
Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 1

Instructor: Attila Kovács, PhD

Who am I ?

• Associate Prof. of Eötvös University,
Budapest, Hungary, Faculty of
Informatics

• 25+ years of experience in
Computer Science and Software
Engineering

• MSc in Computer Science and
Mathematics

• PhD in Informatics

• Founding member of the Hungarian
Testing Board

• Consultant in the field of Software
Quality and Testing

• ISTQB, IREB and Agile trainer

2

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 2

3

Content

� Basic notions,
terminology

� Project life-cycle
and testing

� Test Levels
� Testing life-cycle

� Test planning
� Quality and

risk
� Estimations
� Psychology of

testing

� Design techniques
� Specification

based techniques
� Structure based

techniques
� Experience

based techniques
� Fault and failure

based techniques

� Test implementation and
execution

� Static testing, reviews
� Test reporting, test

closure
� Test documentation
� Test monitoring
� Configuration

management
� Incident management
� Test automation, test

tools

Precondition (10% of the final grade)

• Building „teams” of 1 or max. 2 students

Teams Teacher (me) Deadline

Figure out a specification of a
problem.

10th of March

Check and extend the
specifications

24th of March

Program a given specification
in python 3.7

14th of April

Check the program, insert
faults into it and compile
(producing binary)

28th of April

Given specification and binary
write the functional tests for
the compiled code via an
interface

12th of May

Control the tests Second of June

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 3

Basic Notions

Why We Test?

• To use up spare budget

• To provide jobs for people who can’t
code

• To provide a good excuse why the
project is late

• To prove that the software works as
intended

• To provide confidence in the system
• To provide an understanding of the

overall system
• To provide sufficient information to

allow an objective decision on
applicability to deploy

• Establish the extent that the
requirements have been met

• Establish the degree of Quality

6

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 4

Definitions
• Error / Mistake:

– Represents mistakes made by people
• Fault / Defect / Bug:

– Result of an error. May be categorized as
• Fault of Commission – we enter

something into representation that is
incorrect

• Fault of Omission – Designer can make
error of omission, the resulting fault is
that something is missing that should
have been present in the representation

• Failure:
– Occurs when fault executes

• Incident:
– Behavior of fault. An incident is the

symptom(s) associated with a failure that
alerts user to the occurrence of a failure

Catch me if

you can

hehe…

7

Definitions

• Root Causes:
– There are many factors which

provokes the defects to occur
– RCA (Root cause analysis) is

a mechanism of analyzing the
defects, to identify its cause

– By focusing on the most
significant root causes, root
cause analysis can lead to
process improvements that
prevent a significant number
of future defects from being
introduced.

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 5

Definitions

• Verification: Demonstration of consistency,
completeness, and correctness of the software
artifacts at each stage of and between each
stage of the software life-cycle.

– Different types of verification: manual
inspection, testing, formal methods

– Verification answers the question:

Am I building the product right?
• Validation: The process of evaluating software

at the end of the software development to
ensure compliance with respect to the
customer needs and requirements.

– Validation can be accomplished by verifying
the artifacts produced at each stage of the
software development life cycle

– Validation answers the question:

Am I building the right product?

Goals, User
Needs

Requirement
Specification

Design

Working
System

9

Definitions

• Quality is the totality of the characteristics of an entity that bear on
its ability to satisfy stated or implied needs. Or in other words, quality
is the degree to which a component, system or process meets
specified requirements and/or user needs and expectations.

• Does testing improve Quality?

– Testing does not build Quality into the software

– Testing is a means of determining the Quality of the Software
under Test

10

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 6

Quality & Testing

Some SW Quality Factors

– Testability – how easy is to test the application, clear,
unambiguous requirements

– Maintainability – how easy it is for developers to maintain the
application and how quickly maintenance changes can be made

– Modularity – how much of a system or computer program is
composed of discrete components and a change to one component
has minimal impact on another component

– Reliability – the time or transactions processed between failures in
the software (MTBFs)

– Efficiency – how well a component performs its designated
functions using minimal resources

– Usability – the ease of use of the software by the intended users
– Reusability – how easy it is to re-use elements of the solution in

other identical situations
– Legal requirements/Standards
– etc.

12

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 7

Cost & Quality Iceberg

13

14

Some Faulty Assumptions

� Fallacy 1: Quality requirements dictate the schedule
– Facts: For most software systems, market forces and competition

dictate the schedule
� Fallacy 2: Quality = reliability

– Fact: Reliability is only one component of the quality
� Fallacy 3: Users know what they want

– Fact: User expectations are vague and general, not detailed and
feature-specific. This is especially true for business software products.
This phenomenon has led to feature bloat

� Fallacy 4: The requirements will be correct
– Fact: Engineers are people, they evolve good requirements through

trial-and-error experimentation
� Fallacy 5: Product maturity is required

– Fact: Price and availability are far more important considerations in
most business applications

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 8

15

Economics of Testing

Focus on time-to-market
Cost

Time

Support cost

Revenue

Time-to-market

Time-to-profit

16

Economics of Testing

Focus on time-to-profit
Cost

Time

Support cost

Revenue

Time-to-market

Time-to-profit

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 9

Software Testing

• The process of executing a program
with the intent to certify its Quality −
Mills

• The process of executing a program
with the intent of finding faults /
failures − Myers

• The process of exercising software
to verify that it satisfies specified
functional & non-functional
requirements

• Examination of the behavior of a
program by executing the program
on sample data sets.

17

Testing Dimensions

• Testing is much more than just debugging
– Debugging is the process to identify causes of failures in code and undertake

corrections (remove them)
– Testing is a systematic exploration of a component or s ystem to find and

report defects
– Both are needed for achieving a good quality

• Testing has types: static and dynamic
– Static testing: the code is not executed (e.g.: Reviews)
– During dynamic testing the program under test is executed with some test data

• Testing is a process
– Testing means not just test execution but, design, record, checking for completion
– We design test process to ensure not to miss critical steps and do things in the

right order

• Testing is a set of techniques
– Always apply general principles of testing
– We should use the best selection from different well proven

test design techniques

18

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 10

Expectations on Software Testing

• In general, it is not possible
to prove using testing that
there are no faults in the
software

• Testing should help locate
faults , not just detect their
presence
– a “yes/no” answer to the

question “is the program
correct?” is not very
helpful

• Testing should be repeatable
– could be difficult for

distributed or concurrent
software

19

Typical Objectives of Testing

• To evaluate work products such as requirements, user stories,
design, and code

• To verify whether all specified requirements have been fulfilled
• To validate whether the test object works as the users and other

stakeholders expect

• To build confidence in the level of quality of the test object

• To prevent further defects
• To find defects and situations when the system fail

• To provide sufficient information to stakeholders to allow them to
make informed decisions, especially regarding the level of quality of
the test object

• To reduce the level of risk of inadequate software quality

• To comply with contractual, legal, or regulatory requirements or
standards, and/or to verify the test object’s compliance with such
requirements or standards

20

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 11

Is Testing Hard?

• If you are testing a bridge’s ability to
sustain weight, and you test it with 1000
tons you can infer that it will sustain
weight ≤ 1000 tons

• This kind of reasoning does not work for
software systems

– software systems are not linear nor
continuous

• Exhaustive Testing is a test approach in
wich all possible data combinations are
used.

• Exhaustively testing all possible
input/output combinations is too
expensive

– the number of test cases increase
exponentially with the number of
input/output variables

0 ≤ #loops ≤ 20

How many possible path are
there?

Example:

1014

21

Definitions

• Let P be a program and let D denote its input domain

• A test data t is an element of input domain t ∈ D

– a test data results a valuation for the input variables of the program

• A test data set T is a finite set of test data, i.e., a subset of D, T ⊆ D

• Exhaustive testing corresponds to setting T = D

The basic difficulty in testing is finding a test s et that
will uncover the faults in the program

22

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 12

Example – more tests results in better testing?

• Number of possible test data
(assuming 32 bit integers)
– 232 × 232 = 264

• How many tests then?
– Test set
{(x=3,y=2), (x=2,y=3)}
will detect the error
– Test set
{(x=3,y=2),(x=4,y=3),(x=5,y=1)}
will not detect the error although

it has more tests
• The power of the test set is not

determined by the number of
its elements

int max(int x, int y)
{

if (x > y)
return x;

else
return x;

}

23

Example – is random testing enough?

• If we pick test data randomly it is unlikely
that we will pick a case where x and y
have the same value

• If x and y can take 232 different values,
there are 264 possible test combinations.

– the probability of picking a case
where x is equal to y is 2-32

• It is not a good idea to pick the test data
randomly (with uniform distribution) in
this case

• So, naive random testing is hopeless
as well …

bool isEqual(int x, int y)
{

if (x == y)
z = false;

else
z = false;

return z;
}

24

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 13

Why Is Testing Hard?

• Budget-, time- and
personnel constraints

• Great diversity of SW-
environments

• Applications are be-
coming increasingly large
and complex

• SW-developers are
neither trained nor
motivated to test

• Testers are willing but
incapable

• Lack of a testing culture

25

Why Errors / Defects Occur?

• No one is perfect! We all make mistakes or omissions

• The more pressure we are under the more likely we are to make
mistakes

• Inexperiensed, insufficiently skilled project stakeholders

• Complexity, misunderstandings

• In IT development we have time and budgetary deadlines to meet

FAST & CHEAP then GOOD enough?
GOOD & CHEAP can be made FAST?
FAST & GOOD can be CHEAP?

26

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 14

Why Errors / Defects Occur?

• Poor Communication

• Requirements not clearly defined

• Requirements change & are not properly documented

• Data specifications not complete

• ASSUMPTIONS!

• But where quality problems originate?

27

The Cost of Errors / Defects

• A single failure may incur little cost - or
millions
– Report layouts can be wrong - little cost
– Or a significant error may cost millions…

• Ariane V, Venus Probe, Mars Explorer and Polar
Lander

• UK government online filling of tax refund (security)
• Denver Airport 1995, Pentium Chip 1994

• In extreme cases a software or systems
error may cost LIVES
– Therac 25 Radiation Machine 1985-1987

• Usually safety critical systems are tested
rigorously
– Aeroplane, railway, nuclear power systems etc.

28

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 15

The Cost of Errors / Defects

0.1 x

1 x

10 x

100 x

Requirements Design Testing MaintenanceCoding

Cost of finding and
correcting fault

Product Lifecycle Phase

29

Test Techniques

Static Dynamic

Structural

Behavioral

FunctionalNon-functional

Informal ReviewInformal Review

WalkthroughWalkthrough

Technical ReviewTechnical Review

Data
Flow

Symbolic
Execution
Symbolic
Execution

Definition
-Use
Definition
-Use

StatementStatement

DecisionDecision

ConditionCondition

MC/DCMC/DC

LCSAJLCSAJ

PathPath

Equivalence
Partitioning
Equivalence
Partitioning

Boundary
Value Analysis
Boundary
Value Analysis

Decision TableDecision Table

RandomRandom

UsabilityUsability

PerformancePerformance

Static AnalysisStatic AnalysisInspectionInspection

Control
Flow

etc.etc.

etc .etc .

etc.etc.

etc.etc.

etc.etc.

State TransitionState Transition

30

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 16

Testing Types

Relates to verification / validation

Relates to testing techniques

Relates to changes

Relates to ISO/IEC 25010

Relates to exploratory and randomness

Smoke or Sanity?

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 17

Test Adequacy, Test Selection

33

• Test adequacy criteria can be used to decide when sufficient
testing will be, or has been accomplished
• How much testing is enough?
• How many test cases should be selected?

• A test selection criterion is a means of selecting test cases or
determining that a set of test cases is sufficient for a specified
purpose
• How is the test set composed?
• Which test cases should be selected?
• A functional-based criterion may suggest test cases covering

representative combinations of values
• A structural-based criterion may require each statement to be

executed at least once

Test Coverage

34

• Test coverage measures the amount of testing performed by a
set of test according to some adequacy critera.

• The basic coverage measure is where the coverage item is
whatever we have been able to count and see whether a test has
exercised or used this item.

• 100% coverage does not mean 100% tested.

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 18

Test Coverage

35

• Basic types:
• Requirements coverage

• Has the software been tested against all requirements for the
normal range of use?

• Has the software been tested against all requirements for
abnormal or unexpected usage?

• Structural coverage
• Has each element of the software been exercised during

testing?
• Code Statements
• Decisions,
• Conditions, etc.

• Architectural coverage
• Have the actual control and data links been utilised during

testing?
• Data paths
• Control links

Basic Questions

• All IT project managers know that they must do some testing

• The basic questions are;

– Is testing easy?

– How much we need?

– What sort?

– By whom?

– When?

– How?

• These questions are

difficult to answer

36

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 19

37

Remember: Why Testing Necessary?

– because software is likely to have faults
– to learn about the reliability of the software
– to fill the time between delivery of the software

and the release date
– to prove that the software has no faults
– only because testing is included in the project

plan
– because failures can be very expensive
– to avoid being sued by customers
– to stay in business
– to provide a measure of quality

38

Remember: Exhaustive Testing

• What is exhaustive testing?
– when all the testers are exhausted
– when all the planned tests have been executed
– exercising all combinations of inputs and preconditions

• How much time will exhaustive testing take?
– infinite time
– not much time
– impractical amount of time

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 20

Abbreviations

• AUT – Application Under Test

• BS – British Standard

• BVA – Boundary Value Analysis

• CAST – Computer Aided Software Testing

• CM – Configuration Management

• COTS – Commercial Off-The-Shelf

• CR – Change Request

• FMEA – Failure Mode and Effect Analysis

• GUI – Graphical User Interface

• IEEE – Institute of Electrical and Electronics Engineers

• LOC – Lines of code

• MTBF – Mean Time Between Failure

• QA – Quality Assurance

• RAD – Rapid Application Development

• SUT – Software Under Test

39

Abbreviations

• RTM – Requirements traceability matrix

• SEI – Software Engineering Institute

• SDLC – Software Development Life-cycle

• SUT – Software Under Test

• TDD – Test-driven development

• TMM – Test Maturity Model

• UML – Unified Modelling Language

• V&V – Verification and validation

• XP – eXtreme Programming

40

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 21

Testing Principles

Testing Principles

1. Exhaustive testing is impossible
2. Early Testing

• Tests should be planned long before testing begins:
testing should start as early as possible

• It saves time and money

3. Testing is context dependent
4. Beware of the Pesticide paradox

• Running the same set of tests continually will not find new
defects.

5. Pareto Principle / Defect Clustering
• Approx. 80% of faults occur in 20% of code

42

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 22

Defect Clustering

43

Testing Principles

6. Absence of errors is a fallacy
• Just because testing didn’t find any defects in the software, it

doesn’t mean that the software is perfect, or ready to be shipped

7. Presence of defects
• „Testing can only show the presence of bugs, not their absence”

(Dijkstra)

8. Testing is not just a process for measuring the quality of
the product. It needs to be able to add to the value of
the product .

9. All tests should be traceable (at least) to customer
requirements

10. Tests must be prioritized so that, whenever you stop
testing, you have done the best testing in the time
available.

44

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 23

Traceability

• Traceability Matrix (www.wikipedia.com)
– Traceability refers to the ability to link requirements back to

stakeholders' rationales and forward to corresponding design
artifacts, code, and test cases.

– Traceability supports numerous software engineering activities
such as change impact analysis, verification of code, regression
test selection, and requirements validation.

– In traceability, the relationship of driver to satisfier can be one-to-
one, one-to-many, many-to-one, or many-to-many.

45

Traceability and Change

Horizontal Traceability: The relationship of the collections of
components across collections of workproducts e.g. a design
component is traced to the code components that implement that part
of the design.

Vertical Traceability: The relationship among the parts of a single
workproduct (discipline) e.g. requirements.

Impact analysis tries to assess the impact of changes on the rest of
the system: when a certain component changes, which system parts
will be affected, and how will they be affected?
Change impact analysis is defined as "identifying the potential
consequences of a change, or estimating what needs to be modified
to accomplish a change".

46

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 24

How to Prioritize?

• Possible ranking criteria
– test where failures would be most

visible

– test where failures are most likely

– ask the customer to prioritize the
requirements

– what is most critical to the
customer’s business

– areas changed most often

– areas with most problems in the
past

– most complex areas, or technically
critical

47

Testing in the Project

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 25

Software Development Models

• Testing does not exist in
isolation

– Test activities are related to
software development
activities

• Software development models
consist of processes and
methodologies that are being
selected for the development
of the project depending on
the project’s aims and goals

• Different development life-
cycle models need different
approaches to testing

49

Software Development Life-cycle

• What is involved in a development life-cycle for a
software product?

Typical life-cycle phases include:
Requirement Specification
Conceptual Plan
Architectural Design
Detailed Design
Component Development
Integration
System Qualification
Release
System Operation & Maintenance
Retirement / Disposal

50

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 26

Sequential Models - Waterfall

• Testing serves as a
quality check

• Testing is carried out
once the code has
been fully produced

• The product can be
released into the live
environment after
test completion

Requirement
specification

Functional
specification

Technical
specification

Program
specification

Code
Production

Test

• Shows the steps in sequence

• Each work-product or activity
is completed before moving
on to the next

Also called:
Plan-Driven Model

51

Requirement
specification

Functional
specification

Technical
specification

Program
specification

Coding

Unit
testing

Integration
testing

System
testing

Acceptance
testing

Acceptance
test plan, des,

impl

System test
plan, des,

impl

Integration
test plan, des,

impl

Unit test plan,
des, impl

Project Assets Library

Sequential Models – V-model

• Extension of the waterfall model
• Defects can be identified as early as possible in the life-cycle
• In practice, a V-model may have fewer, more or different levels of

development and testing, depending on the project and the software product

52

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 27

W-model – NOT sequential any more

Requirement
specification

Functional
specification

Technical
specification

Program
specification

Coding Change

Unit testing

Integration
testing

System
testing

Acceptance
testing

Preparation
acceptance

tests

Prep system
tests

Prep
integration

tests

Prep
component

tests

Review

Review

Review

Review

Test Cases
Test Beds

Test Cases
Test Beds

Test Cases
Test Beds

Test Cases
Test Beds

(re)(regression)
test, debug

(re)(regression)
test, debug

(re)(regression)
test, debug

(re)(regression)
test, debug

53

Iterative & Incremental

• Iterative
– Iterative development involves a

cyclical process . Learning from
one iteration informs the next
iteration. An iterative process
embraces the fact that it is very
difficult to know upfront exactly
what the final product should look
like

• Incremental
– Incremental development involves

breaking a large chunk of work
into smaller portions . This is
typically preferable to a monolithic
approach where all development
work happens in one huge chunk.

54

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 28

Iterative Models

• Forms of iterative development include
– Prototyping (or spiral)
– Rapid application development (RAD) („tool

supported development”)
– Unified Process (former RUP)
– Agile software development

• XP

• Scrum,

• Kanban

55

Agile

56

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 29

Agile

57

XP Principles

• Planning Game : requirements and those priorities defined by client
• Small releases : very simple, working system which is developed

continually
• Simple design : the simplest solution to a requirement
• Metaphor : common system naming conventions in the project
• Test before coding (TDD)
• Refactoring
• Pair programming
• Common ownership of code
• Continuous integration , build
• 40-hours work per week
• Internal client
• Coding regulations

58

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 30

Test Driven Development

59

SCRUM Principles and Processing

• Split your organization into small, cross-functional, self-organizing teams.
• Split your work into a list of small, concrete deliverables. Sort the list by

priority and estimate the relative effort of each item.
• Split time into short fixed-length iterations (usually 1-4 weeks), with

potentially shippable code demonstrated after each iteration
• Optimize the release plan and update priorities in collaboration with the

customer, based on insights gained by inspecting the release after each
iteration.

