PKôNmXńB–Hmimetypetext/x-wxmathmlPKôNmXQdBV55 format.txt This file contains a wxMaxima session in the .wxmx format. .wxmx files are .xml-based files contained in a .zip container like .odt or .docx files. After changing their name to end in .zip the .xml and eventual bitmap files inside them can be extracted using any .zip file viewer. The reason why part of a .wxmx file still might still seem to make sense in a ordinary text viewer is that the text portion of .wxmx by default isn't compressed: The text is typically small and compressing it would mean that changing a single character would (with a high probability) change big parts of the whole contents of the compressed .zip archive. Even if version control tools like git and svn that remember all changes that were ever made to a file can handle binary files compression would make the changed part of the file bigger and therefore seriously reduce the efficiency of version control wxMaxima can be downloaded from https://github.com/wxMaxima-developers/wxmaxima. It also is part of the windows installer for maxima (https://wxmaxima-developers.github.io/wxmaxima/). If a .wxmx file is broken but the content.xml portion of the file can still be viewed using an text editor just save the xml's text as "content.xml" and try to open it using a recent version of wxMaxima. If it is valid XML (the XML header is intact, all opened tags are closed again, the text is saved with the text encoding "UTF8 without BOM" and the few special characters XML requires this for are properly escaped) chances are high that wxMaxima will be able to recover all code and text from the XML file. PKôNmXf‘śűFűF content.xml Kedvenc Matematikai KĂ­sĂ©rleteim Alapok Halmazok Ă©s fĂŒggvĂ©nyek SzĂĄmok HatĂĄrĂ©rtĂ©k DifferenciĂĄlszĂĄmĂ­tĂĄs IntegrĂĄlszĂĄmĂ­tĂĄs LineĂĄris algrebra TöbbvĂĄltozĂłs fĂŒggvĂ©nyek Metrikus terek DiffereciĂĄlszĂĄmĂ­tĂĄs IntegrĂĄlszĂĄmĂ­tĂĄs Görbe menti integrĂĄl DefinĂ­ciĂł TĂ©tel Jordan felbontĂĄsi tĂ©tele MegjegyzĂ©s PĂĄlyĂĄk TĂ©tel MegjegyzĂ©s PĂ©ldĂĄk Feladat Feladat Sima pĂĄlyĂĄk termĂ©szetes paramĂ©terezĂ©se Feladat (1) Monoton; (2) monoton; (3) szakaszonkĂ©nt monoton: 8 (4) szakaszonkĂ©nt monoton: diff(x-x^3,x); (%o1) 1−3*x2 solve(%); (%o2) [x=−13,x=13] etc. Feladat MĂĄr volt hasonlĂł. Feladat MĂĄr volt hasonlĂł. Feladat MĂĄr volt hasonlĂł. Feladat MĂĄr volt hasonlĂł. Stieltjes-integrĂĄl MegjegyzĂ©s TĂ©tel: Cauchy-kritĂ©rium. SegĂ©dtĂ©tel TĂ©tel MegjegyzĂ©s Nullahalmazok Lebesgue-feltĂ©tel KövetkezmĂ©ny TĂ©tel Feladat TĂ©tel KövetkezmĂ©ny: az integrĂĄlszĂĄmĂ­tĂĄs közĂ©pĂ©rtĂ©k-tĂ©tele Feladat DefinĂ­ciĂł: görbe menti integrĂĄl TĂ©tel MegjegyzĂ©s ZĂĄrt görbĂ©k homotĂłpiĂĄja Egyszeresen összefĂŒggƑ tartomĂĄny Feladat TĂ©tel TĂ©tel TĂ©tel TĂ©tel KövetkezmĂ©ny MegjegyzĂ©s Feladat kill(all); (%o0) done (1/1) f:x-y; (%o1) x−y g:x+y; (%o2) y+x diff(f,y); (%o3) −1 diff(g,x); (%o4) 1 Nincs primitĂ­v fĂŒggvĂ©ny; (1/2) f:x^2+y; (%o5) y+x2 g:cot(y)+x; (%o6) cot

y

+x
diff(f,y); (%o7) 1 diff(g,x); (%o8) 1 Van primitĂ­v fĂŒggvĂ©ny. Legyen a [0,π/2]-ben nulla: F1:integrate(t^2+%pi/2,t,0,x); (%o9) 2*x3+3*%pi*x6 F2:integrate(x+cot(y),y); (%o12) log

sin

y

+x*y
F:F1+F2-x*%pi/2; (%o13) log

sin

y

+x*y+2*x3+3*%pi*x6−%pi*x2
etc. Feladat Van primitĂ­v fĂŒggvĂ©ny, hasznĂĄljuk azt. Legyen [0,1]-ben nulla. assume(x>0); (%o1) [x>0] F1:integrate(log(sqrt(t^2+1)),t,0,x); (%o2) 2*x*log

x2+1

+4*atan

x

−4*x
4
assume(y>1); (%o8) [y>1] F2:integrate(atan(x/t),t,1,y); (%o9) x*log

y2+x2

+2*atan

xy

*y
2
−x*log

x2+1

+2*atan

x

2
F:F1+F2; (%o12) x*log

y2+x2

+2*atan

xy

*y
2
+2*x*log

x2+1

+4*atan

x

−4*x
4
−x*log

x2+1

+2*atan

x

2
F:ratsimp(%); (%o13) x*log

y2+x2

+2*atan

xy

*y−2*x
2
subst(sinh(1),x,%); (%o14) sinh

1

*log

y2+sinh

1

2

+2*atan

sinh

1

y

*y−2*sinh

1

2
subst((1+cosh),y,%); (%o15) sinh

1

*log

cosh+1

2+sinh

1

2

+2*

cosh+1

*atan

sinh

1

cosh+1

−2*sinh

1

2
Feladat Van primitĂ­v fĂŒggvĂ©ny, hasznĂĄljuk azt.
PKôNmXńB–HmimetypePKôNmXQdBV55 5format.txtPKôNmXf‘śűFűF ’content.xmlPK§łM