PKúPlXñB–Hmimetypetext/x-wxmathmlPKúPlXQdBV55 format.txt This file contains a wxMaxima session in the .wxmx format. .wxmx files are .xml-based files contained in a .zip container like .odt or .docx files. After changing their name to end in .zip the .xml and eventual bitmap files inside them can be extracted using any .zip file viewer. The reason why part of a .wxmx file still might still seem to make sense in a ordinary text viewer is that the text portion of .wxmx by default isn't compressed: The text is typically small and compressing it would mean that changing a single character would (with a high probability) change big parts of the whole contents of the compressed .zip archive. Even if version control tools like git and svn that remember all changes that were ever made to a file can handle binary files compression would make the changed part of the file bigger and therefore seriously reduce the efficiency of version control wxMaxima can be downloaded from https://github.com/wxMaxima-developers/wxmaxima. It also is part of the windows installer for maxima (https://wxmaxima-developers.github.io/wxmaxima/). If a .wxmx file is broken but the content.xml portion of the file can still be viewed using an text editor just save the xml's text as "content.xml" and try to open it using a recent version of wxMaxima. If it is valid XML (the XML header is intact, all opened tags are closed again, the text is saved with the text encoding "UTF8 without BOM" and the few special characters XML requires this for are properly escaped) chances are high that wxMaxima will be able to recover all code and text from the XML file. PKúPlX’gÓ€Ì0Ì0 content.xml Kedvenc Matematikai Kísérleteim Alapok Halmazok Számok Valós számok Természetes, egész és racionális számok Megszámlálható halmazok Halmazok ekvivalenciája Ãllítás Megjegyzés Tétel Tétel Véges és végtelen halmazok kill(all); (%o0) done cardinality({}); (%o1) 0 cardinality({a,a,b,c,c}); (%o2) 3 Tétel Skatulya elv Tétel Feladat 27*26; (%o3) 702 Feladat n!; (%o4) n! Feladat (2^m)^(2^n); (%o5) 2m*2n Feladat n!/n; (%o6) n!n Feladat 10^12; (%o7) 1000000000000 Feladat binomial(12,2)*binomial(10,6); (%o8) 13860 Feladat (1) 2^(n^2); (%o9) 2n2 (2) 2^(n^2-n); (%o10) 2n2−n (3) 2^(binomial(n,2)+n); (%o11) 2

n−1

*n
2
+n
(4) 2^(binomial(n,2)); (%o12) 2

n−1

*n
2
Feladat binomial(50,1)*binomial(50,2)+ binomial(50,3); (%o13) 80850 Feladat Feladat (1) 1/binomial(90,5); (%o14) 143949268 float(%), numer; (%o15) 2.275350752144495*10−8 (2) binomial(5,4)*binomial(85,1)/binomial(90,5); (%o16) 42543949268 float(%), numer; (%o17) 9.670240696614105*10−6 stb. Feladat (1) binomial(52,13)*binomial(39,13)*binomial(26,13); (%o18) 53644737765488792839237440000 stb. Feladat: születésnap-paradoxon product((365-i)/365,i,0,29); (%o19) 380673785601500417062142856284595094700803567108852531993136537901465612962030625262519859085092767427552277425499342208403503894805908203125 float(%), numer; (%o20) 0.2936837572807313 1-%; (%o21) 0.7063162427192686 Feladat (1) 4/binomial(52,5); (%o22) 1649740 float(%), numer; (%o23) 1.53907716932927*10−6 stb. Megszámlálható halmazok Tétel Tétel Tétel Tétel Tétel Következmény Tétel Következmény Cantor tétele Feladat Feladat Feladat Feladat Feladat Feladat Feladat
PKúPlXñB–HmimetypePKúPlXQdBV55 5format.txtPKúPlX’gÓ€Ì0Ì0 ’content.xmlPK§‡7