• Optimize the process by having a retrospective after each iteration.

60

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 31

Testing Life-Cycle

Control

Prep Spec Exec Complet

Infrastructure

Software Development Methodology

PlanningInitiate CloseExecution Control

61

Control

Preparation
- Analysis

Specification
- Design

Implementation,
Execution

Completion

Preparation
� Collect test basis
� Perform testability

review
• Create checklists

Specification
� Design test cases
� Create test scripts
� Define test data

Implementation
Execution

� Intake Test
Objects

� Test
� (Re)test
� Check
� Assess

Completion
� Evaluate process for

stakeholders
� Preserve testware

Control
� Manage the test project
� Report metrics
� Control budget & timelines

Infrastructure

Infrastructure
� Define and maintain

infrastructure

Planning

Planning
� Prepare test plan
� Implement test strategy

� Risk analysis
� Test estimations

� Determine techniques
� Allocate resources

Testing Life-Cycle

62

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 32

Notions

• Test Basis is defined as the source of information or the document
that is needed to write test cases and also for test analysis.

– Test basis should be well defined and adequately structured so
that one can easily identify test conditions from which test cases
can be derived

– Typical Test Basis:
• Business document, Requirement document
• Legacy
• Codes Repository

– Be aware of the traceability between the test basis and t he various
testing work products

• Test Object describes the target of testing (system under test – SUT,
method under test – MUT, object under test – OUT, class under test –
CUT, implementation under test –IUT, etc.) A test object may contain
many test items.

63

Notions

Identifier

Scenario_01

Conditions satisfied

Req 12

Scenario description

Run the application so that the UI panel appears.
Enter invalid values for a, b and c respectively.
Click on „Compute".

Output

The result appears on the screen or error message is displayed,
„Unable to compute…”

no specific
values for
input data

TRACEABILITY

• A Test Scenario is a special test object describing an end-to-end
business requirement to be tested; it is a high level classification of
test requirements grouped depending on the functionality. A good
test scenario reduce the complexity of test design.

64

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 33

Notions

• Test Condition is a statement to the test object, and can be stated to
any part of the test object (to any item, event, transaction, function,
structural element of a system, etc) that could be verified by one or
more test cases . A test condition can be anything you want to verify.

– Example for test condition:

• Given a Login Form When User Name and Password are
valid Then application will move forward

65

Testware: Artifacts produced
during the test process required to
plan, design, and execute tests,
such as documentation, scripts,
inputs, expected results, set-up
and clear-up procedures, files,
databases, environment, and any
additional software or utilities used
in testing

Notions

• A Test Case is a set of input values, execution preconditions,
expected results and execution post conditions, developed for a
particular objective, such as to exercise a particular program path or
to verify compliance with a specific requirement.
– Example: Identifier Scenario_01_Test_01

Test case creator Attila Kovács

Version 0.1

Name of test case Verify that an error message appears when entering invalid values

Identifier of requirement PR12

Purpose To verify that an error message appears when entering invalid values, such as
non-integers, chars or strings.

Dependencies None

Test environment Java 1.5.0 installed

Initialization Run the program so that the UI panel appears

Finalization Close the UI panel

Actions In the UI panel enter the following data, in the corresponding field:

a = 99, b = 1, c = „Blahblah”

Click on „Compute" button.

Input data a = 99, b = 1, c =„Blahblah”

Expected result

Actual result

The following error message is displayed, written in red italic:

„Computation error, reason: invalid input parameters."

TRACEABILITY!!!!!

66

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 34

Test Case Structure

• Identifier is a unique identifier of the test case for further
references, for example, while describing found defect

• Test case owner/creator is name of tester or test designer,
who created test or is responsible for its development

• Version & Date of current test case definition
• Name of test case should be human-oriented title which

allows to quickly understand test case purpose and scope
• Identifier of requirement which is covered by test case
• Purpose contains short description of test purpose, what

functionality it checks
• Priority It is useful while executing (e.g. Low, Medium, High)
• Dependencies

67

Test Case Structure

• Testing environment/configuration contains information
about configuration of hardware or software which must be
met while executing test case

• Initialization (precondition) describes actions, which must be
performed before test case execution is started For example,
we should open some file

• Finalization (post-condition) describes actions to be done
after test case is performed. For example if test case crashes
database, tester should restore it before other test cases will
be performed

• Executed by
• Expected average execution duration
• Actions step by step to be done to complete test.
• Input data description

68

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 35

Test Case Structure

• Expected results contains description of what tester should
see after all test steps has been completed

• Actual results contains a brief description of what the tester
saw after the test steps has been completed. This is often
replaced with a Pass/Fail . Quite often if a test case fails,
reference to the defect involved should be listed in this
column

• Actual results field will be filled in after running
(executing) the test case

• Status (PASS / FAIL / Blocked / Incomplete, …)
• Note

69

A Good Test Case

70

Accurate: Exacts the purpose
Economic: Cheap to use, no
unnecessary steps
Effective: Shows correctness or find
faults depending on the target of testing
Exemplary: Standalone, represents
others
Evolvable: Easy to maintain
Executable independently by other
testers
Repeatable: Can be used to perform
the test over and over
Reusable: Can be reused if necessary
Traceable: Capable of being traced to
requirements

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 36

Approaches to Test Case Design

71

• Testing-by-contract is based on the design-by-contract
philosophy
– Its approach is to create test cases only for the situations in which

the pre-conditions are met. Pre-conditions define what that SUT
requires so that it can meet its post-conditions. Post-conditions
define what a SUT promises to do. Pre-conditions and post-
conditions establish a contract between a SUT and others that
invoke it.

• Defensive test case design
– In this case the module is designed to accept any input. If the

normal preconditions are met, the module will achieve its normal
post-conditions. If the normal pre-conditions are not met, the
module will notify the caller by returning an error code or throwing
an exception. This notification is actually one of the SUT's post-
conditions. It is an approach that tests under both normal and
abnormal pre-conditions.

Notions

• Test script is a sequence of actions
for the execution of a test.

– Can be manual or automated

– Example (in Python):
def sample_test_script (self):

type ("TextA")
click (ImageButtonA)
assertExist (ImageResultA)

• Test suite is the list of all the test
cases that have to be executed as a
part of a test cycle or a regression
phase etc. There is no logical
grouping based on functionality. The
order in which the constituent test
cases get executed may or may not
be important.

72

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 37

Steps for Test Objects, Conditions, Cases, Scripts

– Identify Test Objects, Items and Conditions

– Specify Test Cases

– Specify Test Procedure

Test Condition is a condition to an object, item or event of a component
or system that could be verified by one or more test cases.

Test Case is a set of input values, execution preconditions, expected
results and execution post conditions, developed for a particular
objective or test condition, such as to exercise a particular program
path or to verify compliance with a specific requirement.

Test Procedure is a combination of test cases based on a certain
logical reason, like executing an end-to-end situation or something to
that effect. The order, in which the test cases are to be run, is fixed.

Test Object defines what should be tested. Test item is a part of the
test object. Test Scenario is for testing the end-to-end functionality of a
software application and ensures that the business processes and
flows are functioning as needed.

73

Test Scenario or Test Case? Example.

Test Scenario

Verify that device
automatically connects
to Wi-Fi if user creates
new profile

Test cases

Test case 1: Create
WiFi profile and verify
that it created
successfully

Test case 2: Verify that
device is able to
connect to Wi-Fi

Requirement is to test your
phone WiFi:

74

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 38

Levels of Testing

Test Levels

� For all types of developments testing plays a significant role
� Tests are frequently grouped by where they are added in the

software development process.
� There are generally four recognized levels of tests:

� (1) unit testing, (2) integration testing,
� (3) system testing and (4) acceptance testing.

� The levels are characterized by
� Test basis
� Test objects,
� Typical defects
� Specific approaches

Unit test
Integration
test

System test
Acceptance
test

76

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 39

Test Levels – Unit Tests

Unit test

� Generally code is written in parts or units
� The goal of unit testing is to isolate each part of the program and show

that the individual parts are correct
� Intuitively, one can view a unit as the smallest testable part o f an

application.
� Units are also called modules or components
� Units are usually constructed in isolation for integration at a later stage
� Unit test

� Ensures that the code meets its specification prior to its integration with
other units

� Verify that all of the code that has been written for the unit can be executed
� Usually performed by the developer who wrote the code

� Defects found and fixed during unit testing are often not recorded

Unit test Integration test System test
Acceptance
test

77

Test Levels – Unit Tests

Unit test

� Unit testing include testing of functionality and may include specific
non-functional characteristics such as resource-behaviour (e.g.
memory leaks), performance or robustness testing, as well as
structural testing .

� A unit could be an entire module, but it is more commonly an individual
function or procedure. In object-oriented programming a unit is often
an entire interface, such as a class, but could be an individual method
as well.

Unit test Integration test System test
Acceptance
test

Robustness is defined as the degree to which a system operates correctly in
the presence of exceptional inputs or stressful environmental conditions.

A memory leak occurs when a computer program incorrectly manages memory
allocations in such a way that memory which is no longer needed is not
released. In object-oriented programming, a memory leak may happen when
an object is stored in memory but cannot be accessed by the running code.

78

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 40

Test Levels – Unit Tests

Unit test

� Structure based unit test methods:
� Statement testing
� Decision testing
� Condition testing
� Condition determination testing
� Multiple condition testing
� Path testing
� Loop testing

Unit test Integration test System test
Acceptance
test

�Unit tests are usually supported by tools
(e.g. JavaCov, JUnit for Java)

79

Test Levels – Unit Tests

Unit test

� Test basis
� Detailed design, code, data model, component specification

� Test objects
� Components
� Code and data structures
� Classes
� Database modules

�Typical defects
�Incorrect functionality
�Data flow problems
�Incorrect code and logic

�Specific approaches
�TDD

Unit test Integration test System test
Acceptance
test

80

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 41

Test Levels – Integration Tests

Integration test

� The purpose is to expose defects in the interfaces and in the
interactions between integrated components or systems

� Integration test types:

� Component integration test

� System integration test

Component integration test focuses on the interactions between
software components and is done after component (unit) testing.

System integration test focuses on the interactions between different
sub-systems and may be done after system testing of each individual
sub-systems.

Unit test Integration test System test
Acceptance
test

81

Example: Is Integration Testing Important?

82

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 42

Test Levels – Integration Tests

� Integration strategies:

INSIDE-OUT

OUTSIDE-IN

BRANCH-WISE

Integration testUnit test Integration test System test
Acceptance
test

BIG-BANG

TOP-DOWN

BOTTOM-UP

83

Test Levels – Integration Tests

� Top-down integration
� The system is built in stages, starting with components which call

other components
� Components which call others are usually placed above those

that are called
� Stubs or mocks are used for components not yet integrated

1

3

7654

2

Stub is a passive
component, called by
other components. It
replaces the called
component.

Unit test Integration test System test
Acceptance
test

84

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 43

Stubs and Mocks

• Stubs can be thought of as inputs to the code under test. When
called, they behave a certain way – return a fixed value, throw an
exception, calculate a return value based on parameters, pull from a
sequence of values, etc.

• Mocks can be thought of as outputs from the code under test
making assertions on behavior. Mocks say „I expect you to call
foo() with bar, and if you don't there's an error".

Typically, using a Mock will consist of three phases:
– Creating the instance
– Defining the behavior
– Asserting the calls

85

Test Levels – Integration Tests

• Top-down integration: modules subordinate to main
control module are incorporated
– Depth-first

– Breadth-first

– M1 tested with stubs for

M2, M3 and M4

– Then M1-M2 tested with stubs

for M3, M4, M5, and M6

– Then M1-M2-M3 tested

with stubs for M4, M5, M6, and M7

…

M1

M3 M4 M2

M7M6 M5

M8

Pairs: What get’s tested first
in breadth first?

86

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 44

Test Levels – Integration Tests

� Bottom-up integration
� The opposite of top-down integration
� Components are integrated in a bottom-up order
� These are then tested and added to the modules above them to

form larger sub-systems which are then tested
� Bottom-up requires the heavy use of drivers instead of stubs

Driver is a specially designed
user interface which enables
test data to be inputted and
passed to a sub-system which
is being tested. Only used in
testing and does not have any
place in the final system.

7

6

4321

5

Unit test Integration test System test
Acceptance
test

87

Test Levels – Integration Tests

• Bottom-up integration

– M8 tested with drivers

– M5-M8 is tested with drivers

for M5

– M5-M6-M8 is tested

with drivers for M5-M6

…

M1

M3 M4 M2

M7M6 M5

M8

88

Pairs: What get’s
tested first?

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 45

Framework

GUI-
Components

Error
handling
Module

Print
Module

XML
Output
Module

XML
Input

Module

SQL
Module

Order
Art-3

Module

Order
Art-4

Module

Order
Art-1

Module

Order
Art-2

Module

Order Entry Processing System
Sample of a three-layered Program

Service
Layer

Logic
Layer

Presentation
Layer

Integration Tests - Example

89

GUI
Components

Error
handling
Module

Order
Art-3

Module

Order
Art-4

Module

Order
Art-1

Module

Order
Art-2

Module

Print
Module

XML
Output
Module

XML
Input

Module SQL
Access
Module

Big Bang Strategy

Integration Tests – Big Bang

90

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 46

Integration Tests – Big Bang

• Big Bang Strategy

– Every module is unit tested in isolation

– After all of the modules are tested they are all integrated together
at once and tested

– No driver or stub is needed

– However, in this approach, it may be hard to isolate bugs…

91

Top-down Strategy
Framework

GUI
Components

Stub StubStub

Stub StubStub Stub

Integration Tests – Top-down Strategy

92

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 47

Buttom-up Strategy

Framework

GUI
Components

Error
handling
Module

Print
Module

XML
Output
Module

XML
Input

Module

SQL
Access
Module

Driver Driver DriverDriver Driver

Integration Tests – Buttom-up Strategy

93

Inside-out
(Sandwich) Strategy

Driver

StubStub

Order
Art-3

Module

Order
Art-4

Module

Order
Art-1

Module

Order
Art-2

Module

Integration Tests – Inside-out Strategy

94

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 48

Outside-in Strategy
Framework

GUI
Components

Error
Handling
Module

Print
Module

XML
Output
Module

XML
Input

Module

SQL
Access
Module

Driver DriverDriver Driver

Stub Stub Stub Stub

Integration Tests – Outside-in Strategy

95

Branchwise Strategy
Framework

GUI-
Components

Stub
Print

Module
Stub

XML
Input

Module

SQL
Access
Module

Stub Stub
Order
Art-1

Module
Stub

Integration Tests – Branchwise Strategy

96

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 49

Test Levels – Integration Tests

Integration test

� Test basis
� Design docs, sequence diagrams, communication protocol

specifications, use cases, architecture, workflows, external
interface definitions

� Test objects
� Subsystems, databases, infrastructure, interfaces, APIs,

microservices
� Typical defects

� Incorrect, missing data (or encoding), incorrect sequencing,
timing of calles; interface mismatch, failures in communication,
incorrect assumptions about units or meaning of data, incorrect
message structure, improperly handled communication, failure to
comply with mandatory security regulations

� Specific approaches
� Appropriate strategy chosen

Unit test Integration test System test
Acceptance
test

97

Test Levels – System Test

System test

� System test focuses on the behaviour of the whole system o r
product in a live environment

� Non-functional tests:
� Installability – installation procedures
� Interoperability – testing the software to check if it can inter-

operate with other software component, software’s or systems.
� Maintainability – ability to introduce changes easily to the system
� Load handling – behaviour of the system under significant load
� Stress handling – behaviour of the system at or beyond the limits

of its specified requirements
� Portability – the ease with which a component or application can

be moved from one environment to another
� Recovery – recovery procedures on failure
� Reliability – software's ability to function in given conditions for a

particular amount of time
� Usability – ease with which users can engage with the system

Unit test Integration test System test
Acceptance
test

98

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 50

Test Levels – System Test

System test

� Other non-functional tests:
� Spike – type of load test. The object of this type of performance test

is to verify a system's stability during bursts of concurrent user and or
system activity to varying degrees of load over varying short time
periods

� Soak (endurance) – monitoring the system parameters under
sustained use (e.g. memory leaks), with a typical production load,
over a continuous availability period

� Volume – what happens if large amounts of data are handled
� Configuration – test the various software and hardware configurations
� Compatibility – tests whether the application or the software product

built is compatible with the hardware, operating system, database,
other system or not.

� Environment – test tolerances for heat, humidity, motion, portability,
magnetic fields, etc.

Unit test Integration test System test
Acceptance
test

99

Performance Test

100

• Performance testing is the process of determining
the speed, responsiveness and stability of a
computer, network, software, program or device
under a workload.

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 51

Load (Stability) Test

load

t

response time

Break point

101

Scalability Test

Break point

throughput

t

response time

102

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 52

Stress Test

load

t

response time

Break point

Stress Test

Limits of specified

requirements

103

Test Levels – System Test

System test

� Test basis
� System requirement spec. (functional and non-functional)
� Risk inventory, use cases, epics, stories,
� Models of system behaviour, state diagrams, user manuals

� Test objects
� Applications, operating systems, SUT
� System configuration and configuration data

� Typical defects
� Incorrect calculations, behaviour
� Incorrect control /and/or data flow
� Failure to carry out end-to-end functional tasks, working properly in

the production environment
� Specific approaches

� Choosing the appropriate techniques is important

Unit test Integration test System test
Acceptance
test

104

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 53

Unit test Integration test System test
Acceptance
test

� Provide the end users with confidence that the system will
function according to their expectations

� Acceptance testing will be carried out using the requirement
specification as a basis for test

� Acceptance testing is often the responsibility of the customers or users
of a system although other project team members may be involved as
well

� Common forms
� User acceptance testing (fitness for use, UAT)
� Operational acceptance testing (backup/restore, disaster

recovery, maintenance, migration, security, performance, OAT)
� Contractual (regulational) acceptance testing
� Alpha/beta acceptance testing

Test Levels – Acceptance Test

105

Test Levels – Acceptance Test

Acceptance
test

� Test basis
� Business processes, user or business requirements,
� Regulations, legal contracts and standards, use cases
� System requirements, user documentation
� Installation procedures, risk analysis reports

� Test objects
� SUT, system configuration and configuration data
� Business processes, disaster recovery sites,
� Operational or maintenance processes
� Forms, reports

� Typical defects
� Workflows do not meet business/user needs
� System does not satisfy contractual requirements
� Non-functional failures

� Specific approaches
� AT may occur before system testing (e.g. for enhanced functionality)
� In iterative development AT can be at the end of each iteration

Unit test Integration test System test
Acceptance
test

106

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 54

Testing Levels Revisited

Tested
Units

Unit
Code

FunctionalIntegration

Unit

Tested
Units

System
Design

Document

Tested Units

Test Test

Test

Unit
Test

Unit
Test

User
Manual

Requirements
Analysis

Document

Unit
Code

Unit
Code

All tests are performed by the developer

Functioning
System

Integrated
Subsystems

107

Testing Levels Revisited

Global
Requirements

User’s understanding
Tests by developer

Non-functional Acceptance

Client’s
Understanding

of Requirements

Test

Functioning
System

Test
Installation

User
Environment

Test

System in
Use

Usable
System

Validated
System

Accepted
System

Tests by user

Clients are involved in testing

108

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 55

Maintenance Testing

• The system is eventually released into the live environment
• During this deployment it may become necessary to change the

system
• (Planned) changes may be due to

– Additional features being required (perfective modification)
– The system being migrated to a new operating platform

(adaptive)
– New faults being found (corrective modification)
– The system being retired

• Testing which takes place on a system which is in operatio n in
the live environment is called Maintenance Testing

• An understanding of the parts of the system which could be affected by
the changes could reduce the amount of regression testing

– Impact analysis

109

Impact Analysis

• Impact analysis needs
– Specifications

– Documented test cases

– Bi-directional traceability between tests and the test basis

– Domain knowledge

– Attention to be paid to the SW maintainability during
development

110

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 56

Maintenance Testing Revisited

• IEEE 1219 defines maintenance as the modification of
a software product after delivery to correct faults, to
improve performance or other attributes, or to adapt
the product to a modified environment . Modification
requests are
– logged and tracked,

– the impact of proposed changes

determined,

– code and other software artifacts are

modified,

– testing is conducted,

– and a new version of the software

product released.

