PK«JmXńB–Hmimetypetext/x-wxmathmlPK«JmXQdBV55 format.txt This file contains a wxMaxima session in the .wxmx format. .wxmx files are .xml-based files contained in a .zip container like .odt or .docx files. After changing their name to end in .zip the .xml and eventual bitmap files inside them can be extracted using any .zip file viewer. The reason why part of a .wxmx file still might still seem to make sense in a ordinary text viewer is that the text portion of .wxmx by default isn't compressed: The text is typically small and compressing it would mean that changing a single character would (with a high probability) change big parts of the whole contents of the compressed .zip archive. Even if version control tools like git and svn that remember all changes that were ever made to a file can handle binary files compression would make the changed part of the file bigger and therefore seriously reduce the efficiency of version control wxMaxima can be downloaded from https://github.com/wxMaxima-developers/wxmaxima. It also is part of the windows installer for maxima (https://wxmaxima-developers.github.io/wxmaxima/). If a .wxmx file is broken but the content.xml portion of the file can still be viewed using an text editor just save the xml's text as "content.xml" and try to open it using a recent version of wxMaxima. If it is valid XML (the XML header is intact, all opened tags are closed again, the text is saved with the text encoding "UTF8 without BOM" and the few special characters XML requires this for are properly escaped) chances are high that wxMaxima will be able to recover all code and text from the XML file. PK«JmXÂłC~C~ content.xml Kedvenc Matematikai KĂ­sĂ©rleteim Alapok Halmazok Ă©s fĂŒggvĂ©nyek SzĂĄmok HatĂĄrĂ©rtĂ©k DifferenciĂĄlszĂĄmĂ­tĂĄs IntegrĂĄlszĂĄmĂ­tĂĄs LineĂĄris algrebra TöbbvĂĄltozĂłs fĂŒggvĂ©nyek Metrikus terek Metrikus tĂ©r DefinĂ­ciĂł PĂ©ldĂĄk metrikus tĂ©rre DefinĂ­ciĂł Gömbök, ĂĄtmĂ©rƑ, korlĂĄtossĂĄg BelsƑ, kĂŒlsƑ, izolĂĄlt, torlĂłdĂĄsi Ă©s hatĂĄrpontok NyĂ­lt Ă©s zĂĄrt halmazok ÁllĂ­tĂĄs ÁllĂ­tĂĄs TĂ©tel TĂ©tel KövetkezmĂ©ny KövetkezmĂ©ny KövetkezmĂ©ny KövetkezmĂ©ny KövetkezmĂ©ny SƱrƱ halmazok Feladat (1) Nem; (2) nem; (3) nem; (4) nem; (5) igen. Feladat Feladat Feladat Feladat A sĂ­kon nincs, alkalmas metrikus tĂ©rben van. Feladat Feladat Feladat Feladat Feladat FolytonossĂĄg TĂ©tel KövetkezmĂ©ny PĂ©ldĂĄk TĂ©tel Feladat Feladat Feladat Feladat Terek szorzata TĂ©tel SegĂ©dtĂ©tel TĂ©tel PĂ©ldĂĄk Jobb Ă©s bal oldali folytonossĂĄg FelĂŒlrƑl Ă©s alulrĂłl folytonossĂĄg HatĂĄrĂ©rtĂ©k TĂ©tel TĂ©tel Jobb Ă©s bal oldali hatĂĄrĂ©rtĂ©k SzakadĂĄsok A vĂ©gtelen, mint hatĂĄrĂ©rtĂ©k, hatĂĄrĂ©rtĂ©k a vĂ©gtelenben TĂ©tel TĂ©tel TĂ©tel: rendƑr-elv Feladat m*x^3/(x^2+m*x^4); (%o28) m*x3m*x4+x2 Feladat (1) nem; nem; 0; (2) nem; 7/2; nem; (3) nem; 1; nem; (4) nem; nem; 0; (5) nem; α>1: 0; (6) α>0 vagy ÎČ>0: 0 Sorozatok TĂ©tel TĂ©tel Átviteli elv Cauchy-sorozatok Cauchy-fĂ©le konvergenciakritĂ©rium Banach-terek Ă©s Hilbert-terek Baire-tĂ©tel Kompakt halmazok PĂ©lda Feladat Feladat LokĂĄlis tulajdonsĂĄgok Feladat Feladat Teljesen korlĂĄtossĂĄg TĂ©tel KövetkezmĂ©ny KövetkezmĂ©ny: Bolzano-Weierstrass-fĂ©le kivĂĄlasztĂĄsi tĂ©tel Heine-Borel-tĂ©tel KövetkezmĂ©ny: Weierstrass tĂ©tele Feladat Feladat Feladat Feladat Feladat Feladat TĂ©tel KövetkezmĂ©ny: Weierstrass tĂ©tele DefinĂ­ciĂł Hausdorff tĂ©tele PĂ©lda Lebesgue-szĂĄm TĂ©tel Egyenletes folytonossĂĄg Heine tĂ©tele Feladat Feladat Sorok TĂ©tel Cauchy-fĂ©le konvergenciakritĂ©rium KövetkezmĂ©ny ÖsszehasonlĂ­tĂł kritĂ©rium KövetkezmĂ©ny TĂ©tel Cauchy-fĂ©le gyökkritĂ©rium d'Alembert-fĂ©le hĂĄnyadoskritĂ©rium KettƑs sor tĂ©tel KövetkezmĂ©ny: sorok ĂĄtrendezĂ©se KövetkezmĂ©ny Fixpont Banach-fĂ©le fixponttĂ©tel Feladat Feladat Feladat plot2d((x^3+1)/3-x,[x,-2,2])$ FĂŒggvĂ©nyterek, fĂŒggvĂ©nysorozatok PĂ©ldĂĄk HatĂĄrĂĄtmenetek felcserĂ©lĂ©se KövetkezmĂ©ny PĂ©lda PĂ©lda Feladat (1/2) mindenĂŒtt, korlĂĄtos halmazokon; etc. Feladat Feladat Feladat Feladat (1) a [-1,1]-en mindhĂĄrom; (2) mindenĂŒtt mindhĂĄrom. Feladat (1) x*exp(α*log(n)-n*x)->0 diff(n^α*x*%e^(-n*x),x); (%o1) nα*%e−n*x−nα+1*x*%e−n*x solve(%,x); (%o2) [x=1n] integrate(n^α*x*%e^(-n*x),x,0,1); (%o3) nα*

