobvious that d 2 B(0) for each d 2 A. Now we shall examine the expansionof �1. Clearly, �1 = �1+N��� and �� = �2a+�. Since a � 1 therefore�2a+� = �2a+N ���+�. Moreover, 0 < N �2a < N �1 and 1�� 2 Ptherefore �1 2 B(1 � �). Hence the only rational integer periodic elementis 0. Now, Theorem 3.1 and Statement 1 show that there does not exist any� 2 S1 [ S2, (� 6= 0) for which � � 0 (�). In virtue of (2) and Statement 1 itis easy to see that if U + V � 2 P then there is not any Z; (Z 6= U) for whichZ + V � 2 P. The proof is �nished. 23.2 Case � = a+ b!Let � = U + V ! 2 P and let �(�) = U1 + V1!. By the de�nition of � wehave the equationsU = d+ aU1 � bEV1 (8)V = b(U1 + V1) + aV1; (9)7



for some d 2 A. On the other hand using (4) we have that������ U � d1(a+ b)N � + �� V + d1bN �!���� � 1 + 1j � j : (10)Theorem 3.2 Let � = a+ b!; f = �a; b � 1; T1 = fU + V !; �a� b + 1 �U � 0; 0 � V � b� 1g; T2 = fU + V !; 0 � U � f � b; 0 � V � b� 1g. Let� = U + V ! 2 P.If E = 1; a = 1 then � 2 T1 [ f1� �;�b� 1 + (b + 1)!g,if E = 1; a = b + 1 then � 2 T1 [ f1� �;�a� b� 1 + (b+ 1)!g,if E � 2 or E = 1; a > 1 and a 6= b + 1 then � 2 T1 [ f1� �g,if 1 � f < b and 2a + b � 2 then � 2 T1 [ f1� �g,if 1 � f < b and 2a + b < 2 then � 2 T1,if f > b then � 2 T2.Proof Let j � j� 3. Suppose that j U j�j a+ b j +2. Then using (10) we getthat j a+ b j +2 �j U j� 43 + j d1(a + b) jN � 43 + N � 1N j a + b j;which is a contradiction. Therefore j U j�j a + b j +1. Suppose that E � 2and j V j�j b j +1. Thenb+ 1 �j V j� 43 j ! j + j d1 j bN � 43pE + N � 1N b;which is a contradiction again. Hence, if E � 2 then j V j� b. In the sameway, if E = 1 then it is easy to see that j V j� b + 1. On the other hand itfollows from (10) that����� U � d1(a+ b)N ���� � 43 ;therefore if a+ b > 0 then U � 1, if a+ b < 0 then U � �1. It is obvious aswell that����� V + d1bN ���� � 43 j ! j ;hence if E � 2 then V � 0, if E = 1 then V � �1.Case a � 1. Let E = 1. Consider equation (9) and suppose that V1 =b + 1. Then we have that V = b(U1 + a + b + 1) + a � b + 1. Hence either8