111

Exercise (banking app)

• For ____________, tests are designed based on how a component
should calculate compound interest.

• For, ____________________tests are designed based on how
account information captured at the user interface is passed to the
business logic.

• For __________, tests are designed based on how account holders
can check their accounts.

• For _________________, tests are designed based on how the
system uses an external microservice to check an account holder’s
credit score.

• For _____________, tests are designed based on how the banker
handles approving or declining a credit application.

• During component integration testing, _________are designed for
buffer overflow vulnerabilities due to data passed from the user
interface to the business logic.

component testing

component integration testing

system testing

system integration testing

acceptance testing

security tests

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 57

Exercise (banking app)

• During system testing, __________ are designed to check whether
the presentation layer works on all supported browsers and mobile
devices.

• During system integration testing, _________ are designed to
evaluate system robustness if the credit score microservice fails to
respond.

• During acceptance testing, _________ are designed to evaluate the
accessibility of the banker’s credit processing interface for people with
disabilities.

• During system testing, tests are designed to cover sequences of web
pages that can occur during a credit line application.

• For acceptance testing, tests are designed to cover all supported
financial data file structures and value ranges for bank-to-bank
transfers.

The last two are exampes of __________ .

portability tests

reliability tests

usability tests

white-box tests

Test Planning

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 58

Fundamental Test Process – Iteration of Activities

Test planning and

Test analysis and
design

Test implementation
and execution

Evaluating exit
criteria and reporting

Test closure
activities

c
o
n
t
r
o
l

115

Fundamental Test Process

Test planning
� Defining the scope and objectives of testing and identifying risks
� Determining test approaches (techniques, test items, coverage, testware)
� Implementing the test policy and/or the test strategy (high level

approach) (Document exceptions if exist, e.g. one test case design
technique enough for this functional area because it is less critical)

� Determining the required test resources (people, test environment, PCs,
tools)

� Scheduling test analysis and design tasks (WBS)
� Scheduling test implementation, execution and evaluation (WBS)
� Determining the exit criteria

Test control
� Monitoring, measuring and analyzing results
� Comparing expected and actual progress, test coverage and exit criteria
� Making corrections if things go wrong and deciding actions

Test planning and
control

Test analysis
and design

Test
implementation
and execution

Evaluating exit
criteria and
reporting

Test closure
activities

Test planning
and control

116

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 59

Fundamental Test Process –
Test Planning in Different Levels

Test
Policy

Test
Strategy

Company level

High Lev
Test Plan

High Level
Test Plan

Project level (IEEE 829)
(one for each project)

Detailed
Test Plan

Detailed
Test Plan

Detailed
Test Plan

Detailed
Test Plan

Test stage level (IEEE 829)
(one for each stage within a project,
e.g. Component, System, etc.)

Quality
Policy

Test
Handbook

117

Terminology

A test strategy is an outline that describes the testing
portion of the software development cycle. It is created
to inform project managers, testers, and developers
about some key issues of the testing process. In the
test strategy is described how the product risks of the
stakeholders are mitigated in the test levels and which
test types are performed in the test levels.

Test policy describes the philosophy of organization towards
testing. It is generally developed by the top level IT
management. It usually contains the definition of testing, the
process or procedure (or standard) need to follow for good
quality product, metrics, improvement approaches.

Test approach (operational): The implementation of the
test strategy for a specific project. It typically includes the
decisions made based on the (test)project’s goal and the
risk assessment carried out, starting points regarding the
test process, the test design techniques to be applied, exit
criteria and test types to be performed.

118

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 60

Test Strategy (Handbook)

• It is for all possible test levels. For each level
– Entry, exit criteria
– Test specification techniques (based on the given

quality characteristics)
– Degree of independence
– Standards to be complied with
– Test environment
– Test approach toward test automation, reusability,

regression testing, testing tools
– Measures, metrics to be recorded, documentation
– Incident management

119

Test Plan

• Test planning is the most important activity undertaken by a
test leader

• It is used in development and implementation projects
• The main document produced in test planning is often called

a master test plan or a project test plan
• The details of the test level activities are documented within

test level plans
• The contents sections of a test plan for either the master test

plan or test level plans are mainly identical
• There should be (a minimum of) 14 sections present in a

test plan
• Test planning is a continual activity

120

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 61

Test Plan

• As the plans will have been baselined (locked down) after initial sign-off, the
changes would normally be managed by the project change process

• Baselining a document effectively secures it from further change unless
authorised via a change control process

• A useful revision aid to help remember the 16 sections of the IEEE 829:2008
test plan is the acronym ’SPACEDIRT’

– S scope (test items, features to be tested and features not to be tested)
– P people (including responsibilities, staff, training, approvals)
– A approach (test levels and types, test strategy, tools, bug tracking)
– C criteria (including item pass / fail criteria and suspension and

resumption requirements)
– E environment needs, estimates
– D deliverables (tests, reports, test metrics)
– I identifier and introduction (Name, version, date, overview, objectives)
– R risks and their mitigation, references
– T testing tasks and schedule

121

Entry Criteria

• Determines at what point can be a particular test level or
phase start

• Some typical entry criteria
– Aquisition and supply
– Test items
– Money available
– Risk

Entry criteria is the set of generic and specific conditions for
permitting a process to go forward with a defined task, e.g. test
phase.

122

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 62

Exit Criteria

• Determines completeness
• Can be defined for all of the testing activities
• Should be included in the relevant test plans
• Some typical exit criteria

– All tests planned have been run
– Cost - when the budget has been spent
– Schedule has been achieved
– Certain level of requirements coverage has been achieved
– No high-priority or severe defects are left outstanding
– All high-risk areas have been fully tested with only minor residual risks

left outstanding
• Agreed as early as possible in the life cycle
• Often are subject to controlled changes
• A successful project is a balance of quality, budget, schedule and feature

considerations

Exit criteria is the set of generic and
specific conditions, agreed upon with

the stakeholders, for permitting a
process to be officially completed.
The purpose of exit criteria is to

prevent a task from being considered
completed when there are still

outstanding parts of the task which
have not been finished.

123

Test Approaches

• There are many approaches that can be employed
– Analytical approaches use some formal or informal

analytical technique, usually during the requirements
and design stages of the project
• Risk-based testing

• Requirements based testing

– Model-based approaches create or select some
formal or informal model for critical system behaviors
• Stochastic testing, e.g. exercising all transitions in a

communication protocol model

– Standard-compliant approaches , specified by
industry-specific standards

– Process-compliant approaches
• Agile developments → TDD

124

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 63

Test Approaches

– Methodical approaches adhere to a pre-planned,
systematized approach that has been developed in-
house, assembled from various concepts developed
inhouse and gathered from outside
• Fault-based, failure-based, check-list based and quality-

characteristic-based

• Fault-based example: Check for buffer overflow handling
(common vulnerability) by testing on very large inputs

– Dynamic (like exploratory) and heuristic (like error
guessing) approaches

– Consultative (directed) approaches (ask users)
– Regression-averse approaches
– Reactive , etc.

125

Test Approaches – Key Factors

• Factors to be considered when defining the approach
– Risk of failure of the project, hazards to the product

and risks of product failure to humans, the
environment and the company

– Skills and experience of the people in the proposed
techniques, tools and methods

– The objective of the testing endeavour and the
mission of the testing team

– Regulatory aspects
– The nature of the product and the business

• Excercise: Discuss which are preventive, and which are
reactive approaches

126

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 64

Test Control

• Uses test metric information for decisions
• Particularly required when the planned test activities are behind schedule
• Test-control activities – test leader’s responsibility

– Reprioritizing tests
– Changing the test schedule
– Setting an entry criterion requiring fixes to be retested by a developer

before accepting them into a build
– Reviewing of product risks
– Adjusting the scope of the testing

• Test-control activities – project manager’s responsibility
– Descoping of functionality
– Delaying release
– Counting testing after delivery into the production environment

Test control is a test management task that deals with developing
and applying a set of corrective actions to get a test project on track
when monitoring shows a deviation from what was planned.

127

Quality and Risk

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 65

What is Quality Software?

• Answer may depend on the stakeholder you ask:

Software
Quality

Customer: cost-
effective

User: easy to use
and helpful

Developer: easy
to develop and
easy to maintain

Development
Manager: profitable

Product
Quality

Process
Quality

129

Software Process Quality

– Ensuring that each intermediate product resulting from the
steps of development process is of good quality and satisfies
the internal customers who have to perform the next step.

– Ensuring that the methodology, tools, and technologies
employed for the process are under control and are
improving.

– Several organizational frameworks have been proposed
to improve quality
• Plan-Do-Check-Act (improving/optimizing a process)
• Quality Improvement Paradigm/Experience Factory (building cont.

improving)
• SEI Capability Maturity Model Integrated (staged and continuous

process improvement)
• SPICE (Automotive, Bank, Healthcare)

130

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 66

SW Product Quality ISO/IEC 9126

131

SW Product Quality ISO/IEC 25010:2011

132

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 67

Testing Quality Characteristics

• Exhaustive testing is not possible
• If we can’t test everything, what can we do?

– Managing and Reducing RISK
• Risk is inherent in all software developement
• Uncertainties become more significant as the system

complexity grows and the implications of failure increase

– Carry out a RISK Analysis of the application
• Prioritize tests to focus on the main areas of risk
• Apportion time relative to the degree of risk involved
• Understand the risk to the business if the software is

not functioning correctly

133

How much Testing?

• It depends on RISK
– risk of important faults being

there

– risk of failure costs

– risk of releasing untested or
under-tested software

– risk of losing credibility and
market share

– risk of missing a market
window

– risk of over-testing,
ineffective testing

134

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 68

How much Testing?

• Use RISK to
– allocate the time available for testing by prioritizing

testing ...

• Testing time will always be limited

• Use RISK to determine:
– what to test first
– what to test most
– how thoroughly to test each item
– what not to test (this time)

} i.e. where to
place emphasis

135

Risk and Testing

• The calculation of the risk

• Can be qualitative (e.g. low, medium, high) or quantitative
(e.g. 25%)

Risk is a factor that could result in future negative consequences,
usually expressed as likelihood and impact .

Level of risk = probability of the problem occuring x impact if it
did happen.

Risks • Project (planning) risks
• Product (quality) risks

136

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 69

Testing = Risk Management

Should be determined
• What are the project and product risks?
• What constraints affect testing?
• What is most critical?
• Which aspects of the product are testable?
• What should be the overall test execution

schedule and how should we decide the order in
which to run specific tests?

137

1. Risk Identification:
– Determine which risks might affect the project and document

their characteristics
– Tools and techniques include: Documentation Reviews,

Brainstorming, Interviewing Key Experts, Risk templates,
Checklists, Experiences

– Output: raw list of risks and associated symptoms or warning
signs (that require further analyses)

2. Risk Analysis:
– Assess the impact and likelihood of occurrence
– Prioritize according to the potential effect on project objectives

(e.g. greater impact leads to a higher priority)
– Sample risk probability ratings: 20% = surprised if it happens;

50% = 50-50; 80% = surprised if it does NOT happen
– The impact scale reflects the potential severity of the effect on

the project objectives: 1 = low impact; 2 = medium impact;
3 = high impact; etc.

– Output: list of prioritized risks based on probability x impact
– (Possible weights: execution frequency, criticality)

Risk Management (continued)

138

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 70

3. Risk Response - Contingency Plans:
– Several risk response strategies are possible. Select the most

effective strategy for each risk. The available strategies are:
– Avoidance: change the project plan to eliminate the risk or

condition inducing risk
– Transference: shift the consequences of the risk to another party

(e.g. insurance)
– Mitigation: reduce the probability and/or consequen ce of an

adverse risk event to an acceptable threshold
– Acceptance: a conscious decision not to change the project plan

– Develop contingency plans to reduce threats to the project
objectives

– Identify individuals to take responsibility for each critical
risk response in the form of a contingency plan

– These plans are added to the project action list – to be
reviewed on a regular basis

– Control risks by continually monitoring and correcting risky
conditions: reviews, inspections, development of fall back
positions, etc.

Risk Management (continued)

139

Risk Management (continued)

140

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 71

Risk Priority Table - Example

Features &
Attributes

Occurrence
Likelihood

Failure
Consequence

Priority
(L x C)

Withdraw cash High = 3 High = 3 9

Transfer money Medium = 2 Medium = 2 4

Read balance Low = 1 Low = 1 1

Make payment Low = 1 High = 3 3

Buy train ticket High = 3 Low = 1 3

Security Medium = 2 High = 3 6

Example: ATM Machine
Functions: Withdraw cash, transfer money, read balance, make payment,
buy train ticket.
Attributes: Security, ease of use, availability

141

Ordered Risk Priority Table

Features &
Attributes

Occurrence
Likelihood

Failure
Consequence

Priority
(L x C)

Withdraw cash High = 3 High = 3 9

Security Medium = 2 High = 3 6

Transfer money Medium = 2 Medium = 2 4

Make payment Low = 1 High = 3 3

Buy train ticket High = 3 Low 1 3

Read balance Low = 1 Low = 1 1

Next step: Risk response planning

142

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 72

Product (Quality) Risk

• Potential failure areas in software are known as product risks, as they are
risks to the quality of the product

• Product risks include
– Error-prone software delivered
– Poor requirements leading to badly defined and built software
– A defect in the software / hardware could cause harm to an individual or

company
– Poor software quality characteristics leading to poor user feedback
– The software does not meet the requirements and delivers functionality

that was not requested
– System forces user to spend more time than he feels appropriate
– System crashes resulting in loss of business
– Corrupts data
– Delivers slow performance
– Incorrect Documentation

• Risk are determined to decide where to start testing
• Product risks also provide indirect information on how much testing should be

carried out
• Mitigating product risks may also involve non-test activities

143

Project (Planning) Risk

• The Software Project Manager is responsible for project risk
management. Whilst managing the testing project a Test Leader will
use project risks to manage the capability to deliver

• Project risks include
– Supplier issues (contractual, third party failure, etc.)
– Organizational factors (personal skills, lack of training, failure to

follow up on information found in testing and reviews, problems
that stop testers communicating their needs and test results,
etc.)

– Specialist issues (requirements, design, and code quality)
• Project risks should be documented in the IEEE 829 Test Plan

IMPORTANT!
– Proper risk management implies control over future events, and

is proactive rather than reactive.
– Risk register should be maintained by the Test Leader

144

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 73

Risk-based Testing (RBT)

145

• RBT is used to prioritize the tests of features and functions in
software, based on the risk of failure, the function of their
importance and likelihood or impact of failure

• RBT uses risk (re-)assessments to steer all phases of the
test process, i.e., test planning, test design, test
implementation, test execution and test evaluation

• This includes for instance, ranking of tests, and subtests, for
functionality

Risk and Testing Summary

• Identify Risks as early in the project as possible

• There are different ways to manage risks

• Communication is the key element

• Focus on the important things first

Risks for testing:
1. Insufficient/not available/poor test basis

2. Agressive delivery

3. Lack of test expertise

4. Poor test management processes

5. Bad estimations/effort overrun/schedule
delay

6. Problems with test environment

7. Poor test coverage, …

146

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 74

Test Estimations

Test Estimation – Metrics Based

• Relies upon data collected from previous or similar projects
– Number of test conditions
– Number of test cases written
– Number of test cases executed
– Time taken to develop test cases
– Time taken to run test cases
– Number of defects found
– Number of environment outages and how long on average

each one lasted
• Possible to estimate quite accurately what the cost and time

required for a similar project would be. Important that the actual
costs and time for testing are accurately recorded

148

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 75

Test Estimation – Expert-based

• Individual estimation – amalgamate the
individual estimates when received

• Group estimation – discuss (agree and / or
debate) the estimate in a meeting

• Either of the above approaches can be used
individually or mixing and matching them as
required

149

Test Estimation – Expert-Based

• Uses the experience of owners of the relevant tasks or
experts to derive an estimate

• Experts
– Business experts
– Test process consultants
– Developers
– Technical architects
– Analysts and designers
– Anyone with knowledge of the application

150

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 76

Test Estimation – Affecting Factors

• Complexity
– Difficulty of comprehending the problem the system is built for
– Innovative technologies
– Intricate or multiple test configurations
– Geographical distribution of the team

• Product characteristics
– Size of the test basis
– Complexity of the final product
– Amount of non-functional requirements
– Security requirements (the security standard)
– Amount of documentation required
– Availability and quality of the test basis

• Development process characteristics
– Timescales
– Amount of budget available
– Skills of those involved in the testing and development activity
– Tools being used across the life cycle

• Expected outcome of testing
– Amount of errors
– Test Cases to be written

151

Psychology of
Testing

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 77

Remember why Test

• build confidence
• prove that the software is correct
• demonstrate conformance to requirements
• find faults
• reduce costs
• show system meets user needs
• assess the software quality

Testing Approach – First Step

• Show that the system
– does what it should
– doesn't do what it shouldn't

Fastest achievement: easy test cases

Goal: show workingGoal: show working

Success: system works

Result: faults left inResult: faults left in

154

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 78

Testing Approach – Second Step

• Show that the system
– does what it shouldn't
– doesn't do what it should

Fastest achievement: difficult test cases

Goal: find faultsGoal: find faults

Success: system fails

Result: fewer faults left inResult: fewer faults left in

155

Testing Approach – Third Step

• Reduce the perceived risk of not working to an
acceptable value.

• Goals are
– to understand the quality of the software in terms of its

defects,
– to furnish the programmers with information about the

software's deficiencies, and
– to provide management with an evaluation of the

negative impact on the organization if products are
shipped to customers in its present state

156

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 79

Fault foundFaults found

Confidence

Time

Confidence

No faults found = confidence?

157

The Testing Paradox

Purpose of testing: to find faults

The best way to build confidenceThe best way to build confidence

is to try to destroy it

Finding faults destroys confidence

Purpose of testing: destroy confidence?

158

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 80

Who Wants To Be a Tester?

• A destructive process
• Bring bad news
• Under worst time pressure (at

the end)
• Need to take a different view, a

different mindset
• (“What if it isn’t?”, “What could

go wrong?”)
• How should fault information be

communicated (to authors and
managers?)