1n2−

n+1

*%e−nn2

(2) kill(all); (%o0) done assume(x>0,x<1); (%o1) [x>0,x<1] e:n*x*exp(-n^α*x); (%o2) n*x*%e−nα*x assume(α>0); (%o3) [α>0] limit(e,n,inf); (%o4) 0 forget(α>0); (%o5) [α>0] assume(α<0); (%o6) [α<0] limit(e,n,inf); (%o7) inf limit(n*x*exp(-x),n,inf); (%o8) inf diff(e,x); (%o9) n*%e−nα*x−nα+1*x*%e−nα*x solve(%,x); (%o10) [x=1nα] subst(n^(-α),x,e); (%o11) %e−1*n1−α 1-α<0; (%o12) 1−α<0 e1:integrate(e,x,0,1); (%o22) n*

1n2*α−

nα+1

*%e−nαn2*α

subst(1/2,α,e1); (%o23) n*

1n−

n+1

*%e−nn

e2:expand(e1); (%o24) −n1−α*%e−nα−n1−2*α*%e−nα+n1−2*α Feladat Feladat Nem. Feladat x<>0; amelyeknek a 0 nincs a lezĂĄrtjĂĄban; igen; nem. Feladat Feladat Feladat Vektor-skalĂĄr, skalĂĄr-vektor Ă©s vektor-vektor fĂŒggvĂ©nyek TartomĂĄny Konvex halmaz, konvex Ă©s konkĂĄv fĂŒggvĂ©ny GörbĂ©k TĂ©tel KövetkezmĂ©ny FĂ©lnormĂĄk DefinĂ­ciĂł Cauchy-fĂ©le kritĂ©rium fĂŒggvĂ©nysorozatokra KövetkezmĂ©ny KövetkezmĂ©ny FĂŒggvĂ©nysorok Weierstrass-kritĂ©rium Weierstrass pĂ©ldĂĄja MegjegyzĂ©s TĂ©tel Feladat A valĂłs szĂĄmok. MegjegyzĂ©s TĂ©tel Lemma KövetkezmĂ©ny Riesz lemmĂĄja majdnem ortogonĂĄlis elem lĂ©tezĂ©sĂ©rƑl TĂ©tel Feladat Feladat Feladat BĂĄzis Legjobb approximĂĄciĂł Hilbert-tĂ©rben OrtogonĂĄlis felbontĂĄsi tĂ©tel Riesz reprezentĂĄciĂłs tĂ©tele
PK«JmXńB–HmimetypePK«JmXQdBV55 5format.txtPK«JmXÂłC~C~ ’content.xmlPK§ț„