
Requirements
engineering

Gábor Árpád Németh

From the
brainstorming to the

prototype
Requirements engineering in a green field

investment

1. Initial thoughts - Brainstorming
• What we would like to achieve?

• Define scope

• Define possible customers

• Define initial budget (and maybe some forecast for later stages)

2. Refine requirements
• Risks:

Requirements engineering in a green field investment 8/1
From the brainstorming to the prototype

Too general
→ too complex architecture → too complicated
to implement a simple functionality
→ most of the possible functionalities will never
be used

Too specific
→ bad architecture → dirty hacks over
hardwired structure → hard to maintain
→ no future-proof (lack of important features)

vs.

2. Refine requirements

• We should get known possible customers, their goals, problems and current
processes…etc.
• Otherwise: Ivory tower: we make something that nobody really wants…

Requirements engineering in a green field investment 8/2
From the brainstorming to the prototype

*PALT: Passengers And Luggage Together

An example: Ikarus PALT*:
A big engineering achievement that was not applicable to the existing infrastructure

Source of figures: Ikarus archives

https://magyarbusz.info/2011/07/14/szarnyalo-kepzelet-kulonleges-ikarus-prototipusok/

• An example of collecting requirements – in a structured document:

Requirements engineering in a green field investment 8/3
From the brainstorming to the prototype

• An example of collecting requirements – tree structure (xmind)

Requirements engineering in a green field investment 8/4
From the brainstorming to the prototype

Description can be unfolded for each requirement

Show the number of sub-
requirements that can be unfolded

An unfolded list of sub-
requirements in a tree
structure

Main groups of
requirements

https://www.xmind.net/

3. Create a prototype
• Only for proof of concept!

• Should answer the following questions (2/1):

• What would we like to achieve?
• List of functionalities

• How would we like to achieve the goal? – non-functional aspects
• Usability ↔ user interface, assumptions about users, working process

• Performance related aspects:

• Responsibility

• Designed workload

• Scalability

• How to handle overload…etc.

• Security aspects ↔ architecture

Requirements engineering in a green field investment 8/5
From the brainstorming to the prototype

↔ software architecture & required hardware

3. Create a prototype
• Should answer the following questions (2/2):

• How we should provide expected quality?
• Manual testing for explanatory testing

• A few proof-of-concept tests

• Unit, integration, system levels

• Functional and non-functional (performance, (G)UI, security…etc.)

Requirements engineering in a green field investment 8/6
From the brainstorming to the prototype

• Prototype:
• Role: Proof-of-concept

• Not an implementation code base for the final product!

• From most of the prototypes no real product has been developed due to the
following reasons:
• Wrong assumptions, when defining requirements and scope

• Wrong initial thoughts about possible customers and/or their needs

• Wrong assumptions about budget

• The protype showed that the development cost and/or time would be too high

• Organizational changes in the company resulted in cost cut / project closure

• Similar product has been developed meanwhile in parallel

Requirements engineering in a green field investment 8/7
From the brainstorming to the prototype

If we succeed than comes…

4. Productification
• But many reviews before this step:

• Technical reviews (architecture)

• Management reviews at different levels

(financial, customer…etc. aspects)

Requirements engineering in a green field investment 8/8
From the brainstorming to the prototype

Project vs. product

Project Product

Generic Unique, customer specific Generic

Time Has beginning and end date Permanent (until phase out)

Planning One-step/Predictive planning Iterative/adaptive planning

Input Project requirements Evolving customer needs

The true story of the genesis of the Space Shuttle

A case study about changing requirements 9/1

References:
• David Baker: NASA Space Shuttle. 1981 onwards (all models). Owner’s Workshop Manual. Haynes. 2011.
• Wikipedia: Space Shuttle program, Space Shuttle design process, Criticism of the Space Shuttle program

https://en.wikipedia.org/wiki/Space_Shuttle_program
https://en.wikipedia.org/wiki/Space_Shuttle_design_process
https://en.wikipedia.org/wiki/Criticism_of_the_Space_Shuttle_program

Background:
• After the Apollo (Moon landing program), significant cut on NASA’s budget

• NASA plan to develop a fully reusable system – a „Shuttle” – to make space
travelling significantly cheaper

Initial design (1970 Phase B studies):

• Fully reusable system:

• 1.700 ton fly back manned booster with 12 rocket

engines (with liquid fuel) and wings

• 380 ton orbiter with 2 rocket engines

• Orbiter’s Payload capacity: 11 tons to LEO*

* LEO: Low-Earth Orbit

• This solution was too costly to develop…

A case study about changing requirements 9/2

Investigate different concepts:

1. Fully (booster + orbiter) reusable systems

2. Expandable tanks

3. Expandable boosters

…etc

Catch-22:

• Lowest cost-per-flight solutions requires highest development cost

• NASA have insufficient budget

• If decrease development cost, it results in a higher cost-per-flight

• Controversial to the initial goal

A case study about changing requirements 9/3

1.