159

Tester’s Have the Right To

– accurate information about progress and
changes

– insight from developers about areas of the
software

– delivered code tested to an agreed standard
– be regarded as a professional (no abuse!)
– find faults!
– challenge specifications and test plans
– have reported faults taken seriously
– make predictions about future fault levels
– improve her own testing process

160

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 81

Testers Have Responsibility To

– follow the test plans, scripts etc. as documented
– report faults objectively and factually (no abuse!)
– check tests are correct before reporting s/w faults
– remember it is the software, not the programmer,

that you are testing
– assess risk objectively
– prioritizing
– communicate the truth

161

The Psychology of Testing

• Very different people can be involved in software
testing

– Developers

– Professional testers

– Specialists

– Users

• Developers want to prove their code does work

• Testers want to prove that the code does not
work

162

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 82

The Psychology of Testing

developer independent tester

Understands the
system but will test
“gently” and is
driven by delivery

Must learn about the
system but will attempt
to break it and is
driven by quality

163

The Psychology of Testing – Defect Reporting

• Keep the focus on
delivering a quality product

• Results should be
presented in a non-personal
way

• Attempt to understand how
others feel

• At the end of discussions,
confirm that you have both
understood and been
understood

• Be constructive!

164

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 83

The Psychology of Testing

• A strong skill mix is critical to a successful testing team

• Technical skills and domain knowledge alone will not make a tester

successful. Successful tester must be able to communicate.
Effective testers are effective communicators

• Assume everything you write will some day become public

165

The Psychology of Testing

• Test independence – testing should be done by
different people than the creator of the code

– Those who wrote the software under test

– Another member(s) of the same development team

– Members from a different organizational group (e.g.
an independent test team)

– Members from a different organization or company
(e.g. outsourcing to another company)

166

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 84

Levels of Independent Testing

High

Low

I
N
D
E
P
E
N
D
E
N
C
E

The developer

Independent testers belonging to the
development team

Independent permanent test team,
centre of excellence, within the

organization
Specialist testers such as usability

testers, security testers or
performance testers

Outsourced test team or testers, e.g.
contractors or other organizations

167

Features of Indep. Testing

Benefits Drawbacks
• The tester sees other and

different defects than the
author

• Isolation from the development team
– The tester is totally dependent on

the test basis

• The tester is unbiased • The tester may be seen as the
bottleneck

– As independent test execution is
normally the last stage

• The tester can see what has
been built

– Rather than what the
developer thought had
been built

• Developers lose a sense of
responsibility for quality

– As it may be assumed that they
need not worry about errors

• The tester makes no
assumptions regarding quality

• The fully independent view sets
developers and testers on either side
of an invisible fence

168

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 85

Independent Testing – Exercise

Which of the following demonstrates independence in testing?

(i) Independent testers may be external to the organization

(ii) Independent testers may be part of the development team

(iii) Independent testers may be from the user community

(iv)Programmers who wrote the code serve as independent testers

(v) Customer who wrote the requirements serve as independent
testers

A) (i), (iii), and (v)

B) (i), (ii), (iii), and (v)

C) (ii), (iv), and (v)

D) (i), (iii), (iv), and (v)

Solution : Programmers cannot objectively test
their own codes. Because choices C and D
include statement iv, both choices can be
ruled out as valid choices. Statement ii
distinguishes choice A from B. Given that
statement ii is valid, we can deduce that
choice B is a superior choice.

169

Technical Skills Needed in Testing

• Test managers (test management, reporting, risk analysis)
• Test analyst (test case design)
• Test automation experts (programming test scripts)
• Test performance experts (creating test models)
• Database administrator or designer (preparing test data)
• User interface experts (usability testing)
• Test environment manager
• Test methodology experts
• Test tool experts
• Domain experts

170

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 86

Other Skills Needed

• Read and write documentation
• Good vocabulary
• Able to track changes (e.g. requirements)

• Prepare the tests
• Understand the test plan
• Read and write test scenarios
• Read and write test cases
• Read and write test procedures

• Able to perform the test process
• Able to report issues and bugs
• Able to review various documents, codes

171

Test Organization – Testing Roles

What is the difference between a testing role and a testing job?

Role An activity or a series of activities given to a person to fulfill,
e.g. the role of a test leader

Job
Effectively what an individual is employed to do, so one or
many roles could make up a job e.g. a test leader could also
be a tester

Testing
roles

– Test Leader
– Tester

172

• Within a test project one person may have more than one role
• A job may contain many roles and tasks

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 87

Test Organization – Tasks of a Test Leader

• Typical test leader tasks may include
– Responsible for the test strategy
– Collaborates with the project management and with other

participants
– Takes notice of the organization’s testing policies
– Coordinates the testing activities with other project

activities
– Coordinates the design, specification, implementation,

execution of tests
– Monitors the test results and the exit criteria
– Decides on the implementation of the test environment
– Maintains the plans based on the test progress and test

results

173

Test Organization – Tasks of a Test Leader

• Contd…
– Determinates what should be automated, to what degree,

and how, ensuring it is implemented as planned
– Responsible for the test support tools and for the required

training for these tools
– Decides on the proper metrics for measuring test progress

and evaluating the quality of the testing delivered and the
product

– Writes the test summary report based on the information
gathered during testing

174

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 88

Test Organization – Tasks of a Tester

• Typical tester tasks may include
– Reviewing and contributing the test plans

– Analysing, reviewing and assesing user requirements,
specifications and models for testability

– Creating test specifications from the test basis

– Setting up the test environment

– Preparing and acquiring / copying / creating test data

– Implementing tests on all test levels, executing and logging the
tests, evaluating the results and documenting the deviations from
expected results as defects

– Using test administration and test monitoring tools

– Automating tests

– Where required running the tests

– Reviewing tests developed by other testers

175

Code of Ethics

• Software testing enables individuals to learn confidential
and privileged information.

• A code of ethics is necessary, among other reasons to
ensure that the information is not put to inappropriate use.

• PUBLIC - Software testers shall act consistently with the public
interest

• CLIENT AND EMPLOYER - Software testers shall act in a
manner that is in the best interests of their client and employer,
consistent with the public interest

• PRODUCT - Software testers shall ensure that the deliverables
they provide meet the highest professional standards possible

176

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 89

Code of Ethics

• JUDGMENT - Software testers shall maintain integrity and
independence in their professional judgment

• MANAGEMENT - Software test managers and leaders shall
subscribe to and promote an ethical approach to the
management of software testing

• PROFESSION - Software testers shall advance the integrity
and reputation of the profession consistent with the public
interest

• COLLEAGUES - Software testers shall be fair to and
supportive of their colleagues, and promote cooperation with
software developers

• SELF - Software testers shall participate in lifelong learning
regarding the practice of their profession and shall promote an
ethical approach to the practice of the profession

177

Analysis and Design

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 90

Fundamental Test Process

Test analysis
� Reviewing the test basis (such as requirements, architecture, design,

interfaces, risk reports)
� Evaluating testability of the test basis and test objects
� Identifying and prioritizing test conditions based on analysis of test

items, the specification, behavior and structure
� Capture bi-directional traceability

Test design
� Test design involves predicting how the Software Under Test (SUT)

should behave in a given set of circumstances
� Designing and prioritizing test scenarios and test cases
� Designing sets of tests, different test sets for different objectives
� Identifying necessary test data to support the test conditions and test

cases
� Designing the test environment set-up and identifying any required

infrastructure and tools

Test planning
and control

Test analysis and
design

Test
implementation
and execution

Evaluating exit
criteria and
reporting

Test closure
activities

Test analysis
and design

179

Test Design
Techniques

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 91

Test Design Techniques

Test design categories
• Specification-based (black box) techniques

– Equivalence partitioning (EP)
– Boundary value analysis (BVA)
– Decision table testing and Cause-Effect graphing
– State transition testing
– Orthogonal arrays and all-pairs tables
– Use Case testing

• Structure-based (white box, glass box) techniques
– Statement testing
– Decision testing, branch testing
– Condition / multiple condition /

• condition determination testing
– Path testing, cyclomatic testing
– LCSAJ testing
– Loop testing

• Experience-based techniques

181

Specification or Structure-based?

• Specification-based vs. Structure-based testing

– Specification-based testing: Generating test cases based on the
specification of the software

– Structure-based testing: Generating test cases based on the
structure of the program

– Black box testing and white box testing are synonyms for
functional and structural (or glass box) testing, respectively.

• In black box testing the internal structure of the program is
hidden from the testing process

• In white box testing internal structure of the program is taken
into account

– The expected result of a test can be computed via oracle.

– Oracle states precisely what the outcome of a program execution
will be for a particular test case. However, this may not always be
possible

182

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 92

Test Oracle

Problems
• Correctness of Oracle
• Correctness of specs
• Generation of Oracle

• Oracle is a function that determines easily whether
or not the results of executing a program under test
conform with the program’s specifications.

Program
Under Test

Oracle

Test
Case

Failure?
Success?Compare

Expected
Result

Actual Result

183

Spec. Based
Techniques

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 93

Specification-based techniques

Techniques Description

Equivalence partition Grouping test conditions into partitions
that will be handled the same way

Boundary value analysis Defining and testing for the boundaries
of the partitions

Decision table testing , cause-and-
effect graphing

Defining and testing for combinations
of conditions

State transition testing Identifying all the valid states and
transactions that must be tested

All pairs / orthogonal array testing Determining the combinations of
configurations to be tested

Use case testing Determining usage scenarios and
testing accordingly

185

Equivalence Partitioning

• Equivalence class testing (equivalence partitioning) is a
technique used to reduce the number of test cases to a manageable
level while still maintaining reasonable test coverage

• Partition the input domain to equivalence classes
• Example (factorial):

– If the input integer value n is less than 0 then an appropriate error
message must be printed. If 0 ≤ n < 20, then the exact value of n!
must be printed. If 20 ≤ n ≤ 200, then an approximate value of n!
must be printed in floating point format using some approximate
numerical method. The admissible error may be 0.1% of the exact
value. Finally, if n > 200, the input can be rejected by printing an
appropriate error message.

• Possible equivalence classes: D1 = {n<0}, D2 = {0 ≤ n < 20}, D3 = {20
≤ n ≤ 200}, D4 = {n > 200}

• Choose at least one test case per equivalence class t o test

186

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 94

Equivalence Partitioning

• Equivalence partitioning reduces the number of needed test cases

• The inputs of a program can be ‘chunked’ into groups of similar inputs

– Grouping based on the properties of the possible inputs

• Example: a program accepts any integer values between -10.000 and
+10.000 (inclusive)

– Valid positive values (0 < x ≤ 10.000)

– Valid negative values (-10.000 ≤ x < 0)

– Valid zero value (x = 0)

– Invalid positive values (x > 10.000)

– Invalid negative values (x < -10.000)

– Invalid non-integer real numbers (e.g.: 2,82)

– Invalid character values (e.g.: „p”)

Valid
Equivalance
Partitions

Non-valid
Equivalance
Partitions

187

Equivalence Partitioning

• For (unordered) sets select two values

– 1 in, 0 not in (characterization)

• For equality select 2 values

– 1 equal, 0 not equal

• Example: We have a bank account program which offers variable
interest rates

– 0.5% for the first 1,000 $ credit;

– 1% for the next 1,000 $ credit;

– 1,5% for the rest

What would be the appropriate test cases?

188

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 95

Equivalence Partitioning

Example: A mail-order company selling flower seeds charges $3.95 for
postage and packing on all orders up to $20 value and $4.95 for
orders above $20 value and up to $40 value. For orders above $40
value there are no charge for postage and packing.
If you were using equivalence partitioning to prepare test cases for the
postage and packing charges what valid input partitions would you
define? What about non-valid partitions?

Example: Consider that wordCount method takes a word w and a
filename f as input and returns the number of occurrences of w in the
text contained in the file named f. An exception is raised if there is no
file with name f.

WordCount

w C

f

189

Equivalence Partitioning

• In some cases we have different equivalence classes for the same
input domain. In these cases we can try to minimize the number of
test cases while choosing representatives from different equivalence
classes.

• Example: D1 = {x is even}, D2 = {x is odd}, D3 = {x ≤ 0}, D4={x > 0}

– Test set {x=48, x= –23} covers all the equivalence classes

• On one extreme we can make each equivalence class have only one
element which turns into exhaustive testing

• The other extreme is choosing the whole input domain D as an
equivalence class which would mean that we will use only one test
case

190

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 96

Generalized Equivalence Partitioning

• Weak normal EP: using
at least one test case
from each valid
equivalent class

X1

X2

a b c d

e

f

g

• Strong normal EP:
Cartesian product of the
weak normal
equivalence classes

X1

X2

a b c d

e

f

g

191

Generalized Equivalence Partitioning

• Weak robust EP: (at
least) one value from
each valid class with
some invalid values

• Strong robust EP:
Cartesian product of the
weak robust equivalence
classes

X1

X2

a b c d

e

f

g

X1

X2

a b c d

e

f

g
●

●

192

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 97

EP Advices & Applicability

• In order to mask errors in another field test one invalid value at a
time to verify the system detects it correctly.

• In some cases use equivalence classes to examine the outputs
rather than the inputs.

– Divide the outputs into equivalence classes, then determine what
input values would cause those outputs. This has the advantage
of guiding the tester to examine, and thus test, every different kind
of output. But be careful, this approach can be deceiving!!

• Equivalence class testing is equally applicable at the unit, integration,
system, and acceptance test levels. All it requires are inputs or
outputs that can be partitioned based on the system's requirements.

193

Boundary Value Testing (BVA)

• Mistakes made by programmers cause faults that tend to cluster around
boundaries. Boundary value testing focuses on the boundaries

• Faults usually appear when values just outside the range are incorrectly
accepted or values just inside the range are incorrectly rejected

• In an ordered set for each range [R1, R2] listed in either the input or
output specifications, we may choose five cases:

– Values less than R1

– Values equal to R1

– Values greater than R1 but less than R2

– Values equal to R2

– Values greater than R2

• IMPORTANT! Since we have to deal with ordered sets we need to
clarify first the the domain of the ordering, i.e. the accurracy (number
of decimal digits, etc.)

R1 R2

194

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 98

Boundary Value Testing

• The maximum and minimum values of a partition are its boundary values

– The boundary value of a valid partition is a valid boundary value
– The boundary value of an invalid partition is an invalid boundary

value
• Example: The partition is [-100,+100] (inclusive) with integers. Then

-101 is a maximum invalid boundary value of the invalid partition]-∞,-101]
-100 is a minimum valid boundary value of the valid partition [-100,+100]
+100 is a maximum valid boundary value of the valid partition [-100,+100]
+101 is a minimum invalid boundary value of the invalid partition [+101,+∞[

• To apply boundary value analysis, we will take the minimum and
maximum (boundary) values from the valid partition (-100 and 100 in this
case) together with the first or last value respectively in each of the invalid
partitions adjacent to the valid partition (-101 and 101)

• In some cases we choose the boundary value and both of its
neighbours .

• The chosen method is driven by the risk of the application .

195

Boundary Value Testing

• For the factorial example, ranges for variable n are:

– (−∞, -1], [0,19], [20,200], [201, ∞)

– A possible boundary value test set for the range [0,19] is

• {n = -1, n=0, n=19, n= 20} (2 values BVA testing)
– Another possibility could be

• {n = -1, n=0, n=1, n=18, n=19, n= 20} (3 values BVA testing)

• Example: An exam has a pass boundary at 40 per cent, merit at 60
per cent and distinction at 80 per cent. What would be the boundary
values for this exam?

196

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 99

EP and BVA together

• If you do boundaries only, you have covered all the
partitions as well
– technically correct and may be OK if everything works correctly!

– if the test fails, is the whole partition wrong, or is a boundary in the
wrong place you have to test mid-partition anyway

– testing only extremes may not give confidence for typical use
scenarios (especially for users)

– boundaries may be harder (more costly) to set up

• The value zero is special. We should always test it if it is
possible or reasonable.

197

EP-BVA – in higher dimensions

• Robustness test (for
independent variables)

X1

X2

a b

c

d

198

• Worst-case testing (for
independent variables)

X1

X2

a b

c

d

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 100

Example – Book Ordering

Country values
• Parameters

– Valid Country

• Hungary

• Other European Countries

• Rest of the world

– Invalid Country

• Empty field

• „All other values” (perhaphs not possible)

Grouping is required because of postage price determination

199

Example – Book Ordering

Form of Payment
• EP Parameters

– Valid Payment

• Visa, MasterCard

• Bank transfer (invoice needed)

• Cach on delivery

– Invalid Payment

• Emty field

• Other value??

200

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 101

Example – Book Ordering

Surname field
• EP Parameters

– Valid Surname

• 1 – 20 charecters

• a – z, A – Z

• áéíöőíüű, ÁÉÍÖŐÍÜŰ, ß,
etc.

• Van de Hut, van der
Heide, O’Connor, etc.

– Invalid Surname

• Empty field

• > 20 charecters

• Special characters, @&+!
etc.

Surname field
• BVA Parameters

– Valid boundary values

• 1 character a – Ű

• 20 characters, a – Ű

– Invalid boundary values

• 0 character

• 21 characters

201

EP – BVA Open Boundaries Guide

• In some cases, there are no boundaries defined for a value

– Ages for humans

– Size of an input field

• Then the following guidelines are suggested:

– Discuss requirement or design specification in order to check
whether there really is no boundary – sometimes there are
boundaries even though they are not written down

– Set a fictional boundary which is beyond a realistic maximum
value (e.g. a human can live to 120 years)

– Research technical limitations – for example, the size of an
input field or database

– Look for boundaries in the rest of the system , or systems you
communicate with

202

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 102

Example – Book Ordering

Amount
• EP Parameters

– Valid values

• 1 – 99

– Invalid values

• 1 > Integer > 99

• Empty field

• Non-integers between 1 and 99

• Letters, special characters, non-
numerics

• Boundary Value Parameters

– Valid

• 1, 99

– Invalid

• 0, 100

203

Decision Tables

• Decision tables are used to record complex business rules that a
system must implement. In addition, they can serve as a guide to
creating test cases

• Apply it for system requirements that contain logical conditions
(business rules). Hence, decision tables testing connects
combinations of conditions with the actions that should occur

204

Conditions 1 2 3 4 5 6 7 8

Condition 1 Y Y Y Y N N N N

Condition 2 Y Y N N Y Y N N

Condition 3 Y N Y N Y N Y N

Actions

Action 1 Y Y N N Y N N N

Action 2 Y N Y Y N Y N N

A single business rule

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 103

Decision Tables

• Each business rule says, in essence

– "Under this particular combination of conditions carry out this
particular combination of actions„

• The coverage criterion for decision tables is expressed by rule

– One test per column in the decision table have to be derived

• The number of columns (business rules) in a decision table is equal
to 2n

– For n = the number of conditions

– Applied when conditions are strictly boolean True or False
• Not all columns in a decision table are actually needed

– We can sometimes collapse the decision table , combining
columns, to achieve a more concise decision table

– Performed when the value of one or more particular conditions
can't affect the actions for two or more combinations of conditions

205

Decision Tables

• To combine columns we should look for two or more columns that
result in the same combination of actions

• In these columns – some of the conditions will be the same, and
some will be different – the different ones don't seem to affect the
outcome

• Insignificant values can be replaced with "–" (dash) or „* ” (dontcare)

Conditions 1 2 3 4 5 6 7 8

Condition A Y Y Y Y N N N N

Condition B Y Y N N Y Y N N

Condition C Y N Y N Y N Y N

Actions

Action A Y Y Y N N N N N

Action B Y N Y Y Y Y N N

Action C Y Y N Y Y N N N

206

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 104

Decision Tables

• Collapse columns:

• Note: not everything can be collapsed

Conditions 1 2 3 4 5 6 7

Condition A Y Y Y Y N N N

Condition B Y Y N N Y Y N

Condition C Y N Y N Y N –

Actions

Action A Y Y Y N N N N

Action B Y N Y Y Y Y N

Action C Y Y N Y Y N N

207

Example: Student Access

A university computer system allows students an access for disc
space depending on their project work status. Students without
projects should use their allotted space, while student with university
projects may use unlimited disc space. This is assuming they have
logged on with a valid username and password.