a = 1; U1 = �b� 1 or U1 = �a� b� 1; 1 � a � b + 1. If a = 1; U1 = �b� 1then by Lemma 2.2 we have that �b � 1 + (b + 1)! 2 P of period lengthone. If U1 = �a � b� 1 then by (8),(9) we get that 1 � V = a � b + 1 andU = �a � b � 1. Now, suppose that U1 = �a � b � 1; V1 = a. In virtue of(9) we have that �1 � V = �b2 � b + a2. It means that b(b + 1) � a2 + 1,therefore a = b + 1. Hence, if a = 1 then �b � 1 + (b + 1)! 2 P, if a � 2and a = b + 1 then �a � b � 1 + (b + 1)! 2 P of period length one anddoes not exist any other periodic element X + Y ! with Y = b + 1. LetE = 1 and V1 = �1. Then by (9) we have that �1 � V = b(U1 � 1) � a,therefore U1 = 1; a = 1. Using (8) we get that U � b + 1 � 2 which isa contradiction. Let furthermore E � 1. Since 2a + b � 2 always holds,therefore by Remark 2.2 the element 1 � a � b + b! 2 P of period lengthone. Clearly, a2 + ab + b2E > 2a + b + 1 therefore there is not any otherelement X +Y ! 2 P with Y = b. Suppose that U1 = 1 Then by (9) we havethat 0 � V = V1(a + b) + b � b � 1 which is a contradiction. Suppose thatU1 = �a� b� c; (c = �1; 0; 1) and 0 � V1 � b� 1. Then by (9) we get thatV = b(�a � b � c + V1) + aV1 � b(�a � 1 � c) + ab � a = �a � b � bc < 0which is a contradiction again.Case �a = f � 1. Let E = 1. Suppose that V1 = b + 1. Then by(9) we have that �1 � V = b(U1 + b � f + 1) � f � b + 1, therefore eitherf = 1; U1 = �b � �4; V = �1 or U1 � f�b. In the �rst case using (8) we getthat U � b� b(b+ 1)+N � 1 = �b. Suppose that U1 = �b; V1 = �1; f = 1.It follows from (9) that V = �b2�b+1 < �1 which is a contradiction. In thesecond case, by (8) we get that U � �fU1� b(b+1)+N � 1 � �b� 1 < �bwhich is a contradiction as well. Hence if U + V ! 2 P then V � b. Supposethat V1 = �1. Then using (9) we have that �1 � V = b(U1 � 1) + f � btherefore U1 � 1. Since U � �fU1 + b therefore U1 � 0. If U1 = 0 thenb� 1 � f � 2b and by (9) we get that V = f � b. Suppose that U1 � b; V1 =f�b. Then by (9) we have that V = b(U1+f�b)�f(f�b) = 2fb�f 2+bc � b(c � 0). It means that c = 0 or 1. Moreover, in both cases the only solutionis 2b = f , which contradicts either to (f; b) = 1 or to j � j� 3. Suppose thatU1 = 1; V1 = �1. It follows from (8), (9) that U � b � f and V = f � b.This can happen i� b = f + 1. Now, suppose that U1 = 1; V1 = b� 1. Thenusing (9) we get that V = b2 � f(b � 1) = b + f , which is not possible. Itmeans that if U +V ! 2 P then 0 � V � b. Let furthermore E � 1. Supposethat V1 = 0. Clearly, it is enough to consider the expansion of �1. Since�1 = �1+N ���, �� = �� 2a� b therefore if 2a+ b � 0 then �1 2 B(0),if 2a + b > 0 then �� = � � 2a � b + N � ��. Obviously 2a + b � N � 19



and 1�� = �� 2a� b+1 therefore we can conclude that if 2a+ b � 2 then�1 2 B(1��) else �1 2 B(0). Suppose that V1 = b. It follows from (9) thatV = b(U1+b�f) � b. Clearly, it is enough to consider the case U1 = f�b+1.The previous deduction shows that U1+V1! 2 P i� 2a+ b � 2. We can alsonotice that there is not other periodic element with V1 = b.Subcase f < b. Suppose that U1 = 1. Then by (9) we have that V =V1(b � f) + b � b, therefore V1 = 0 which is a known case. Suppose thatU1 = f � b� c (c = 0; 1). Now 0 � V = V1(b�f)+ b(f � b� c) � b, thereforeV1 = b; c = 0 which is known as well. It means that if f < b and U +V ! 2 Pthen f � b + 1 � U � 0.Subcase b < f . Suppose that U1 = �1. Then using (9) we have that0 � V = V1(b�f)�b � b therefore V1 < 0 which is a contradiction. Supposethat U1 = f � b+1. Then 0 � V = V1(b�f)+ b(f � b+1) � b, hence V1 = bwhich is a known case.If j � j< 3 then by Lemma 1 and by Theorem 1.1 the following casesremain. If a = 2; b = 1; E = 1 then �4 + 2!;�2 + !; 0 2 P of periodlength one, if a = 2; b = 1; E = 2 then �2 + !; 0 2 P of period lengthone, if a = 1; b = 1; E = 1 then �2 + 2!;�1 + !; 0 2 P of period lengthone, if a = 1; b = 1; E = 2; : : : ; 6 then �1 + !; 0 2 P of period length one,if a = 1; b = 2; E = 1 then �3 + 3!;�2 + 2!;�1 + !; 0 2 P of periodlength one, if a = �1; b = 2; E = 1; 2 then !; 0 2 P of period length one,if a = �1; b = 3; E = 1 then G(P) = f! ! �1 + 2! ! !; 0 ! 0g, ifa = �2; b = 3; E = 1 then 2!; !; 0 2 P of period length one, if a = �3; b =2; E = 1 then 1 + !; 0 2 P of period length one. The proof is completed. 2Lemma 3.2 If E = 1; a = 1 or if E = 1; a = b+1 then #P � b+2, if E � 2or E = 1; a > 1; a 6= b+1 or 1 � f < b and 2a+ b � 2 then #P � b+1, else#P � b.Proof Since there does not exist any � 2 T1 (resp. T2), (� 6= 0) for which� � 0 (�) therefore by Statement 1, (2) and by Theorem 3.2 we have that ifU + V ! 2 P then there is not any Z; (Z 6= U) for which Z + V ! 2 P. 24 Structure of periodic elementsLet b � 2 and let L� = fP + Q� 2 I; (b; Q) = �g. Obviously, I = S�jb L�.Now, we shall examine the case � < b. In virtue of (6) and (9) it is easy tosee that if (V; b) = � then (V1; b) = �. Hence the function � maps L� to L�for each � j b. Let b� = b=�. 10