2. 3.

Optimizations:

1. Expandable tank has been selected to decrease development cost (smaller orbiter
would be enough)
→ compromise: not fully reusable system

2. SRBs (solid rocket boosters) proposed instead of liquid propellant ones to decrease
cost-per-flight
• Advantages:

• Simple and cheap
• Much easier to handle, no fueling needs before launch

• Disadvantage:
• Less efficient than liquid propellant rockets
• Once ignited, can not be stopped – 1st compromise on safety
(NASA had a rule before to not use them for manned space flights)

3. Insufficient thrust can be gained from solid rockets to lift-off the entire system
→ instead of the usual serial concept, parallel concept is selected for solid rockets

4. Recoverable boosters proposed to decrease cost-per-flight

A case study about changing requirements 9/4

Wait, initial design has been altered!

Do we need the cheaper solid rocket
boosters if they are reusable?

A case study about changing requirements 9/5

Compromise of partners / payload capacity:

• The development cost was still too high → NASA found a partner
(USAF*) to share the costs

• What payload is required?**
• NASA: 6,8 tons to LEO*** (for satellites)

• USAF*: 18 tons to polar orbit ≈ 30 tons LEO*** (for military satellites)

• NASA later: 20 tons to LEO*** (to build Freedom space station from modules)

* USAF: US Air Force

** The most important question when designing the Space Shuttle…

*** LEO: Low-Earth Orbit

A case study about changing requirements 9/6

Canceled Safety functions:

• Liftoff – designed due SRBs:
• Blow out port for boosters to separate in case of failure during ascending

→ cancelled due weight

• Abort solid rocket motors
→ cancelled due simplicity

• Landing:
• Turbofan engines that pop out from a compartment of rear payload bay at landing

→ cancelled due weight and volume

A case study about changing requirements 9/7

The usage of Space Shuttle - facts:

1. Due SRBs and parallel design, two Space Shuttle disasters:
• Challenger in 1986

→ decrease flight intensity

→ US Air Force back out from project

→ increase cost-per-flight

• Columbia in 2003

→ increase cost-per-flight

→ decision about the retirement of the

Space Shuttle fleet

A case study about changing requirements 9/8

2. Except HST* in 1990, only after 1998 (17 years after first flight!) NASA uses the possible
payload capability of the Space Shuttle, when building the ISS**

* HST: Hubble Space Telescope

** ISS: International Space Station

3. The Vandenberg Space Shuttle launch pad build for US Air Force has never been used

4. The initial plan to send Space Shuttle into space bi-weekly has been never achieved
→ the cost-per-flight has been even higher compared to simple, expandable rockets!

5. After Space Shuttle era:
• More simple designs
• Concentrate on liquid propellant rocket engines
• Concentrate on less payload capacity

A case study about changing requirements 9/9

From the customer
requirements to the

specification
Requirements engineering in brown field

investments

An overview:

1. CR from customer

2. Early estimation

3. Task clarification → Feature Specification

4. Design documents (architectural, test…etc.)

5. Implementation

6. Tests

7. Documentation

8. Deployment

Requirements engineering in brown field investments 11/1
From the customer requirements to the specification through an example process

Scheduling of CR at any stage is made by PO
according to priorities / available resources
/ output of previous stages

CR: Change Request

PO: Product Owner

Focus on this topic

1. Customer requests a change
• Submits a CR (change request) into a CR management system (example tool: Tuleap)

• Describes the requested functionality from the customer perspective
• May be ambiguous, may not be self consistent, may lack of important details…etc.