What are the input conditions and actions?

Input conditions:

•Valid username (authenticate)

•Valid password (authorize)

•Work on project (access control)

Actions:

•Login accepted

•Restricted access

208

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 105

Determine input combinations

• Add columns to the table for each unique combination of input
conditions.

• Each entry in the table may be either ‘T’ for true, ‘F’ for false.

Input Conditions
Valid username T T T T F F F F
Valid password T T F F T T F F
Work on project T F T F T F T F

209

Rationalize input combinations

• Some combinations may be impossible or not of interest
• Some combinations may be ‘equivalent’
• Use “don’t care”

Input Conditions
Valid username F T T T
Valid password * F T T
Work on project * * F T

210

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 106

• Determine the expected actions for each combination of
input conditions

• Each column is at least one test case

Input Conditions
Valid username F T T T
Valid password * F T T
Work on project * * F T
Actions

Login accepted F F T T
Restricted access * * T F

Tags A B C D

Complete the table

211

Design Test Cases

• Usually one test case for each column but can be none or
several

Test Description Expected Outcome Tag
1 Username Booby Invalid username A
2 Username

thisusernametoolong
Invalid username A

3 Username R2D2
Password DarthVader

Invalid password B

4 Valid user, no disc
space

Restricted access C

5 Valid user with disc
space

Unrestricted access D

212

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 107

Decision Table Testing - Remarks

• Always check for redundancy (same columns) and inconsistency
(action sets are different for the same condition sets)

• A decision table is non-deterministic if there is no way to decide
which rule to apply

• In general, entries can be more than just ‘True’ or ‘False’

• There is a technique to generate decision tables automatically from the
requirements (cause-effect graphing)

• If outputs or effects are mutually exclusive, i.e. T occurs in only one
place in each column, we can combine them:

X T F F

Y F T F
Z F F T

Action X Y Z

is equivalent to:

213

• Combinatorial explosions can be avoided:
– Identify the possible combinations

– Use risk to weight those combinations

– Test only the important combinations

• Other techniques are also applicable:
– Classification trees

– Pairwise testing

Avoiding Combinatorial Explosions

214

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 108

Excercise

1. Analyse your daily activities in week-days, holidays and traning-
days. Your actions can be staying home, going to work or going to
picnic.

2. Analyze the following decision table for the triangle problem. How
many test cases do this imply?

c1: a<b+c? F T T T T T T T T T T

c2: b<a+c? — F T T T T T T T T T

c3: c<a+b? — — F T T T T T T T T

c4: a = b? — — — T T T T F F F F

c5: a = c? — — — T T F F T T F F

c6: b = c? — — — T F T F T F T F

a1: Not a triangle x x x

a2: Scalene x

a3: Isosceles x x x

a4: Equilateral x

a5: Impossible x x x

215

State Transition Testing

• Useful technique when actions are triggered by changes of the
input conditions, or changes of ‘state’

• The basis of the test is the system’s State Transition Diagram

• Testers are able to analyze the behaviour in terms of what happens
when a transition occurs

– Transitions caused by events
– An event can be anything that acts as a trigger for a change
– An event can produce an output and / or can change the

system’s internal state
• All possible events and states recorded in a state table

– Shows the relationships between states and inputs
– Highlights possible but invalid transitions

State Transition Diagram consisting of nodes to represent states and directed
line segments to represent transitions between the states. One or more
actions (outputs) may be associated with each transition. The diagram may
represent a labelling transition system or a finite state machine.

216

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 109

State Transition Testing

• Tests can be designed to
– Cover typical sequence of states
– Cover every state
– Exercise specific sequences of

transitions
– Test invalid transitions

• State transition testing is useful
– To test embedded softwares
– To test technical automations
– For modelling business objects

having states
– For testing screen-dialogue flows
– For testing internet based

applications

217

State Transition Diagram – Example (Clock)

Mode =
Time
(S1)

Mode =
Zone
(S2)

Mode =
Set Hrs

(S3)

Mode =
Set Mins

(S4)

S
et

C
ha

ng
e

di
sp

la
y

to
S

et
H

rs

Mode
Change display

to Zone

Mode
Change display

to Time

Mode
Change display

to Set Mins

Mode
Change display

to Time

Set
Add 1 to Hrs Set

Add 1 to Mins

Set

218

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 110

State Transition Testing

Test case 1 2 3 4 5 6 7 8

Initial state S1 S1 S2 S2 S3 S3 S4 S4

Input Mode Set Mode Set Mode Set Mode Set

Expected output Z H T Z M H+ T M+

Final state S2 S3 S1 S2 S4 S3 S1 S4

Test cases containing one transaction

219

State Transition Testing

Test case 1 2 3 4 5 6 7 8 … 16

Initial state S1 S1 S1 S1 S2 S2 S2 S2 … S4

Input Mode Mode Set Set Mode Mode Set Set … Set

Expected
output

Z Z H H T T Z Z … M+

Next state S2 S2 S3 S3 S1 S1 S2 S2 … S4

Input Mode Set Mode Set Mode Set Mode Set … Set

Expected
output

T Z M H+ Z H T Z … M+

Final state S1 S2 S4 S3 S2 S3 S1 S1 … S4

Test cases containing two transactions

220

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 111

State Transition Testing

• Finite state machines are widely used in modeling of all
kinds of systems. Generation of tests from FSM specifications
assists in testing the conformance of implementations to the
corresponding FSM model.

• Most system/subsystem can be modeled as a finite state
machine (FSM), e.g. elevator designs, automobile
components (locks, transmission, stepper motors, etc),
nuclear plant protection systems, steam boiler control, etc.

• Note that FSMs are a part of UML 2.0 design notation
• Their most common representation is:

221

Example – Reservation System

222

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 112

Example – Creating Test Cases

1. Create a set of test cases such that all states are "visited" at least once
under test. The set of three test cases shown below meets this requirement.
Generally this is a weak level of test coverage.

2. Create a set of test cases such that all events are triggered at least once
under test. Note that the test cases that cover each event can be the same as
those that cover each state. Again, this is a weak level of coverage.

3. Create a set of test cases such that all paths are executed at least once
under test. While this level is the most preferred because of its level of
coverage, it may not be feasible: there can be loops in the system. Testing
of loops can be important if they may result in accumulating computational
errors or resource loss (locks without corresponding releases, memory
leaks, etc.).

4. Create a set of test cases such that all transitions are exercised at least
once under test. This level of testing provides a good level of coverage
without generating large numbers of tests. This level is generally the one
recommended.

223

Which test suite will check for an invalid transition of marriage status
sequence?

a) S0-S1-S2-S3-S1-S4
b) S0-S1-S4-S1-S2-S3
c) S0-S1-S3-S1-S2-S1
d) S0-S1-S2-S3-S1-S2

Solution

Simple review each potential answer to determine if the states and
transitions are valid based on the state transition diagram. Take note that
the question above was looking for invalid transitions – there were two of
such kind choice C (S1 to S3 skipped S2, as S2 to S1). The diagram states
that S2 cannot transition to S1, but in reality that transition can be made.

State Transition Testing – Exercise

224

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 113

State Transition Testing

N-switch (Chow) testing is a form of state transition testing in which
test cases are designed to execute all valid sequences of N+1
transitions.

225

• Switch Coverage is a technique for generating sequences of
transitions
– State labels are replaced in the diagram with letters and the transition

labels with numbers
– A state/transition pair can be specified in a table as a letter followed by a

number

A B C D E

F

1

9

2

10 11 5

3

6

14 13 12
7

8

4

State Transition Testing

0-switch 1-switch

A1 A2 A9 A1A1 A1A2 A1A9 A9

B10

A9B8 A9B3

B10 B8 B3 B10

C14

B10

C11

B10

C4

B8A1 B8A2 B8A9

C14 C11 C4 C14

C14

C14

C11

C14

C4

C11

D13

C11

D12

C11

D5

D13 D12 D5 D13

D13

D13

D12

D13

D5

D12

F6

D12

F7

F6 F7 F7A1 F7A2 F7A9

• State-based testing can be well combined with equivalence
partitioning and boundary value analysis

purchase
[bad]

purchase
[good]

pay
[good]

BVA

EP
American
Express MasterCard Visa

ValidInvalid
(neg.)

Invalid
(too large)

0-0.01 max-max

Invalid
(zero)

0.01 9.99 10 10,000 10,000.01

Invalid
(too low)

226

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 114

State Transition Testing – Exercise

• Given the following state transition diagram which of the following series
of state transitions contains an INVALID transition which may indicate a
fault in the system design?

E

Login Browse Basket
Check

out Pay
Log-
out

A B D F G

C

A. Login Browse Basket Checkout Basket Checkout Pay Logout

B. Login Browse Basket Checkout Pay Logout

C. Login Browse Basket Checkout Basket Logout

D. Login Browse Basket Browse Basket Checkout Pay Logout

227

Use Case Testing

• Use cases are descriptions of interactions between users (actors) and the
system in a high level view of the requirements

• The main advantage is that we exercise real user processes or business
scenarios

– Uncovering defects in the process flow
– Helping to uncover integration defects caused by the interactions of

different components
• The main principles applied elsewhere can be applied, also here

– First test the highest priority Use Cases by taking typical examples
– Then exercise some attempts at incorrect process flows
– Followed by exercising the boundaries

• Each Use Case has
– Preconditions which need to be met for a use case to start successfully
– Post-conditions which are the results or the final state of the system after

the Use Case scenario has been completed
• Use Case testing is very useful for designing acceptance tests with customer

participation

228

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 115

Use Case
Diagram

Actor Use Case

Actor
Someone or something outside
the system acting in a role that
interacts with the system. Could
be a human or another system.

Use Case
Defines a sequence of actions
performed by a system
that yields an observable result
of value to the actor

Use Case Model

229

Testable Flows

Basic Flow

Alternate and
Exception Flows

Use Case

• No branches
• No loops
• No conditions

• Self Contained
• Consistent format

Alternate Flow 1

Alternate Flow 2

Alternate Flow 3

Alternate Flow 4

Exception Flow 1

Exception Flow 3
Exception Flow 2

230

Alternate flows lead to success! Cancel is NOT an alternate, it is an exception!
An exception is anything that leads to NOT achieving the use case’s goal.

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 116

Use Case Scenarios

Scenario 1
= basic flow

Scenario 2
= basic flow +
Alternate flow 1 +
Alternate flow 3

Scenario 3
= basic flow +
Alternate flow 3 +
Exception flow 3

Scenarios

231

Test Scenarios

Scenario 1
= basic flow

Scenario 2
= basic flow +
Alternate flow 1 +
Alternate flow 3

Scenario 3
= basic flow +
Alternate flow 3 +
Exception flow 3

Action:

Action:

Action:

Action:

Action:

Action:

Verification:

Verification:

Verification:

Verification:

Verification:

Verification:

User…

User…

User…

System…

System…

System…

Test Case
Template

232

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 117

Fully Dressed Use Case Format

Use Case Name Start with verb

Scope System boundaries (corporate, program)

Level Subfunction, etc.

Primary Actors Primary system users

Stakeholders Who cares and what they want

Preconditions Must be true to start

Postconditions What is guaranteed by success

Main Success Scenario Typical, unconditional path scenario

Extensions/Exeptions Alternative success or failure scenarios

Special Requirements Related non-functional requirements

Technology & Data
Variations List

Varying IO methods and data formats

Frequency of Occurrence Is this system used often?

Miscellaneous Open issues; eg. unmanageable failure scenarios

233

Fully Dressed Use Case Format - Example

ID:UC-6
Title:Register for courses

Description:Student accesses the system and views the courses currently available for him to register. Then he
selects the courses and registers for them.

Primary Actor:Student
Preconditions:Student is logged into system

Postconditions:Student is registered for courses
Main

Success
Scenario:

1. Student selects “Register New Courses” from the menu.
2. System displays list of courses available for registering.
3. Student selects one or more courses he wants to register for.
4. Student clicks “Submit” button.
5. System registers student for the selected courses and displays a confirmation message.

Extensions:2a. No courses are available for this student.
— 2a1. System displays error message saying no courses are available, and provides the reason &
how to rectify if possible.
— 2a2. Student either backs out of this use case, or tries again after rectifying the cause.5a. Some
courses could not be registered.
— 5a1. System displays message showing which courses were registered, and which courses were
not registered along with a reason for each failure.5b. None of the courses could be registered.
— 5b1. System displays message saying none of the courses could be registered, along with a
reason for each failure.

Frequency of
Use:

A few times every quarter

Status:Pending Review
Owner:Attila Kovács
Priority:P3 – Medium

234

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 118

Writing test cases

• Too many scenarios→ risk based testing
• Business case focused→ model it with Activity graph

Insert ATM Card

Eject Card

[card not
recognized]

Enter PINPrompt for PIN[card
recognized]

Confiscate
Card

[card
expired]

 [card not
lost]

[card not
expired] [card lost]

Check PIN

[invalid PIN]

[< 3 tries]

[>= 3 tries]

[valid PIN]
Prompt for Transaction

Select Acct
#

[select
withdraw]

[select
balance or
transfer]

[invalid
account]

[insufficient
funds]

[daily amount
exceeded]

[ATM out
of funds]

Eject Card

Dispense CashPrint ReceiptEject Card
Print Welcome

Message

[valid
account]

[not
exceeded]

[sufficient
funds]

[not out
of funds]

235

Writing test cases

• Technology focused (OO programming) → model it with
sequence diagram

Examine
• Incorrect or missing output
• Missing function/feature in an

object
• Incorrect parameter values �

boundary value analysis
• Correct message - wrong object
• Incorrect message - right object
• Incorrect object state
• Message sent to destroyed object
• Incorrect exception thrown
• Incorrect exception handling
• Incorrect assumption about

receiver’s class

236

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 119

Structure -based
Techniques

Structure based Techniques – Background

• Structure based or white-box (or glass box) testing is based
on an identified structure of the software or system

– Procedure level : backup, recovery, maintenance
procedures, control scripts (batch processing)

– Component level : the structure is the code itself
(statements, decisions, branches)

– Integration level : the structure can be the call-tree (a
diagram in which modules call other modules)

– System level : the structure may be the whole menu
structure of the system, a business process or web page
structure

• Test data is derived from the structure of the software
– Generating test cases from the code itself (pseudo code)
– Code reading and analysis are mostly done by tools

238

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 120

Code Structure Examples

Program MaxSelector

A, B, C, Max: Integer

begin
Read(A);

Read(B);

Read(C);

if (A >= B) then
if (A >= C) then

Max = A;

else
Max = C;

endif
else

if (B >= C) then
Max = B;

else
Max = C;

endif
endif
print(”The Maximum of A, B and C is: ”, Max);

end

Begin

Read(A)
Read(B)
Read(C)

A
>=B

A
>=C

Max = A

B
>=C

Max = C Max = B Max = C

Print(”The Maximum of A, B and C is: ”, Max)

End

Y

N

Y

N NY

Initial node

Final node

239

Control Flow Graphs (CFGs)

• Nodes in the control flow graph are basic blocks

– A basic block (segment) is a sequence of statements always
entered at the beginning of the block and exited at the end

• Edges in the control flow graph represent the control flow

if (x < y) {

x = 5 * y;

x = x + 3;

}

else

y = 5;

x = x+y;

(x < y)

x = 5 * y
x = x + 3

y = 5

x = x+y

B1 B2

B0

B3

• Each block has a sequence of statements
• No jump from or to the middle of the block
• Once a block starts executing, it will execute till the end

Y N

240

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 121

The Idea of Test Coverage

• Test coverage is a very important statement about how
effective the testing has been or what has been achieved

– It provides a quantitive measure of the quality of testing by
measuring what has been achieved

– It provides a way of estimation how much more testing
needs to be done

• Test coverage can be applied to any systematic technique
• Coverage measures

– May be part of the completion criteria defined in the Test
Plan (first step of the Fundamental Test Process)

– Used to determine when to stop testing in the final step of
the Fundamental Test Process

241

Structure-based Testing and Coverage

• Coverage metrics examples
– Statement coverage: all executable statements in the programs

should be executed at least once.
– Decision coverage: all programming decisions for both true and

the false exits of conditions should be executed
– Branch coverage: all branches in the program should be

executed at least once
• Select a test set T such that by executing program P for each

test case d in T, each edge of P’s control flow graph is
traversed at least once

– Path coverage: all execution paths in the program should be
executed at lest once

• Select a test set T such that by executing program P for each
test case d in T, all paths leading from the initial to the final
node of P’s control flow graph are traversed

• The best case would be to execute all paths through the code,
but this is almost impossible

242

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 122

Statement Testing

• The aim of statement testing is to exercise programming
statements

– Only executable statements counts.
• An executable statement performs an action. It can call

a procedure, branch to another place in the code, loop
through several statements, or evaluate an expression.
An assignment statement is a special case of an
executable statement. Statements classification:

– Declarative statements: variable declarations,
constants, procedure and function headers, ...

– Executable statements: the ones that actually do
something, i.e.

» Control statements: conditionals, jumps, loops
and error handling statements.

» Non-control statements: the ones that execute
sequentially.

243

Statement Testing and Coverage

• Statement coverage shows the percentage of the statements
exercised

– If we test all the statements in the code we reach the 100 per
cent statement coverage

• Achieving 100 per cent statement coverage doesn’t mean we have
tested everything

– There are much more rigorous coverage measures

– Statement coverage just provides a baseline

– In general it is too weak to be considered as an adequate
measure of test effectiveness

Statement Coverage =
Number of Statements exercised

x 100 %
Total Number of Statements

244

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 123

Statement Testing and Coverage

• Two types of statement coverage:

– Line coverage

– Basic blocks coverage

• 100% statement coverage means perfection?

Public String FullStatementCoverage(boolean cond)

String foo = null;

if (cond) {

foo = ” ” + cond;

}

return foo.trim();

}

245

Decision Testing and Coverage

• Decision coverage shows the percentage of the exercised decisions
(with both exits)

– If we test all the decisions in the code we reach the 100 per cent
decision coverage

• Complete decision test also doesn’t guarantee revealing of all
mistakes in the code

• 100% decision coverage (basically) guarantees 100% statement
coverage

Decision Coverage=

Number of Decision Outcomes
exerc.

x 100%
Total Number of Decision

Outcomes

246

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 124

Statement vs. Decision/Branch Coverage

assignAbsolute(int x)
{

if (x < 0)
x = -x;

z = x;
}

Consider this program segment, the test set
T = {x= −1} will give full statement coverage,
however neither decision nor branch coverage

(x < 0)

x = -x

z = x

P0

B1

B2

Test set {(x= −1)} does not
execute this edge, hence, it
does not give decision/branch
coverage

Test set {(x= −1), (x=2)}
gives both statement, decision
and branch coverage

true false

Control Flow Graph:

247

int gcd(int x, int y){

while (x != y){

if (x>y) then

x=x-y;

else y=y-x;

}

return x;

}

By choosing the test set {(x=4, y=3)}

all statements are executed at least once.

