PKevªTñB–Hmimetypetext/x-wxmathmlPKevªTQdBV55 format.txt This file contains a wxMaxima session in the .wxmx format. .wxmx files are .xml-based files contained in a .zip container like .odt or .docx files. After changing their name to end in .zip the .xml and eventual bitmap files inside them can be extracted using any .zip file viewer. The reason why part of a .wxmx file still might still seem to make sense in a ordinary text viewer is that the text portion of .wxmx by default isn't compressed: The text is typically small and compressing it would mean that changing a single character would (with a high probability) change big parts of the whole contents of the compressed .zip archive. Even if version control tools like git and svn that remember all changes that were ever made to a file can handle binary files compression would make the changed part of the file bigger and therefore seriously reduce the efficiency of version control wxMaxima can be downloaded from https://github.com/wxMaxima-developers/wxmaxima. It also is part of the windows installer for maxima (https://wxmaxima-developers.github.io/wxmaxima/). If a .wxmx file is broken but the content.xml portion of the file can still be viewed using an text editor just save the xml's text as "content.xml" and try to open it using a recent version of wxMaxima. If it is valid XML (the XML header is intact, all opened tags are closed again, the text is saved with the text encoding "UTF8 without BOM" and the few special characters XML requires this for are properly escaped) chances are high that wxMaxima will be able to recover all code and text from the XML file. PKevªT@‚€t:D:D content.xml Kedvenc Matematikai Kísérleteim Alapok Halmazok Számok Határérték Folytonosság Határérték Sorozatok Sorok Elemi függvények Hatványsorok Cauchy-Hadamard-tétel Konvergenciasugár, konvergenciatartomány Hatványsorok átrendezése Analitikus függvények Példa kill(all); (%o0) done niceindicespref:[n,k,j,l]$ powerseries(1/x,x,a); (%o2) i1=0infa−i1−1*

−1

i1
*

x−a

i1
niceindices(%); (%o3) n=0infa−n−1*

−1

n
*

x−a

n
Tétel Motiváció a^x*a^y; (%o4) ay+x Az exponenciális függvény powerseries(exp(z),z,0); (%o5) i2=0infzi2i2! niceindices(%); (%o6) n=0infznn! Az e szám (35+2)/36!/36; (%o7) 3713391759764436443828847980133430067200000000 float(%), numer; (%o8) 2.762893051461265*10−42 e:sum(1/n!,n,0,35); (%o9) 1755525521737874683345600011269141653811645821747899134058104165708595200000000 fpprec:50; (%o10) 50 bfloat(e); (%o11) 2.7182818284590452353602874713526624977572443308629b0 Természetes logaritmus log(e); (%o12) log

1755525521737874683345600011269141653811645821747899134058104165708595200000000

float(%), numer; (%o13) 1.0 Megjegyzés Tétel Megjegyzés n:9; (%o14) 9 n!; (%o15) 362880 sqrt(2*%pi)*n^(n+1/2)*exp(-n+1/12/n); (%o16) 1162261467*2*%e−971108*%pi bfloat(%); (%o17) 3.6288137788575317066188753037964199320730211845842b5 Motiváció plot2d([parametric,realpart(exp(%i*t)), imagpart(exp(%i*t)),[t,0,2]],same_xy)$ Trigonometrikus és hiperbolikus függvények exp(%i*t); (%o19) %e%i*t trigrat(%); (%o20) %i*sin

t

+cos

t

plot2d([parametric,cosh(t), sinh(t),[t,-1,1]],same_xy)$ Tétel A π szám plot2d([parametric,realpart(exp(%i*t)), imagpart(exp(%i*t)),[t,0,6.2]],same_xy)$ Tétel Hatványozás Tétel Logaritmus lg(a,x):=log(x)/log(a); (%o23) lg

a,x

:=log

x

log

a

lg(10,100); (%o24) log

100

log

10

Tétel Komplex logaritmus és hatványozás %i^%i; (%o25)

−1

%i2
rectform(%); (%o26) %e−%pi2 float(%), numer; (%o27) 0.2078795763507619 Feladat kill(all); (%o0) done (1) 1; (%o1) 1 max(a,b); (%o2) max

a,b

0; (%o3) 0 1/3; (%o1) 13 %e; (%o4) %e (2) inf; (%o5) inf 1; (%o6) 1 1/4; (%o7) 14 n^n/n!=e^(n-1/12/n+c_n); (%o8) nnn!=en−112*n+cn inf; (%o9) inf Feladat (1) (1-cos(x)+cos(x)*(1-cos(2*x)))/(1-cos(x)); (%o7) cos

x

*

1−cos

2*x

−cos

x

+11−cos

x

(1-cos(2*x))/(1-cos(x)); (%o10) 1−cos

2*x

1−cos

x

Sor (2) tan(x)-sin(x)/x^3=sin(x)/x*(1-cos(x))/x^2*1/cos(x); (%o12) tan

x

−sin

x

x3
=

1−cos

x

*sin

x

x3*cos

x

Feladat kill(all); (%o0) done assume(x>0); (%o1) [x>0] limit((x+x^2*exp(n*x))/(1+exp(n*x)),n,inf); (%o2) x2 kill(all); (%o0) done assume(x<0); (%o1) [x<0] limit((x+x^2*exp(n*x))/(1+exp(n*x)),n,inf); (%o2) x Folytonos.
PKevªTñB–HmimetypePKevªTQdBV55 5format.txtPKevªT@‚€t:D:D ’content.xmlPK§õJ