Theorem 4 There is a �nite decomposition of L� into L(j)� ; (j = 0; : : : ; l��1)for which if � 2 L(j)� then �(�) 2 L(j)� for every � 2 P. The length of periodof � 2 P is '(b�)=l�, where ' denotes the Euler totient function.Proof Let X = V=�, X1 = V1=�. Then from (6) we have that X = b�U1 +aX1 and from (9) we get that X = b�(U1+V1) + aX1. Clearly, in both casesX � aX1 (mod b�); (X; b�) = (X1; b�) = 1. Let us denote by Z�b� the set ofreduced residue classes modulo b�, i.e., Z�b� = fm (mod b�); (m; b�) = 1g.Let T� denotes the cyclic subgroup < a > in Z�b� and let t� = ord(a). ByLagrange theorem, '(b�) = l�t�, hence the order of the factor group Z�b�=T�is l�. So we have a decomposition Z�b� = H0[H1[: : :[Hl��1, where H0 = T�.Let L(j)� = f = P + Q�;  2 L�; Q=� (mod b�) 2 Hjg. Finally, we havethe decomposition by L� = L(0)� [L(1)� [ : : :[L(l��1)� . The proof is completed.2RemarkConsider the graph G(P). Theorem 4 states that for a �xed a and b (b � 2)there are �(b) di�erent sets L�, in each there exist l� = '(b�)= ordb� a cycleswith period length t� = ordb� . If b� is prime then there is only one cycle inL� with period length b� � 1. If a � 1 (mod b�) then there are only loopsin L� and the number of them is '(b�).5 Number of periodic elementsWe have seen in the previous section that for each � j b and for each j =0; 1; : : : ; l� � 1 there exist at least one period-cycle in L(j)� . The length of aperiod in L(j)� is a multiple of t�, so it is at least t�. This means that #P �P�jb t�l�. Since t�l� = '(b�) therefore #P � P�jb '(b=�) = b. Keeping inmind the theorems and lemmas proved in this paper we have the followingresult.Theorem 5 Let b � 1. Let � = a+ b�. If a � 1 then #P = b+1, if �a � 1then #P = b. Let � = a + b!. If E = 1; a = 1 or if E = 1; a = b + 1 then#P = b+ 2, if E � 2 or E = 1; a > 1; a 6= b+ 1 or 1 � f < b and 2a+ b � 2then #P = b + 1, else #P = b. If b � �1 then apply (3).References[1] Gilbert, W.J., Radix representation of quadratic �elds, J. Math. Anal. Appl.11



83, 1991. 264{274.[2] K�atai, I., Number systems in imaginary quadratic �elds, Annales Univ. Sci.Budapest, Sect. Comp. 14, 1994. 91{103.[3] K�atai, I., Kov�acs B., Kanonische Zahlensysteme bei reelen quadratischen al-gebraischen Zahlen, Acta Sci. Math. 42, 1980, 99{107.[4] K�atai, I., Kov�acs, B., Canonical number systems in imaginary quadratic �elds,Acta Math. Hung. 37, 1981. 159{164.[5] Kov�acs, A., On computation of attractors for invertible expanding linear op-erators in Zk, Publ. Math. Debrecen, to appear[6] Kov�acs, A., On expansions of Gaussian integers with non-negative digits,Mathematica Pannonica, 10 (2), 1999. 177{191.Attila Kov�acsDepartment of Computer AlgebraE�otv�os Lor�and University, Budapest, Hungaryattila@compalg.inf.elte.hu

12