Exercise

How many test cases we need
to achieve 100% statement and
decision coverage?

By choosing the test set {(x=4, y=3)}

all decisions exit with both true and false.
Try {(x=6, y=3)} and {(x=3, y=4)}

248

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 125

Exercise

How many test cases are needed to achieve 100% decision
coverage?

if (p = q)

s = s + 1;

if (s < 5) t = 10; end if

else if (p > q) t = 5; end if

end if

a) 3 b) 4 c) 5 d) 6

– 2 test cases for 100% statement coverage (all statement line will
be executed)

• p = q and s < 4; p > q;

– 2 more test cases for 100% decision coverage (all decisions in
the code must be tested)

• p = q and s >= 4; p < q

249

Branch Coverage

Almost the same as decision coverage:

• Branch Coverage reveals, if all branches were executed. (For
example, an if-instruction has two branches, the then-branch
and the else-branch.)

• Decision Coverage reveals, if all decisions evaluated to both
true and false. (For example, the decision of an if-instruction is
what is between the parentheses.)

BUT in short circuit languages:

if (condition1 && (condition2 || function1()))

statement1;

Else statement2;

they can be different

250

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 126

Path Coverage

areTheyPositive(int x, int y)
{

if (x >= 0)
print(“x is positive ”);

else
print(“x is negative ”);

if (y >= 0)
print(“y is positive ”);

else
print(“y is negative ”);

}

(x >= 0)
P0

B1
print(“x is p ”)

B2
print(“x is n ”)

(y >= 0)
P3

B4
print(“y is p ”)

B5
print(“y is n ”)

return

B6

Test set:
T2 = {(x=12,y= −5), (x= −1,y=35)}
gives both branch and statement
coverage but it does not give path coverage

Set of all execution paths: {(P0,B1,P3,B4,B6), (P0,B1,P3,B5,B6), (P0,B2,P3,B4,B6),
(P0,B2,P3,B5,B6)}
Test set T2 executes only paths: (P0,B1,P3,B5,B6) and (P0,B2,P3,B4,B6)

true false

true false

251

Path Coverage

areTheyPositive(int x, int y)
{

if (x >= 0)
print(“x is positive ”);

else
print(“x is negative ”);

if (y >= 0)
print(“y is positive ”);

else
print(“y is negative ”);

}

(x >= 0)
P0

B1
print(“x is p ”)

B2
print(“x is n ”)

(y >= 0)

P3

B4
print(“y is p ”)

B5
print(“y is n ”)

return
B6

Test set:
T1 = {(x=12,y=5), (x= −1,y=35),
(x=115,y= −13),(x= −91,y= −2)}
gives both branch, statement and path
coverage

true false

true false

252

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 127

Path Coverage

• Number of paths is exponential in the number of conditional
branches

– testing cost may be expensive

• Note that every path in the control flow graphs may not be executable

– It is possible that there are paths which will never be executed
due to dependencies between branch conditions

• In the presence of cycles in the control flow graph (for example loops)
we need to clarify what we mean by path coverage

– Given a cycle in the control flow graph we can go over the cycle
arbitrary number of times, which will create an infinite set of paths

– Redefine path coverage as: each cycle must be executed 0, 1, ...,
k times where k is a constant (k could be 1 or 2)

253

Basis Path Testing

• Recall that path coverage reports whether each of the possible paths
in each function have been followed. A path is a unique sequence of
branches from the function entry to the exit.

• It may be straightforward to identify linearly independent paths or
basis paths (introducing at least one new node or edge that is not
included in any other paths) of simple programs.

• Unfortunately, for complicated programs it is not so easy to determine
the number of independent paths.

• McCabe Cyclomatic metric upper bounds the number of
independent paths.
– Given a non-linear control flow graph G, cyclomatic complexity

V(G):
V(G)= E-N+2

• N is the number of nodes in G
• E is the number of edges in G

254

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 128

Path Testing - Example

• Derive a set of paths that cover graph G
– Path 1: 1-2-3-8
– Path 2: 1-2-3-8-1-2-3-8
– Path 3: 1-2-4-5-7-8
– Path 4: 1-2-4-6-7-8

• Derive an independent (basis) path set.

• Prepare test cases that will force the
execution of each path in the basis set

1

2

3
4

5 6

7

8

255

1

2
3 5

Example

What is the cyclomatic complexity of
the following CFGs?

256

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 129

Experience -based
Techniques

257

Experience Based Techniques

• Experience based techniques are useful when testers have not
enough time to execute a full structured test set

– It demands tester’s experience to reveal the most effective tests
to be run

• Experience-based techniques

– Error guessing

– Exploratory testing

Error guessing is a test design technique where the tester is used
to anticipate what defects might be present in the component or
system under test as a result of errors made, and to design tests
specially to expose them.

Exploratory testing is a test design technique where the tester
actively controls the design of the tests as those tests are performed
and uses information gained while testing to design new and better
tests (compare to „twenty questions” game)

258

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 130

Experience Based Techniques

– Checklist-based testing
• Is used by experienced testers

who are using checklists to guide
their testing.

• The checklist is a remainder list of
what to be tested (list of rules,
particular criteria, data conditions
to be verified, etc.)

• Developed personally over time.

– Attack Testing
• Focuses on trying to include a

specific type of failure.
• Target can be: user interface, OS,

DB interfaces, SW vulnerabilities

259

• Useful for focusing on and detecting particular types of defects
• The target defects are determined based on taxonomies

(hierarchical lists) that list root causes, defects, and failures

• There are different kinds of given taxonomies

– Beizer (defect taxonomies)

– Kaner (general taxonomy, more than 400 defects)

– Binder (OO taxonomy)

– Vijayaraghavan (taxonomy for e-commerce applications)

• Many organizations have their own classification system

– Logic, Requirements, Design, etc.

• May classify in more detail

– Initialization, interface, etc.

Defect Based Techniques

260

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 131

• The tester who uses the taxonomy can sample from the list,
selecting a potential problem for analysis.

– The tester’s question is whether the software under test
could have a bug analogous to the one from the list.

– If so, the next question is what type of test would expose this
type of bug.

• Tester who has run out of good test ideas looks for plausible
failure modes in the risk list, then creates tests looking for those
types of failures

• Tester unfamiliar with an aspect of the program looks for
potential failure modes in the risk list, then explores the program
looking for those types of failures.

Defect Based Techniques

261

Choosing Test Techniques

• To ensure that many defects from different classes are found we must
use different test techniques

• The selection of which test technique(s) to use depends on a number
of factors, including internal and external factors

Internal Factors External Factors
• Models used
• Tester knowledge / experience
• Likely defects
• Test objective
• Documentation
• Life-cycle model
• Previous experience of types of

defects found

• Level and type of risk
• Customer / contractual requirements
• Type of system
• Regulatory requirements
• Time and Budget

262

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 132

Exercise

What techniques would be MOST appropriate if the specifications are
outdated?

a) Structure-based and experience-based techniques

b) Black-box and specification-based techniques

c) Specification-based and structure-based techniques

d) Structure-based technique and exhaustive testing

• Solution

– Black-box technique and specification-based technique both
rely on the analysis of existing specifications to derive test
cases. If the specification is outdated, it is likely that invalid test
cases will be produced or developed. For this reason, we can
eliminate response options b) and c). Response option d) is a
plausible answer except that exhaustive testing is not a
technique but a test approach. Response option a) is
considered to be the correct answer.

263

Implementation &
Execution

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 133

Fundamental Test Process

Test Implementation
� Developing and implementing the test cases, creating test data and prepare

expected results
� Developing and prioritizing test procedures, optionally, preparing test harnesses

and writing automated test scripts
� Creating test suites from the test procedures for effective test execution
� Verifying that the test environment has been set up correctly (or building it)
Test Execution
� Recording the identities and versions of the Software Under Test, test tools and

testware
� Executing test procedures either manually or by using test execution tools,

according to the planned sequence (most important ones first)
� Logging the outcome of test execution (Pass / Fail / Blocked) and comparing

actual results with expected results, logging the coverage levels achieved
� Reporting discrepancies as incidents and analyzing them in order to establish

their cause
� Repeating test activities as a result of action taken for each discrepancy

(confirmation or re-testing, regression testing)

Test planning
and control

Test analysis
and design

Test
implementation
and execution

Evaluating exit
criteria and
reporting

Test closure
activities

Test
implementation
and execution

265

Terminology

A test harness is a collection of software and test data configured to test a
program unit by running it under varying conditions and monitoring its behavior
and outputs. It has two main parts: the test execution engine and the test script
repository. It is a test environment comprised of stubs and drivers needed to
execute a test (for more details see later).

Test log: A chronological order of relevant details about the execution of tests.

Re-testing (confirmation testing): Testing that runs test cases that failed the
last time they run, in order to verify the success of corrective actions.

Test suite: A set of several test cases for a component or system under test,
where the post condition of one test is often used as the precondition for the next
one.

Regression testing: Testing of a previously tested program following
modification to ensure that defects have not been introduced or uncovered in
unchanged areas of the software as the result of the changes made.

266

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 134

Re-testing (re-running a failed test)

x

x

x

x

New faults introduced by the first
fault fix not found during re-testing

Re-test to check
Fault now fixed

�

267

Regression testing

• Looking for any unexpected side-effects

x

x

x

x
�

Can’t guarantee
to find them all

268

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 135

Regression testing

• Misnomer: "anti-regression" or
"progression"

• Standard set of tests - regression test
pack

• At any level (unit, integration, system,
acceptance)

• Well worth automating
• A developing asset but needs to be

maintained
• Regression tests are performed

– after software changes, including faults
fixed

– when the environment changes, even if
application functionality stays the same

– for emergency fixes (possibly a subset)

269

Regression testing

• Regression test suites
– evolve over time

– are run often

– may become rather large

• Maintenance of the regression test
pack
– eliminate repetitive tests (tests

which test the same test condition)
– combine test cases (e.g. if they are

always run together)
– select a different subset of the full

regression suite to run each time a
regression test is needed

– eliminate tests which have not
found a fault for a long time (e.g.
old fault fix tests)

270

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 136

• Test execution tools (e.g. capture-replay) are regression
testing tools - they re-execute tests which have already
been executed

• Once automated, regression tests can be run as often
as desired (e.g. every night)

Regression testing

271

Static Testing

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 137

Static Testing

• Testing of work products other than code and the testing of code
without actually executing it

– Requirements
– Specification documents
– Any other documents

• Techniques
– Review – typically used to find and remove errors and

ambiguities in documents before they are used in the
development process

– Static analysis – enables code to be analyzed for structural
defects or systematic programming weaknesses that may lead
to defects

Static testing is the term used for testing where the code is not
exercised. Remember: Dynamic testing involves the execution
of the software.

273

Reviews and the Test Process

• A review is a systematic examination of a document by one or
more people with the main aim of finding and removing errors

• Reviews can be used to test anything that is written or typed
– Requirement Specification

– System design

– Code

– Test Plan

– Test Case

• Reviews are the first form of testing in the system development
– Review document before code is written

– Review code against development standards before test execution
done

274

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 138

Benefits of Reviews

• Benefits of finding the defects early in the life cycle
– Development productivity can be improved
– Ambiguous content can be discovered and refined
– Testing costs and the time can be reduced
– Reduction of lifetime costs can be achieved
– Cost and time saving

• Defect types found by reviews
– Deviations from standards
– Requirements defects
– Design defects
– Insufficient maintainability
– Incorrect interface specifications

275

Review Process

• Level of formality
– The more mature the process, the more formal the review

– Legal or regulatory requirements determine the formality level

– The need for an audit trail

• Objectives
– Finding defects (not failures!!)

– Gaining understanding

– Generating discussion

– Making decision by consensus

• Basic review process steps
– Studying the document

– Identifying issues and problems and inform the author (by
reviewers)

– Updating the document (by the author)

276

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 139

• Manager
– Decides what is to be reviewed
– Ensures sufficient time allocation
– Determines if the review objectives have been met

• Moderator (Facilitator)
– Plans the review
– Runs the meeting
– Does the follow-up

• Review Leader
– Takes responsibility

• Author
– Writer or person with chief responsibility for the develoment of the

documents
– Responsible for fixing any found defects

• Reviewer
– Individuals with specific technical or business knowledge

• Scribe (Recorder)
– Documents all the issues and defects, problems and open points

identified during the meeting

Roles and Responsibilities

277

Kick-off

Follow-up
and

Final report

Rework

Review
meeting

Individual
preparation

Planning

Formal Review Process

278

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 140

• Defining the scope, estimating effort and timeframe
• Selecting the personnel

– Moderator is chosen submitting the deliverable to him / her and ask for review
– The moderator first assesses the readiness of the work product for review (line

numbers, stable and available references, automatic checks are ready, …)
– The moderator selects individuals for the review team (ideal size is 4-6 person)

• Allocating roles and types
– Each reviewer is given a role to provide them with a unique focus on the

document under review (focus on higher level documents, on standards, on
quality aspects, etc.)

• Defining and checking the entry and exit criteria
• Selecting the parts of the document to be reviewed

– This depends on the size of the document
– A large document may need to be split into smaller parts

• Assign roles
• Create review package
• Schedule meetings

• Select / request a moderator
• Assist moderator in his / her tasks

Author

Moderator

ActionRole

Planning

279

• Distributing documents
• Explaining objectives, process and documents to the participants

– The team gets information about the work product
– Author gives a brief summary of the article, and may draw attention to areas of

concern
– The team decides how much time they need for the review and schedule the

meeting
– The moderator should remind the team members of the purpose of the technical

review
– The purpose is to develop findings for the work product, not to redesign the article

• Checking entry criteria

• Listen, learn and ask questions

• Present high-level overview of items to be reviewed

• Log duration of the meeting and a list off attendees

• Distribute review package
• Conduct meetings
• Secure commitments

Reviewers

Author

Recorder

Moderator

ActionRole

Kick-off (initiate review)

280

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 141

• The reviewers perform their individual review and gather their findings (use checklist!!)
• Defects by severity – critical, major, minor - and type , like

– Error - A statement is incorrect
– Conflict - A statement is in disagreement with a different statement in the work

product
– Missing - Some necessary or required information is not present
– Extra - Some feature or design has been added that is not necessary
– Unclear - A statement in the work product has several possible interpretations

• Questions
• External Issues
• Praise

• Answer reviewer questions

• Monitor reviewers' process
• Help reviewers with process issues.

• Review the deliverable
• Record findings
• Transmit findings to the moderator before the discussion.

Author

Moderator

Reviewers

ActionRole

Individual Preparation

281

Individual Review Techniques

282

• Ad hoc
• Checklist-based

• A review checklist consists of a set of questions based on
potential defects

• Scenario-based
• A scenario-based approach supports reviewers in

performing “dry runs” on the work product based on
expected usage of the work product

• Role-based
• Reviewers evaluate the work product from the perspective

of individual stakeholder roles (admin, experienced /
unexperiences users, etc.)

• Perspective-based
• Reviewers take on different stakeholder viewpoints (e.g. in

requirement reviews)

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 142

• The formal or informal process of providing the defect list to the author
• In case of the desktop check, the reviewer provides only the list of defects

without any formal meeting.
• Checking fulfilment of exit criteria

• Listen and learn
• Answer questions
• Thank the reviewers for their help

• Finalize the findings log
• Summarize findings at end of discussion
• Log duration and attendees

• Stay away

• Present findings
• Participate in determining review result

• Keep discussion focused on identification, not solution
• Keep discussion focused on the work product, not the author

Author

Recorder

Manager

Reviewers

Moderator

ActionRole

Review Meeting

283

Review Meeting Process (Issue Communication)

• Moderator distributes copies of agenda and collation report
to reviewers

• Moderator describes purpose of meeting , process, and
ground rules

• Moderator polls reviewers , asking how much time they spent
in their preparation

– If a reviewer is not prepared, she should change role to
observer

– If too many reviewers are not prepared, the meeting should be
rescheduled for another time

• Moderator polls reviewers for any general comments before
beginning a point-to point review

• Each of the identified findings is presented in sequence

284

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 143

Review Meeting Process

• Recorder notes findings . This includes the description,
severity (critical, major, minor) and type

• Recorder reads the list of findings
– This gives a chance to add clarification and to ask any final

questions about it
• Team determines the outcome

– Accept as is
– Accept with changes
– Revise with informal confirmation
– Revise and hold another formal review

• Author collects and marked packages that may contain the
defects

285

Rework (Fixing)

• The process of correcting or rewriting the deliverable by the
author

• The author has to indicate where changes are made.

Author

ActionRole

• Revise the work product as indicated by the review
findings

286

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 144

Follow-up

• The process of checking whether all of the bugs reflected in
the recorded minutes are indeed corrected

• Documents can be distributed and collected again
• For more formal review types the moderator checks for

compliance to the exit criteria

• Monitor revision progress
• Assure all revisions have been made
• Confirm revisions as assigned during the discussion

Moderator

Verifier

ActionRole

287

Final Report

• Summarize the verification
• Perform statistical analysis as needed
• Make recommendations as appropriate

Moderator

ActionRole

• The process of recording the review
process

• All the activities and the relevant
information should be recorded and
stored, as well as the lessons learnt

• The statistical analysis (number of
defects found, defects found per
page, time spent checking per
page, total review effort, etc.)
addresses issues

288

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 145

Review Process Types

LowInformal
review

Walk-
through

Technical review

Inspection

High

289

Informal Review

• Unless mandated, likely to happen only when convenient
• No control over level of attention given by peer
• May be a subjective evaluation
• Can vary significantly in efficiency and effectiveness
• No deadline

• Simple
• Low overhead
• Better than no review at all
• Requires a little or no management approval or intervention
• Easy to "legitimize" and force it to happen

• Author
• Reviewer

• An informal review (desk check) is a one-to-one peer review
• The main purpose is to find defects
• Inexpensive but may not be very effective at finding defects
• There is no formal process underpinning the review
• The review may be documented but this is not required

Disadvantages

Advantages

Roles

Description

290

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 146

Walk-through

• Higher overhead than in case of an informal review
• Still no control over level of attention by peers
• May be a subjective evaluation of the deliverable
• May get side-tracked in proposing solutions
• May not be any more efficient than informal review

• Still relatively simple
• May be more effective at finding defects than informal reviews
• Easy for management to „legitimize” and force it to happen

• Author
• Leader, Recorder
• Multiple reviewers (maximum 4-6)

• A step-by-step presentation by the author in order to (1) find defects
(2) consider alternative implementations (3) evaluate conformance
to standards and specs (4) gather information and es tablish a
common understanding of content.

• Issues are discussed/raised at peer level.
• Detailed study of the documents in advance is not always required
• Usually used to check (use case) scenarios and program code

Disadvantages

Advantages

Roles

Description

291

Technical Review

• Moderator (review leader)
• Author
• Recorder
• Multiple reviewers (architects, chief designers and key users)

• A peer group discussion activity that focuses on (1) achieving
consensus on the technical approach to be taken, confirms that
product (2) conforms to specifications (3) adheres to regulati ons,
standards, guidelines, plans (4) changes are properly
implemented (5) changes affect only those system area s
identified by the change specification

• Defects are found by experts who focus on the content of the
document.

