PKuPmXńB–Hmimetypetext/x-wxmathmlPKuPmXQdBV55 format.txt This file contains a wxMaxima session in the .wxmx format. .wxmx files are .xml-based files contained in a .zip container like .odt or .docx files. After changing their name to end in .zip the .xml and eventual bitmap files inside them can be extracted using any .zip file viewer. The reason why part of a .wxmx file still might still seem to make sense in a ordinary text viewer is that the text portion of .wxmx by default isn't compressed: The text is typically small and compressing it would mean that changing a single character would (with a high probability) change big parts of the whole contents of the compressed .zip archive. Even if version control tools like git and svn that remember all changes that were ever made to a file can handle binary files compression would make the changed part of the file bigger and therefore seriously reduce the efficiency of version control wxMaxima can be downloaded from https://github.com/wxMaxima-developers/wxmaxima. It also is part of the windows installer for maxima (https://wxmaxima-developers.github.io/wxmaxima/). If a .wxmx file is broken but the content.xml portion of the file can still be viewed using an text editor just save the xml's text as "content.xml" and try to open it using a recent version of wxMaxima. If it is valid XML (the XML header is intact, all opened tags are closed again, the text is saved with the text encoding "UTF8 without BOM" and the few special characters XML requires this for are properly escaped) chances are high that wxMaxima will be able to recover all code and text from the XML file. PKuPmXĚź?FĎ/Ď/ content.xml Kedvenc Matematikai KĂ­sĂ©rleteim Alapok Halmazok Ă©s fĂĽggvĂ©nyek Számok HatárĂ©rtĂ©k DifferenciálszámĂ­tás IntegrálszámĂ­tás Lineáris algrebra TöbbváltozĂłs fĂĽggvĂ©nyek MĂ©rtĂ©k Ă©s valĂłszĂ­nűsĂ©g MĂ©rtĂ©k HalmazfĂĽggvĂ©nyek DefinĂ­ciĂł PĂ©lda TĂ©tel Feladat Feladat Feladat Feladat KĂĽlsĹ‘ mĂ©rtĂ©k, Caratheodory-feltĂ©tel TĂ©tel Feladat KĂĽlsĹ‘ mĂ©rtĂ©k konstruálása TĂ©tel Feladat Feladat Feladat Feladat Borel-halmazok Feladat Feladat Radon-mĂ©rtĂ©kek Feladat Feladat Feladat Lebesgue-mĂ©rtĂ©k TĂ©tel Feladat Feladat Feladat Feladat Feladat: Cantor-halmaz Feladat: Sierpinski-szĹ‘nyeg Feladat: Cantor-fĂĽggvĂ©ny Feladat: Peano-görbe Feladat: pozitĂ­v mĂ©rtĂ©kű Cantor-halmaz Feladat Nem mĂ©rhetĹ‘ halmaz lĂ©tezĂ©se Feladat Lebesgue-Stieltjes-mĂ©rtĂ©k TĂ©tel Feladat Feladat Feladat Feladat Geometriai mĂ©rtĂ©kek Feladat Feladat Feladat Feladat Feladat Feladat Majdnem mindenĂĽtt Lemma MĂ©rhetĹ‘ fĂĽggvĂ©nyek Ă–sszetett fĂĽggvĂ©ny mĂ©rhetĹ‘sĂ©ge MĂ©rhetĹ‘sĂ©g Ă©s koordináta-fĂĽggvĂ©nyek KövetkezmĂ©ny KövetkezmĂ©ny MĂ©rhetĹ‘sĂ©g Ă©s konvergencia KövetkezmĂ©ny Feladat Az utolsĂł feltĂ©tel esetĂ©n nem teljesĂĽl a megfordĂ­tás. Feladat MĂ©rtĂ©kben valĂł konvergencia Jegorov tĂ©tele Lebesgue tĂ©tele TĂ©tel KövetkezmĂ©ny Riesz-fĂ©le kiválasztási tĂ©tel Feladat Feladat Feladat DefinĂ­ciĂł ApproximáciĂłs lemma PKuPmXńB–HmimetypePKuPmXQdBV55 5format.txtPKuPmXĚź?FĎ/Ď/ ’content.xmlPK§Š6