PKNXiXBHmimetypetext/x-wxmathmlPKNXiX iQ#44 format.txt This file contains a wxMaxima session in the .wxmx format. .wxmx files are .xml-based files contained in a .zip container like .odt or .docx files. After changing their name to end in .zip the .xml and eventual bitmap files inside them can be extracted using any .zip file viewer. The reason why part of a .wxmx file still might still seem to make sense in a ordinary text viewer is that the text portion of .wxmx by default isn't compressed: The text is typically small and compressing it would mean that changing a single character would (with a high probability) change big parts of the whole contents of the compressed .zip archive. Even if version control tools like git and svn that remember all changes that were ever made to a file can handle binary files compression would make the changed part of the file bigger and therefore seriously reduce the efficiency of version control wxMaxima can be downloaded from https://github.com/wxMaxima-developers/wxmaxima. It also is part of the windows installer for maxima (https://wxmaxima-developers.github.io/wxmaxima/). If a .wxmx file is broken but the content.xml portion of the file can still be viewed using a text editor just save the xml's text as "content.xml" and try to open it using a recent version of wxMaxima. If it is valid XML (the XML header is intact, all opened tags are closed again, the text is saved with the text encoding "UTF8 without BOM" and the few special characters XML requires this for are properly escaped) chances are high that wxMaxima will be able to recover all code and text from the XML file. PKNXiX XBXB content.xml Kedvenc Matematikai Kísérleteim Alapok Halmazok Halmazelméleti alapfogalmak Halmazelmélet A setp függvény azt a predikátumot vizsgálja, hogy az adott dolog halmaz, az elementp pedig azt, hogy egy dolog eleme-e egy halmaznak? kill(all); (%o0) done A:{a,b,c}; setp(A); setp(x); (%o1) {a,b,c}(%o2) true(%o3) false adjoin(d,A); adjoin(a,A); disjoin(a,A); disjoin(e,A); (%o4) {a,b,c,d}(%o5) {a,b,c}(%o6) {b,c}(%o7) {a,b,c} A; elementp(b,A); elementp(d,A); (%o8) {a,b,c}(%o9) true(%o10) false Meghatározottság A:{a,b,c,a,a,c}; is({a,b,c}={b,c,a,a}); (%o11) {a,b,c}(%o12) true Részhalmazok A:{1,3,4}; B:{1,3,5}; C:{1,2,3,4,5,6}; (%o13) {1,3,4}(%o14) {1,3,5}(%o15) {1,2,3,4,5,6} subsetp(A,C); subsetp(B,C); subsetp(A,B); subsetp({},A); (%o16) true(%o17) true(%o18) false(%o19) true subset(C,oddp); (%o20) {1,3,5} emptyp(A); emptyp({}); (%o21) false(%o22) true every(integerp,C); every(oddp,C); (%o23) true(%o24) false some(oddp,C); (%o25) true Unió union(A,B); union(A,B,C); (%o26) {1,3,4,5}(%o27) {1,2,3,4,5,6} union(); (%o28) {} Az általános esethez kicsit programoznunk kell. Union(AA):=apply(union,listify(AA))$ Union({B}); Union({A,B}); Union({A,B,C}); (%o30) {1,3,5}(%o31) {1,3,4,5}(%o32) {1,2,3,4,5,6} Állítás: az unió tulajdonságai Metszet intersect(A,B); intersection(A,B); intersect(A,B,C); (%o33) {1,3}(%o34) {1,3}(%o35) {1,3} intersect(); Maxima encountered a Lisp error: Condition in MACSYMA−TOP−LEVEL [or a callee]: INTERNAL−SIMPLE−PROGRAM−ERROR: MACSYMA−TOP−LEVEL [or a callee] requires more than zero arguments.Automatically continuing.To enable the Lisp debugger set *debugger−hook* to nil. Az általános esethez itt is programoznunk kell egy kicsit. Intersect(AA):=apply(intersect,listify(AA))$ Intersect({A,B,C}); (%o38) {1,3} Állítás: a metszet tulajdonságai Feladat AA:{{a,b,c},{a,d,e},{a,f}}; (%o39) {{a,b,c},{a,d,e},{a,f}} Union(AA); Intersect(AA); (%o40) {a,b,c,d,e,f}(%o41) {a} Feladat AA:{{a,b},{b,c},{c,a}}; (%o42) {{a,b},{a,c},{b,c}} Feladat Feladat Feladat Állítás: disztributivitási szabályok Különbség és komplementer setdifference(A,B); setdifference(B,A); (%o43) {4}(%o44) {5} symmdifference(A,B,C); (%o45) {1,2,3,6} Állítás Feladat x:{alma,körte}; y:{kutya,macska}; (%o46) {alma,körte}(%o47) {kutya,macska} {{x},y}; x; intersect({},x); setdifference({x},{{x}});union({x},x); union({x},{{}}); (%o48) {{{alma,körte}},{kutya,macska}}(%o49) {alma,körte}(%o50) {}(%o51) {{alma,körte}}(%o52) {alma,{alma,körte},körte}(%o53) {{},{alma,körte}} Feladat Feladat Feladat Feladat Feladat Feladat Feladat Hatványhalmaz powerset(A); (%o54) {{},{1},{1,3},{1,3,4},{1,4},{3},{3,4},{4}} Feladat powerset({}); powerset({1}); powerset({1,2}); powerset({1,2,3}); (%o55) {{}}(%o56) {{},{1}}(%o57) {{},{1},{1,2},{2}}(%o58) {{},{1},{1,2},{1,2,3},{1,3},{2},{2,3},{3}} Feladat powerset({}); (%o59) {{}} powerset(%); (%o60) {{},{{}}} powerset(%); (%o61) {{},{{}},{{},{{}}},{{{}}}} Feladat Tétel Axiomatikus halmazelmélet PKNXiXBHmimetypePKNXiX iQ#44 5format.txtPKNXiX XBXB content.xmlPKI