• Preparation required
• Vary in practice from the informal to very formal and have number of

purposes (discussion, decision making, evaluation of alternatives,
finding defects, solving technical problems etc.)

Roles

Description

292

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 147

Technical Review

• Higher overhead than walkthrough
• Visibility of meeting may force management per-approval
• The increased formality can be seen as „draconian”

• Known to be more efficient and effective than walkthroughs
• Control the meeting process
• Less subjective

• Software product reviewed
• List of resolved and unresolved software defects
• List of unresolved system or hardware defects
• List of management issues
• Action item status
• Recommendations for unresolved issues
• Whether software product meets specification

Disadvantages

Advantages

Output

Input

• Software requirements specification
• Software design description
• Software test documentation
• Software user documentation
• Installation procedure
• Release notes

293

Inspection

• Moderator (review leader)
• Author
• Recorder
• Multiple reviewers (inspectors) - Verifier

• The most formal peer review that relies on visual examination
of documents to detect defects, confirming that the software
product satisfies (1) specifications, (2) specified quality attributes
(3) regulations, standards, guidelines, plans (4) identifies
deviations from standard and specification

• Individual inspectors work within defined roles
• Based on rules and checklists, uses entry and exit criteria
• Pre-meeting preparation, list of findings with metrics are

essential

Roles

Description

294

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 148

Inspection

• Requires a significant „infrastructure” investment
• It is not a simple process
• The increased formality can be seen as „draconian”
• Requires management pre-approval and support

• Known to be more efficient and effective than walkthroughs
• Control over the level of attention by reviewers
• Much less subjective
• High level of audit trail

• Software requirements specification
• Software design description
• Source code
• Software test documentation
• Software user documentation
• Maintenance manual
• Release notes

• Software product inspected
• Size of the materials inspected
• Defect list (detail) and summary list
• Disposition of the software product
• Estimation of the rework effort and completion date

Disadvantages

Advantages

Input

Output

295

Informal
Review

Walk-through
Technical
Review

Inspection

Planning − mandatory mandatory mandatory

Kick-off − − optional mandatory

Individual
Preparation

− optional mandatory mandatory

Review
Meeting

mandatory mandatory mandatory mandatory

Rework mandatory mandatory mandatory mandatory

Follow-up − optional optional mandatory

Review Processes Types – Summary

296

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 149

IEEE 1028 - Software Reviews

• Defines systematic software reviews having
– team participation
– documented results of the review
– documented procedures for conducting the review

• Covers five types of reviews
– management reviews
– technical reviews
– inspections
– walkthroughs
– audits

297

Cost and Quality of Inspections

• There is a “cost of quality” associated with inspections. In
software, person-hours are the highest measurable
expense

• Many organizations find that the cost of inspection does
not generate a return on investment
– When not supported by management, easily become “busy

work”
• Some inspect a percentage of code
• Others inspect only critical portions
• When done correctly, reviews are valuable defect

finding tools

298

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 150

Review Process – How? When? Why?

• Success factors
– Clearly defined and agreed objective, the right people

should be involved
– Review techniques suitable to the type and level of work-

products
– Checklists or roles should be used where appropriate
– Management support
– Learning, process improvement

• Quantitative approaches
– How many defects found
– Time taken to review / inspect
– Percentage of project budget used / saved

299

Static Analysis by Tools

• Its objective is to find defects in
– Software source code

– Software models

• Static analysis tools give the greatest value when used
during component or integration testing. They run
automatically and report defects, quality notices

Software source code is any series of statements written in
human-readable computer programming language which can
be converted to equivalent computer executable code.

Software model is any artificial model that can be used to
express information or knowledge in a structure that is defined
by a consistent set of rules. The model is an image of the final
software solution

300

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 151

Defect Removal Cost

Remember: Cost of defect removal rises
exponentially for defects found later in the
development cycle

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Dynamic Testing

Static Testing

301

Static Analysis by Tools – Benefits

• Early detection of defects prior to test execution
• Early warning about suspicious aspects of the code /

design (e.g. complexity)
• Identification of defects not easily found by dynamic

testing, i.e. security vulnerabilities
• Improved maintainability of code and design (i.e.

architecture)
• Generating code metrics
• Prevention of defects

302

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 152

Types of Automated Static Analysis

• Syntactic Analysis
• Data Use Analysis

– Aim is to identify data flows that do not conform to programming
practices, e.g. variables are not read before they are written, etc.

• Control Flow Analysis
– Aim is to detect poorly structured code, e.g. multiple exits from a

loop, dead code, etc.

• Interface Analysis
• Program Slicing

– Program slicing involves focusing on a particular subset of
variables within a given program. The parts of the program
that are relevant to the subset of variables denotes a
program slice.

• Path Analysis

303

Static Analysis by Tools

304

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 153

Test Reporting and
Closure

Fundamental Test Process

Evaluating exit criteria
� Checking test logs against the exit criteria specified in test planning

� Determining whether more tests are needed or exit criteria should be

changed

Reporting
� Writing a test summary report for stakeholders
� Communicating effectively the findings
� Providing analyzed information and metrics
� Assessment of defects remaining
� Economic benefit of continued testing
� Outstanding risks
� Level of confidence in tested software

Test planning
and control

Test analysis
and design

Test
implementation
and execution

Evaluating exit
criteria and
reporting

Test closure
activities

Evaluating exit
criteria and
reporting

306

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 154

Fundamental Test Process

Test planning
and control

Test analysis
and design

Test
implementation
and execution

Test closure
activities
Test closure
activities

Test closure activities
� Checking which planned deliverables have

been delivered, the closure of incident reports
or raising of change records for any that
remain open, and the documentation of the
acceptance of the system

� Finalizing and archiving testware, the test
environment and the test infrastructure for
later reuse

� Handover of testware to the maintenance
organization

� Analyzing lessons learned for future releases
and projects, and the improvement of test
maturity

Evaluating exit
criteria and
reporting

307

Test Documentation

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 155

IEEE 829 Document Tree

Project
Documents

Test Item
Documents

Test Plan

Test Design
Spec

Test Design
Spec

Test Design
Spec

Test Case
Spec

Test Item
Transmittal

Report

Test Items

Test Proc.
Spec

Test Execution

PD: Requirements, specifications
TID: Release notes, defect reports
TI: Description of item to be tested
TP: Scope, approache, resources,
scheduling,
TDS: Features to be tested, approach,
feature pass/fail criteria
TCS: I/O Spec, environment needs,
items/feature to be tested
TITR: Identifies the items being sent
for testing, including location and
status
TPS: Steps executing a set of test
cases
TL: Details about the execution of the
tests, including results and
environment
TIR: Documentation of any incident
that occured during testing that
requires investigation
TSR: Summary of the results of the
testing activities and evaluation of
results

Test Logs

Test Summary
Report

Test Incident
Reports

309

IEEE 829 Software Test Documents
• Test Plan : a management document that shows what will be tested, how

the testing will be done (including SUT configurations), who will do it,
how long it will take (although this may vary, depending upon resource
availability), what the test coverage will be, what quality level is required

• Test Design Specification : detailing test conditions and the expected
results as well as test pass criteria (test scenarios)

• Test Case Specification : specifying the test data for use in running the
test conditions identified in the Test Design Specification

• Test Procedure Specification : detailing how to run each test, including
any set-up preconditions and the steps that need to be followed

• Test Item Transmittal Report : reporting on when tested software
components have progressed from one stage of testing to the next

• Test Log : recording which tests cases were run, who ran them, in what
order, and whether each test passed or failed

• Test Incident Report : consists of all details of the incident such as
actual and expected results, when it failed, and any supporting evidence
that will help in its resolution.

• Test Summary Report : A management report providing an indication
whether the software system under test is fit for purpose

310

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 156

Test Plan & Levels

• Successful Test Planning enables the mapping of tests to the
software requirements and defines the entry and exit criteria for
each phase of testing

• The Level of Test Plan defines what the test plan is being created
for e.g. subsections of testing: Integration, Unit, Acceptance

• A Test Plan document will follow the same structure for each level
of test plan. The only difference being the content and detail.

• Hierarchy of Test Plans exists

• All Test Plans must be agreed

311

The Test Plan Document

• Test Plans follow a strict structure to ensure all aspects of testing are
covered. This is stated by the ANSI/IEEE 829:1988 Test Plan
Structure :

1. Plan Identifier 8. Suspension Criteria

2. Test Items 9. Test Deliverables

3. Risk Issues 10. Environmental
Requirements

4. Features to be Tested 11. Staffing/Training
Needs

5. Features not to be
Tested

12. Schedule of Test

6. Test Approach 13. Planning for risks

7. Pass/Fail Criteria 14. Approvals

312

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 157

Test Plan

• Identifier: identifies the Test Plan, it’s test level and the level of
software it’s related to

• Test Items: specifies the things that are to be tested within the scope
of this test plan:
– Functions of the software
– Requirements stated in the Design stage

SW, HW and other materials needed for testing will also be listed here
• Risks: all risks associated with the software and its testing need to be

identified in this section

• Features to be tested: the section identifies the features to be tested
from a user’s point of view. This is a low-level non-technical
description

• Features not to be tested: this section lists the features not to be
included in the testing process, identifying the reason behind its
exclusion

• Approach: the bulk of information on testing techniques and
methodologies will be included in this section

313

Test Plan (contd.)

• Test Pass/Fail Criteria : a successful Test Plan should indicate when
a project stage can or cannot proceed

• Suspension Criteria: specifies what constitutes stoppage for a test
and what is an acceptable number of defects to allow testing to
continue
– E.g. if the number of defects reaches a point where the follow on testing has no

value, it makes no sense to continue the test and waste resources

• Test deliverables: e.g. test logs, incident reports, outputs, corrective
actions taken

• Environmental requirements: states any special requirements for
this test plan including necessary HW and SW required for testing to
proceed

• Staffing/Traning needs: this section identifies all personnel and the
hierarchies relevant to the test plan

• Schedule of Tests : Milestones should be identified with schedules
being specified for each milestone. It should be realistic based on
valid estimations

314

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 158

Test Plan (contd.)

• Planning for Risks and Contingencies: this section aims to identify
the overall risks to the project with an emphasis on the testing
process. Identified risks are then given possible solutions.

• Approvals: Approvals states who can consent a process as
complete and allow the project to proceed to the next stage.
– This depends on the level of test plan and can differ from a test team leader to a

more executive employee

How to create a Test Plan:

315

Test Design Specification

• The test design is the first stage in developing the tests for software
testing projects. It records what needs to be tested, which features of
a test item are to be tested, and how a successful test of these
features would be recognized

• The test design does not record the values to be entered for a test,
but describes the requirements for defining those values

• This document is very valuable, but is often missing on many
projects. The reason is that people start writing test cases before they
have decided what they are going to test

316

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 159

Test Design Specification Template

• Test design specification identifier
– Purpose, references, definitions, acronyms, abbreviations, version,

revision history

• Features to be tested
– Features, attributes, characteristics, groupings of features with references

• Approach refinements
– Selection of specific test techniques, reasons for technique selection,

method(s) for results analysis, tools, relationships to the levels of testing,
summary information relating to multiple test cases or procedures, shared
environment, setup/recovery, dependencies

• Test identification
– Identification of each test case and procedure

• Feature pass / fail criteria
– Describing the criteria for assessing the feature or set of features and

whether the test(s) were successful of not.

317

Test Case Specification Template

• A document specifying a set of test cases (objective, inputs, test
actions, expected results, and execution preconditions) for a
test item.

– Test Case specification identifier

– Test items (features and conditions)

– Input specifications (data, ordering, values with tolerances or
generation procedures, states, timing, etc.)

– Output specifications

– Environmental needs (HW, SW, other)

– Special procedural requirements

– Intercase dependencies

318

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 160

Test Procedure Specification Template

• Test Procedures are developed based on the Test Design and
the Test Case Specification. The document describes how the
tester will physically run the test, the physical set-up required,
and the procedure steps that need to be followed. The standard
defines ten procedure steps that may be applied when running
a test.

– Test procedure specification identifier
– Objective/purpose
– Special requirements
– Procedure steps:

• Log
• Set-up
• Start
• Proceed
• Measure
• Shutdown
• Restart
• Stop
• Wrap-up
• Contingency

319

Test Summary Report Specification Template

• A detail of all the important information to come out of the testing
procedure, including an assessment of how well the testing was
performed, an assessment of the quality of the system, any
incidents that occurred, and a record of what testing was done and
how long it took to be used in future test planning

• This final document is used to determine if the software being tested
is viable enough to proceed to the next stage of development.

• Once approved, this report represents the approval and acceptance
of the executed tests.

– Test summary report identifier
– Summary
– Variances
– Comprehensive assessment
– Summary of results
– Evaluation
– Summary of activities
– Approvals

320

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 161

Exercise – IEEE 829 Standard

• In which document should features to be tested, approach refinements, and
feature pass / fail criteria BUT not environmental needs be specified?
a) Test Case Specification
b) Test Plan
c) Test Procedure Specification
d) Test Design Specification

• Solution
– Test Case Specification identifies the input values, expected results, and

executions conditions for a test item.
– Test Design Specification describes the test conditions or coverage items for a

test item or feature. Likewise, it specifies the test approach refinements, high level
test cases, and pass / fail criteria.

– Test Plan records the test planning process. It describes the scope, approach,
resources, and schedule of testing activities. Also it identifies the testing tasks,
who will be responsible for each task, and any risks that necessitate contingency
planning.

– Test Procedure Specification explains how a tester will run a test. It specifies the
sequence of actions or steps to be taken by the tester in order to execute the test.
Test Procedure Specification is also known as Test Script or Manual Test Script.

321

Exercise – IEEE 829 Standard

• Features to be tested, approach, item pass / fail criteria, and test deliverables
should be specified in which document?
a) Test Case Specification
b) Test Procedure Specification
c) Test Plan
d) Test Design Specification

• Solution
– This type of question requires not only familiarization with but also

application of IEEE Standard of Software Test Documentation (IEEE Std
829:1998). Sections of a Test Plan include:

• Features to be tested
• Approach
• Item pass / fail criteria
• Test deliverables

322

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 162

Test Monitoring
and Control

Test Progress Monitoring

• Tracking the testing work via well-defined metrics

• Providing feedback and visibility of the progress activities to the
stakeholders

• Estimating and deciding the future course of action based on the
metrics calculated

• Measure testing against the exit criteria

• Data collection
– Manually
– Sophisticated test management tools
– Automatic output from a tool

Test monitoring is a test management task that deals with the
activities related to periodically checking the status of a test
project.

324

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 163

Metrics for Monitoring

• Test execution metrics (number of test cases pass, fail,
blocked, on hold)

• Defect metrics
• Requirement traceability metrics
• Test coverage metrics
• Miscellaneous metrics like level of confidence of testers, dates,

milestones, cost, schedule and turnaround time.

Defect density is the number of defects
identified in a component or system
divided by the size of the component or
system expressed in standard
measurement terms.

Failure rate is the ratio of the number of
failures of a given category to a given
unit of measure (e.g. failures per
number of time unit or transactions)

325

Test Control

Examples include:
• Prioritizing the testing efforts

• Revisiting the test schedules and dates

• Reorganizing the test environment

• Re prioritizing the test cases / conditions

Test monitoring and control goes hand in hand. Being primarily a
manager’s activity, a Test Analyst contributes towards this activity by
gathering and calculating the metrics which will be eventually used for
monitoring and control.

Test control is basically a guiding and taking corrective measures
activity, based on the results of test monitoring.

326

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 164

Test Basis
1. Analyse the Test Basis
2. Identify the Test Objects and Conditions (Items, Scenarios)
3. Analyse Risks
4. Validate the Analysis Artefacts

Test Policy
Test Strategy

Test Design

Test Planning

Test Analysis

1. Architect the Test Approaches
2. Select the Test Design Techniques
3. Determine the Test Selection Criteria & Test Coverage
4. Establish the Test Data
5. Design the Test Cases and Test Suits
6. Design the Test Environment
7. Validate the Artefacts and Capture Traceability

Test Cases
Test Scripts
Test Suits

Test Environment
Descriptions

Test Approaches,
Test Conditions
Risk Inventory,

Process, Project and
People Data

Test Implementation and Execution

1. Implement / Automate Test Cases, Test Suits and Test Scripts
2. Set up the Test Environment
3. Implement the Test Approaches
4. Execute the test
5. Analyse the Test Results and Logs
6. Resolve the Incidents and Generate further Tests if needed
7. Evaluate the Exit Criteria and Report the Results

Test ClosureTest Results

M
o
n
i
t
o
r

a
n
d

C
o
n
t
r
o
l

Summary and exercise: determine the work products

Configuration
Management

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 165

Configuration management

• Since software changes frequently, software systems can be
thought of as a set of versions, each of which has to be
maintained and managed

• Versions implement proposals for change, corrections of faults,
and adaptations for different hardware and operating systems

• Configuration management (CM) is concerned with the
policies, processes and tools for managing changing software
systems.

Configuration Management is the process of identifying and defining the
items in the system, controlling the change of these items throughout their
lifecycle, recording and reporting the status of items and change requests,
and verifying the completeness and correctness of items – IEEE 729:1983

329

CM activities

• Change management
– Keeping track of requests for changes to the software from customers

and developers, working out the costs and impact of changes, and
deciding the changes should be implemented.

• Version management
– Keeping track of the multiple versions of system components and

ensuring that changes made to components by different developers do
not interfere with each other.

• Build Management
– The management of the process for assembling program components,

data and libraries, then compiling these to create an executable system.

• Release management
– Preparing software for external release and keeping track of the system

versions that have been released for customer use.

330

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 166

CM terminology

Term Explanation
Configuration item or
software
configuration item
(SCI)

Anything associated with a software project (design, code, test data,
document, etc.) that has been placed under configuration control.
There are often different versions of a configuration item.
Configuration items have a unique name.

Configuration control The process of ensuring that versions of systems and components
are recorded and maintained so that changes are managed and all
versions of components are identified and stored for the lifetime of
the system.

Version An instance of a configuration item that differs, in some way, from
other instances of that item. Versions always have a unique
identifier, which is often composed of the configuration item name
plus a version number.

Baseline A baseline is a collection of component versions that make up a
system. Baselines are controlled, which means that the versions of
the components making up the system cannot be changed. This
means that it should always be possible to recreate a baseline from
its constituent components.

Codeline A codeline is a set of versions of a software component and other
configuration items on which that component depends.

331

CM terminology

Term Explanation
Mainline A sequence of baselines representing different versions of a

system.
Release A version of a system that has been released to customers (or

other users in an organization) for use.
Workspace A private work area where software can be modified without

affecting other developers who may be using or modifying that
software.

Branching The creation of a new codeline from a version in an existing
codeline. The new codeline and the existing codeline may then
develop independently.

Merging The creation of a new version of a software component by merging
separate versions in different codelines. These codelines may have
been created by a previous branch of one of the codelines
involved.

System building The creation of an executable system version by compiling and
linking the appropriate versions of the components and libraries
making up the system.

332

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 167

Codeline, baseline, mainline

333

I. Change management

• Organizational needs and requirements change during the lifetime of
a system, bugs have to be repaired and systems have to adapt to
changes in their environment.

• Change management is intended to ensure that system evolution
is a managed process and that priority is given to the most urgent
and cost-effective changes.