Requirements engineering in brown field investments 11/2
From the customer requirements to the specification through an example process

https://www.tuleap.org/

2. Based on the CR an early estimation is made
• By a business analyst/requirement engineer/system architect

• Quickly with limited efforts

• Output:
• A quick overview of the topic, affected part(s) of the system, possible bigger tasks

• Polo size: S/M/L/XL
→ determines the rough timeframe in mhrs* required for development, tests, documentation and deployment

→ each domain/company/company units may have different timeframes for each polo size

Requirements engineering in brown field investments 11/3
From the customer requirements to the specification through an example process

* mhrs: men hours

Polo size mhrs

S 0-40

M 41-80

L 81-200

XL 200+

Polo size mhrs

S 0-200

M 200-500

L 500-2000

XL 2000+

3. Task clarification with customer
• Iterative process

• Transparency - CR management system:
• The communication should be tracked

• To avoid later misunderstandings

• To provide the ability to involve new people from both sides

• The status of the CR should be updated

• Always check related standards!
• Conformance to related standards is important

• If we must deviate from the standard, then write down the reason behind it & the possible risks

• Always checks related existing features!
• Backward compatibility is important

Requirements engineering in brown field investments 11/4
From the customer requirements to the specification through an example process

CR: Change Request

Requirements engineering in brown field investments 11/5
From the customer requirements to the specification through an example process

3. Task clarification with customer
• Output: Feature Specification

• Describes the required functionality in an
unambiguous, self-consistent way that can be
given to the developers/testers/technical writers

Requirements engineering in brown field investments 11/6
From the customer requirements to the specification through an example process

3. Task clarification with customer
• Output: Feature Specification

• Describes the required functionality in an
unambiguous, self-consistent way that can be
given to the developers/testers/technical writers
• classified into use-cases or user stories

Use cases:
• Business artefacts defining some software

requirements.
• Describes the actions or steps of events:

• Precondition

• Action 1

• Action 2

• Postcondition

User stories:
• Short, simple descriptions of a feature told

from the perspective of the customer.
• They typically follow a simple template:

As a <type of user>, I want

<some goal> so that <some

reason>.

Requirements engineering in brown field investments 11/7
From the customer requirements to the specification through an example process

3. Task clarification with customer
• Output: Feature Specification

• Describes the required functionality in an
unambiguous, self-consistent way that can be
given to the developers/testers/technical writers
• classified into use-cases or user stories

• A part of it may contain formal descriptions (like
the message sequence chart in the figure)

• Should be self consistent (provide used
abbreviations, references…etc.)

• Should contain information about risks

• May contain information about test design

Standards

• Established norm or requirement in regard to technical systems

• Formal document that establishes uniform engineering or technical
criteria, methods, processes, and practices

• Examples:
• An RFC standard: RFC 3261 SIP: Session Initiation Protocol

• A 3GPP standard: 32.299 Diameter protocol, charging management

Requirements engineering in brown field investments 11/7
From the customer requirements to the specification through an example process

https://tools.ietf.org/html/rfc3261
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1916

Requirements engineering in brown field investments 11/9
From the customer requirements to the specification through an example process

3. Task clarification with customer
• Output: Feature Specification

• Must be accepted by both sides:
1. Reviewed internally

• Participants:

• Business analysts/system architects

• Developers (who have competence in the related part of the software)

• Test responsible person

• Review responsible:

• Screening

• Moderate review, give verdict (accepted / accepted with comments / rejected)

• Check afterlife based on verdict (check modifications to comments / 2nd turn of review…etc.)

• Update status on CR management system

2. Approved by customer

Requirements engineering in brown field investments 11/10
From the customer requirements to the specification through an example process

Possible risks:
• We want that feature right now!

→ Hardwired, too specific solutions that are hard to be generalized or maintain

• Give too big requirements at one step without priorities and schedule
→ Will be never finished

• Requirements that do not conform with corresponding standards
→ Compatibility problems at later phase, working mode-switch and other dirty hacks

Requirements engineering in brown field investments 11/11
From the customer requirements to the specification through an example process

Possible risks:
• Problems with documentation

1. No proper documentation of task clarification discussions with user
→ misunderstandings at deployment, blaming each other

→ changing requirements

→ delay of delivery, more cost effect

2. No proper documentation of the delivered feature

(missing or incomplete user / developer / architectural documentations)
→ customer/ developer unable to use the feature properly, requirements and design decisions are mixed up

→ reverse engineering (in code / standards / old e-mail exchanges with customer)

→ try to sort related documents out and get approval by customer

→ huge additional costs, loss of credibility

3. No traceability exists between specification – code – test – documentation 4-tuple