• The change management process is concerned with analyzing the
costs and benefits of proposed changes, approving those changes
that are worthwhile and tracking which components in the system
have been changed.

334

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 168

Change Management Process

Initiate
change

Prepare
change

evaluate

Status
accounting

archive

Approve

Analysis

$?
Define
change

Assess
impact

Input from user, buyer, seller:
deficiencies, enhancements,

changing requirements

1

2 3

4

5

yes

no

feedback

Incorporate and track change

I. Change management

335

I. Change management and CCB

• After the analysis step, a separate group should make the
decision to perform the change. For military and
government systems, this group is often called the change
control board (CCB). In industry, it is often called a product
advisory board.

• This group should review and approve all change
requests. Accepted changes are passed back to the
development group; rejected change requests are closed,
archived and no further action is taken.

• Small requests (e.g. correcting minor errors on screen
displays, webpages, or documents) should be passed to
the development team without detailed analysis, as such
an analysis could cost more than implementing the
change.

336

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 169

II. Version management

• Version management (VM) (version control) is the process of
keeping track of different versions of software components
or configuration items and the systems in which these
components are used.

• It also involves ensuring that changes made by different
developers to these versions do not interfere with each
other.

• Therefore version management can be thought of as the
process of managing codelines and baselines.

• Managed versions are assigned identifiers when they are
submitted to the system.

• To reduce the storage space required by multiple versions of
components that differ only slightly, version management
systems usually provide storage management facilities.

337

II. Version management

What should be version managed?
• All test documentation and testware
• Documents that the test documentation is based on
• Test environment
• The product to be tested
• Test cases
Why?
• Tracebility

338

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 170

II. Storage management

339

II. Check-in and -out from a version repository

340

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 171

II. Branching and merging

If there are overlaps between the changes made and they interfere with each
other the developer has to check for clashes and modify the changes so that
they are compatible.

341

II. Version control concepts

SVN and CVS are the popular tools of CVCS
GIT and Mercurial are the popular tools of DVCS

342

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 172

III. System building

• System building is the process of creating a complete,
executable system by compiling and linking the system
components, external libraries, configuration files, etc.

• System building tools and version management tools must
communicate as the build process involves checking out
component versions from the repository managed by the version
management system

• The configuration description used to identify a baseline is also
used by the system building tool

• Build platforms:
– The development system, which includes development tools such

as compilers, source code editors, etc.
– The build server, which is used to build definitive, executable

versions of the system.
– The target environment, which is the platform on which the system

executes.

343

III. Deployment environments

• Deployment architectures vary significantly.

• A common 4-tier architecture is development, testing, staging,
production (DEV, TEST, STAGE, PROD), with software being
deployed to each in order.

Environment/Tier
Name

Description

Local Developer's desktop/workstation

Development/Trunk
Development server. This is where unit testing is performed by the
developer.

Integration Continuous Integration build target, or for developer testing of side effects

Test/QA/Internal
Acceptance

This is the stage where interface testing is performed. Quality assurance
team make sure that the new code will not have any impact on the existing
functionality and they test major functionalities of the system once after
deploying the new code in their respective environment (i.e. QA
environment)

Stage/Pre-
production/External-
Client Acceptance

Mirror of production environment

Production/Live Serves end-users/clients

344

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 173

III. Deployment workflow

Step 1: Developer checks in code to development branch

Step 2: Continuous integration server picks up the change, reviews
the code, merges it with Master/Trunk/Mainline, performs unit tests
and votes on the merge to staging environment based on results.

345

III. Deployment workflow

Step 3. If Step 2 is successful, developer deploys it to the staging
environment and QA tests the environment.

Step 4. If Step 3 passed, you vote to move to production and the
continuous integration server picks this up again and determines if it’s ok
to merge into production.

Step 5. If Step 4 is successful, it will deploy to production environment.

346

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 174

IV. Release management

• A system release is a version of a software system that is distributed
to customers

• For mass market software, it is usually possible to identify two types
of release: major releases which deliver significant new functionality,
and minor releases, which repair bugs and fix customer problems that
have been reported

• For custom software or software product lines, releases of the system
may have to be produced for each customer and individual customers
may be running several different releases of the system at the same
time

• Release tracking is important since it may be necessary to reproduce
exactly the software that has been already delivered to a particular
customer

• Release timing
– If releases are too frequent or require hardware upgrades, customers may not

move to the new release, especially if they have to pay for it
– If system releases are too infrequent, market share may be lost as customers

move to alternative systems

347

Incident (Defect)
Management

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 175

Defect management

Incident is any unplanned event occuring that requires further
investigation, anything where the actual result is different to the
expected result.

Incident (defect) management is the process of recognizing,
investigating, taking action and disposing of incidents – by IEEE
1044 (Standard Classification for Software Anomalies).

Incident reports

• Provide developers and other parties with feedback on the
problem to enable identification, isolation and correction as
necessary

• Provide test leaders with a means of tracking the quality of
the system under test and the progress of the testing

• Provide ideas for test process improvement (e.g. Fault Slip
Through)

349

Incident management

• Incidents can be raised at any time throughout the SDLC
• Incidents are raised on incident reports appointed someone (often called

an Incident Manager) to manage / police the process

Incident
Identification
and logging

Classification
and

prioritization

Investigation
and Analysis

Resolution
and

Recovery

Incident
closure

#1 Identification is via testing, user
feedback, monitoring, etc.
Logging simply means recording
#2 Classification helps us to partition
then based on their type,
prioritization helps us to identify the
order to be handled
#3 Investigation and analysis is to
better understand the problem,
gather information for preventing
from re-occurrence
#4 Resolution and recovery are
taken to remove the incident
#5 Closure means retesting

350

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 176

Incident recording
• Incident report identifier (issuing organization, change history)
• Incident summary (references to external sources back to the procedure or test

case that discovered it, version level of test items, software or system life-cycle
process in which the incident was observed)

• Incident description (description of the anomaly)
– Date and time the incident was discovered
– Environment (identification or configuration item of the software or system)
– Inputs
– Expected and actual results
– Anomalies with attachements and screen-shots
– Procedure steps
– Attempts to repeat

• Degree of impact (severity) of stakeholder’s interests
• Urgency/priority to fix
• Investigation details (who found, who are the key players in its resolution)
• Metrics (record any number of metrics on the type, location and cause of incident;

the root cause is set by the programmer when fixing the defect)
• Status (open, deferred, duplicate, waiting to be fixed, re-opened, closed) and

change history
• Comments, recommendations, approvals, conclusions, references

351

Incident recording – example fields

– Title
• Type the problem encountered in the application, the title needs

to be understandable
You can use the following categories:

� Missing
� Inaccurate
� Incomplete
� Inconsistent
� Incorrect

For example:
» Missing validation in “Project” field
» Incorrect spelling in “status” drop down list

– Test Environment
• Include details of the test environment

For example:
Microsoft Windows 8.1

352

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 177

Incident recording – example fields

– Reproduction Steps with Inputs
• Type all the steps to get to the problem, all steps must be

cleared
For example:

1 - Login to SYSTEM
2 - Click on „Add Invoice”
3 - Type !@#$%% in Project field
4 - Click on Save

– Actual Results
• Type the actual results of the action

For example:
The following error message is displayed…

• Comments:
Type any comments or notify to the developers of any screenshots
(attachments)

For example: This defect is reproducible in Project field. (see attached
file)

– Expected Results
• Type the expected results of the action.

For example:
Data should be saved successfully.

353

Types of defect severity

• Blocking
– Stops the user from using the feature as it is meant to be used
– No reasonable workaround

• Critical
– Data corruption
– Repeatably throws an exception
– No reasonable workaround
– Feature does not work as expected

• High
– Throws an exception when not following the happy path
– Confusing UI
– Has a reasonable workaround

• Medium
– Feature works off the happy path with minor issues
– Small UI issues
– One or more reasonable workarounds

• Low
– Cosmetic issues
– Many workarounds
– Low visibility to users

Other classification
scheme:

354

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 178

Defects prioritization and categorization

• Defects prioritization:
– Immediate
– Next Release
– On Occasion
– Open (not planned for now)

• Often based on SLA

• Defects can be categorized by quadrants:

In Agile:

355

Defect management process

• The steps below describe a simple defect tracking process:
– Execute the test and compare the actual results to the documented

expected results.
– If a discrepancy exists, log the discrepancy with a status of “open”.

Supplementary documentation, such as screen prints or program traces,
should be attached if available.

– The test manager or tester should review the problem log with the
appropriate member of the development team to determine if the
discrepancy is truly a defect.

– Assign the defect to a developer for correction.
– Once the defect is corrected, the developer will usually enter a description

of the fix applied and update the defect status to “Fixed” or “Retest”.
– The defect is routed back to the test team for retesting.
– Additional regression testing is performed as needed based on the severity

and impact of the fix applied.
– If the retest result match the expected result, the defect status is updated

to “closed”. If the test results indicate that the defect is still not fixed, the
status is changed to “open” and sent back to the developer.

– Current status can be New, Open, Re-open Wait, Reject, Fixed, Included
to build, Verified, Closed

356

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 179

Defect management process

New

Fixed

Closed

Work In
Progress

Disputed

Issue

CustomerQA

Valid

� Recognition
� Investigation
� Action
� Disposition

The steps:

357

Test Tools

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 180

Test tools

• Why tools are so useful?

• Take care of using tools (Probe effect)

– Performance may be slightly worse when performance testing
tools are being used

– If the code is running with the debugger, then the bug
disappears. It only re-appears when the debugger is turned off

Probe effect is the effect on the component or system (by the probe)
when it is being measured.

PEOPLE COMPUTER

Strong points

Test tool is a software product that is used to make testing more effective
or efficient.

� Repetitive tasks
� Comparing
� Counting

� Pattern
recognition

359

Test tools classification

Test management related tools

• Test management tool
• Requirement management tool
• Incident management tool
• Configuration management tool

Static testing tools
• Review process support tool
• Static analysis tool
• Modelling tool

Test specification tools

• Test design tool
• Test data preparation tool

Test execution related tools

• Test execution tool
• Test harness, unit test framework tool
• Test comparator
• Coverage measurement tool

Performance and test monitoring tools

• Dynamic analysis tool
• Performance testing tool
• Load testing tool
• Stress testing tool
• Monitoring tool

Other tools

• SQL
• Debugging tool

360

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 181

Test management related tools

• A tool that provides support for the identification
and control of configuration items, their status
over changes and versions and the release of
baselines consisting of configuration items

Configuration
management tool

• A tool that facilitates the recording and status
tracking of incidents

Incident management
tool

• A tool that supports the recording of
requirements, requirements’ attributes and
annotations, facilitates traceability through layers
of requirements and supports requirements
change management

Requirement
management tool

• A tool that provides support to the test
management and controls part of the test
process

Test management tool

DefinitionTool Type

361

Test management tool

Configuration
management

tool

Requirement
management
tool

Incident
management
tool

Test
execution

tool

Test
Management

Tool

• Center of a set of integrated tools

• qTest
• PractiTest
• Zephyr
• Test Collab
• TestFLO for JIRA

362

• XQual
• TestCaseLab
• QAComplete
• QACoverage
• Stryka

• Inflectra
• xRay
• TestMonitor
• …

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 182

Static testing tools

• A tool that supports the validation of models of the
software or system

Modelling tool

• A tool that carries out static code analysis. The tool
checks source code, for certain properties such as
conformance to coding standards, quality metrics
or data flow anomalies

Static analysis tool

• A tool that provides support to the review processReview process support
tool

DefinitionTool Type

• Veracode
• Checkmarx
• Coverity
• HP Fortify
• Parasoft

• RIPS
• Clang
• CAST
• CodeSonar
• Understand

• Klocwork
• CppCheck
• Goanna
• ConQAT
• OWASP Code crawler, …

363

Test specification tools

• A type of test tool that enables data to be selected
from existing databases or created, generated,
manipulated and edited for use in testing

Test data preparation
tool

• A tool that supports the test design activity by
generating test inputs from a specification. The tests
may be held in a Computer Aided Software
Engineering (CASE) tool repository

Test design tool

DefinitionTool Types

A simulator tries to duplicate the behavior of the system.

An emulator tries to duplicate the inner workings of the system.

• Model based testing tools like Conformiq, 4Test,
GraphWalker, ModelJUnit, Tcases, TestCast, etc.

• Pairwise testing tools
• Cause and effect graphing tools
• …

364

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 183

Test execution related tools

• A tool that provides support for testing security
characteristics and vulnerabilities

Security testing tool

• A tool that provides objective measurement of
what structural elements, e.g. statements or
decisions have been exercised by a test suite

Coverage measurement tool

• A test tool to perform automated test
comparison

Test comparator

• Test harness is a test environment comprised
of stubs and drivers needed to execute a test

• Unit test framework tool is a tool that provides
an environment for unit or component testing
in which a component can be tested in
isolation or with suitable stubs and drivers

Test harness, Unit test
frameworks

• A type of test tool that is able to execute other
software using an automated test script

Test execution tool

DefinitionTool Types

365

Test harness

• Test harness enables the automation of tests. It refers to the system test
drivers and other supporting tools that requires to execute tests

• Test harness execute tests, by using a test library and generates a report. It
requires that your test scripts are designed to handle different test scenarios
and test data

Why use Test Harness?
• Automate the testing process
• Execute test suites of test cases
• Generate associated test reports
• Support for debugging
• To record the test results for each one

of the tests
• Helps the developers to measure code

coverage at code level
• Increase the productivity of the system

thorough automation
• Enhance the quality of software

components and application
• To handle the complex condition that

testers are finding difficult to simulate
Examples:
• Junit for Java,
• Nunit for .Net framework

366

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 184

Performance and test monitoring tools

• A software tool or hardware device that runs concurrently
with the component or system under test and supervises,
records and/or analyzes the behaviour of the component
or system

Monitoring Tool

• Performance-testing tool is a tool that are concerned with
testing at system level to see whether or not the system
will stand up to a high volume of usage

• Load-testing tool is a test type concerned with measuring
the behaviour of a component or system with increasing
load

• Stress testing is a testing conducted to evaluate a system
or component at or beyond the limits of its specified
requirements

Performance
testing,
Load testing,
Stress testing Tool

• A tool that provides runtime information on the state of the
software code

Dynamic Analysis
Tool

DefinitionTool Type

https://en.wikipedia.org/wiki/List_of_performance_analysis_tools

367

Other tools

SQL

Project planning
tool

Debugging tool

Back-up and
restore utilities

E-mail

Word processor

Spreadsheet

� Used by developers to localize and fix defects
� Enable programmers to execute programs step by step, to

halt a program at any program statement and to set and
examine program variables

� Estimating resources and timescales and monitor
progress

� Analysing the data held in database in order to obtain
actual or expested results

� Restoring a consistent set of data into the test environment
for regression testing

� Communicating with developers about defects
� Distributing test reports and other deliverables

� Writing test strategies, test plans, weekly reports

� Producing decision tables
� Working out all the different test scenarios
� Making weekly or daily test progress reports

368

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 185

Devops tools

DevOps is a term used to refer to a set of practices that emphasize the
collaboration and communication of both software developers and information
technology (IT) professionals while automating the process of software
delivery and infrastructure changes.

369

Risks of using tools

• Unrealistic expectations for the tool
– Important to have clear an realistic objectives for what the tool can do

• Underestimating the time, cost and effort for the initial introduction
of a tool

– Introducing the tool could cause problems that need to be addressed

• Underestimating the time, effort needed to achieve significant and
continuing benefits from the tool

– It takes time to develop ways of using the tool in order to achieve
what is possible

• Underestimating the effort required to maintain the test assets
generated by the tool

– Insufficient planning for maintenance of the assets that the tool
produces

• Over-reliance on the tool
– Some test are still better executed manually
– A tool does not replace the intelligence

370

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 186

Risks of using tools – skills

• Skill needed to create good tests

• Skill needed to use the tools well, depending on the type of tool

• Skills of a tester

– Concentrates on what should be tested, what the test cases
should be and how to prioritize the testing

• Skills of a tool user

– Concentrates on how best to get the tool to do its job
effectively and how to give increasing benefit from tool use

371

Benefits of using tools

• Reduction of repetitive work
– Running regression test
– Checking against coding standards
– Creating a specific test database

• Gather consistency and repeatability
– Each time the tool is run

the result is consistent
• Objective assessment

– Subjective bias is removed
– The assessment is more repeatable

and consistently calculated
• Ease of access to information about tests or testing

– Information presented visually (charts, graph) by tools
– Give directly information for the tool process

372

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 187

Buy, open-source, do-it-yourself

Buy Open-source Do-it-yourself
Some tailoring must always be
foreseen, either to the tool or to
the processes in the company,
or both.

The tool may be changed and
enhancements should be
shared.

The tool can be made exactly as
the company wants it (provided
it knows what it wants).

The price is usually easy to
calculate.

The tool is free but there may be
license fees to pay.

It may be even extremely
difficult to estimate the final
cost.

Usually the payment must be
made within a relatively short
period of time.

No immediate price needs to be
paid.

The development and hence the
“payment” can be done at the
company’s own pace.

Do what you do best – that is
what the suppliers do.

The quality depends on the
exposure, history, and use of
the tool.

Maybe you are the best suited
to develop your own tool.

373

Tool selection

Tool selection criteria
– What you need now

• Detailed list of technical requirements
• Detailed list of non-technical requirements

– Long-term automation strategy of your organization
– Integration with your test process
– Integration with your other (test) tools
– Time, budget, support, training

Tool selection process
1. Creation of candidate tool shortlist
2. Arranging demos
3. Evaluation of selected tools
4. Reviewing and selecting tool
5. Tool implementation (plan resources, gain management support, support

and mentor, training, pilot project, early evaluation, publicity of early
success, test process adjustments)

374

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 188

Good practices for introducing tools

• Define and communicate guidelines for the use of tools,
based on what was learned in the pilot

• Provide adequate training, coaching and mentoring of new
users

• Adapt and improve processes, testware and tool artefacts
to get the best fit and balance between them and the use
of the tool

• Incremental roll-out (after the pilot) to the rest of the
organization

• Implementing a continuous improvement mechanism as
tool use spreads through more of the organization

• Monitoring the use of the tool and the benefits achieved
and adapting the use of the tool to take account of what is
learned

375

Automation in
Testing

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 189

Automation in Testing

377

• Automated Testing
• The act of conducting specific tests via automation (e.g. a

set of regression tests) as opposed to conducting them
manually

• Test Automation
• Automates the process of tracking and managing the

different tests

Test Automation

378

Expectations Reality

Automate at once Automate gradually

Cut testing budget Increase test coverage

Automate everything Keep coverage and quality

Every team can do Skills and traning needed

But automating the chaos is still chaos!

Some advantages
• Repeatable, schedulable
• Reliable
• Fast execution
• Increased coverage
• Automatic reporting
• …

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 190

Data-driven testing

379

• Separates test data from test code (scripts)

• Scripts could generate paralelly
• The whole process of designing, planning and running the

database is independent towards the application
development.

• Cons: flow control is not abstracted

Keyword-driven (table-driven, action word) testing

380

• A scripting technique that uses data files to contain not only
test data and expected results, but also keywords related to
the application being tested.

• The keywords are interpreted by special supporting scripts
that are called control scripts.

• Keywords are business oriented forming a Domain Specific
Test Language

Basics of Software Testing
Attila Kovács, ELTE IK

Copying or distributing this document is
prohibited. 191

Model-based testing

381

382

