PKV„kXńB–Hmimetypetext/x-wxmathmlPKV„kXQdBV55 format.txt This file contains a wxMaxima session in the .wxmx format. .wxmx files are .xml-based files contained in a .zip container like .odt or .docx files. After changing their name to end in .zip the .xml and eventual bitmap files inside them can be extracted using any .zip file viewer. The reason why part of a .wxmx file still might still seem to make sense in a ordinary text viewer is that the text portion of .wxmx by default isn't compressed: The text is typically small and compressing it would mean that changing a single character would (with a high probability) change big parts of the whole contents of the compressed .zip archive. Even if version control tools like git and svn that remember all changes that were ever made to a file can handle binary files compression would make the changed part of the file bigger and therefore seriously reduce the efficiency of version control wxMaxima can be downloaded from https://github.com/wxMaxima-developers/wxmaxima. It also is part of the windows installer for maxima (https://wxmaxima-developers.github.io/wxmaxima/). If a .wxmx file is broken but the content.xml portion of the file can still be viewed using an text editor just save the xml's text as "content.xml" and try to open it using a recent version of wxMaxima. If it is valid XML (the XML header is intact, all opened tags are closed again, the text is saved with the text encoding "UTF8 without BOM" and the few special characters XML requires this for are properly escaped) chances are high that wxMaxima will be able to recover all code and text from the XML file. PKV„kX㟔–p:p: content.xml Kedvenc Matematikai KĂ­sĂ©rleteim Alapok SzĂĄmolĂĄs Egyenletek Geometria ThalĂ©sz tĂ©tele MagyarĂĄzat KözĂ©pponti Ă©s kerĂŒleti szög KerĂŒleti szögek tĂ©tele ÉrintƑ a hĂșr vĂ©gpontjĂĄban HĂșrnĂ©gyszögek LĂĄtĂłkörök SzerkesztĂ©sek HĂĄromszög szerkesztĂ©se egy oldalbĂłl Ă©s a rajta fekvƑ kĂ©t szögbƑl HĂĄromszög szerkesztĂ©se kĂ©t oldalbĂłl Ă©s a közbezĂĄrt szögbƑl HĂĄromszög szerkesztĂ©se hĂĄrom oldal hosszĂĄbĂłl HĂĄromszög szerkesztĂ©se kĂ©t oldal hosszĂĄbĂłl Ă©s a hosszabbikkal szemközti szögbƑl HĂĄromszög szerkesztĂ©se egy oldal hosszĂĄbĂłl, a rajta fekvƑ egyik szögbƑl Ă©s az oldallal szemközti szögbƑl NĂ©gyszögek Ă©s szabĂĄlyos sokszögek TerĂŒlet Az ĂĄbrĂĄn a szinusz fĂŒggvĂ©ny 0 Ă©s π közötti szakasza szerepel. A pontos terĂŒlet 2. (sin(0)+2*sin(%pi/4)+2*sin(2*%pi/4)+ 2*sin(3*%pi/4)+sin(4*%pi/4))*%pi/8; float(%); (%o78)

232+2

*%pi
8
(%o79) 1.89611889793704
(sin(0)+4*sin(%pi/4)+2*sin(2*%pi/4)+ 4*sin(3*%pi/4)+sin(4*%pi/4))*%pi/12; float(%); (%o80)

252+2

*%pi
12
(%o81) 2.004559754984421
KözelĂ­tĂ©sek Pythagorasz tĂ©tele KövetkezmĂ©ny: Pythagorasz tĂ©telĂ©nek megfordĂ­tĂĄsa MegjegyzĂ©s MegjegyĂ©s [2,1]; [2*%[1]*%[2],%[1]^2-%[2]^2,%[1]^2+%[2]^2]; (%o1) [2,1](%o2) [4,3,5] [3,2]; [2*%[1]*%[2],%[1]^2-%[2]^2,%[1]^2+%[2]^2]; (%o3) [3,2](%o4) [12,5,13] KözĂ©ppontos hasonlĂłsĂĄg, hasonlĂłsĂĄg NĂ©gy nevezetes pont SzögfelezƑ tĂ©tel ÁtfogĂłtĂ©tel Ă©s befogĂłtĂ©tel KövetkezmĂ©ny: szĂĄmtani Ă©s mĂ©rtani közĂ©p közötti egyenlƑtlensĂ©g SzelƑszakaszok mĂ©rtani közepe az Ă©rintƑ MegjegyzĂ©s A kör kerĂŒlete %pi; float(%); (%o69) %pi(%o70) 3.141592653589793 A π Ă©rtĂ©ke AranymetszĂ©s float((sqrt(5)-1)/2); %phi; float(1/%); (%o66) 0.6180339887498949(%o67) %phi(%o68) 0.6180339887498948 SzabĂĄlyos ötszög Ă©s ,,boszorkĂĄnylĂĄb'' szerkesztĂ©se SzerkesztĂ©si problĂ©mĂĄk Oldalaival adott hĂĄromszög terĂŒlete: HĂ©ron-kĂ©plet A szamoszi alagĂșt TĂ©rfogat Henger, hasĂĄb: (T+4*T+T)*m/6; (%o52) T*m KĂșp, gĂșla: (T+4*T/4+0)*m/6; (%o53) T*m3 Gömb: (0+4*r^2*%pi+0)*2*r/6; (%o54) 4*%pi*r33 CsonkakĂșp, csonkagĂșla: (T+4*(t*T)^(1/2)+t)*m/6; (%o56) m*

4*T*t+t+T

6
A kimerĂ­tĂ©s eljĂĄrĂĄsa HĂĄtrametszĂ©s Ă©s GPS KoordinĂĄtarendszerek Az alĂĄbbi metapost (mpost) program rajzolta az 1.3.12 ĂĄbrĂĄt. KoordinĂĄtĂĄkkal dolgozik. (Nem kell megĂ©rteni.) beginfig(321) u:=1cm; path p[]; picture pic[]; z0=(-5u,.5u); z1=(-3u,1.5u); z2=(-.25)[z0,z1]; z3=.4[z0,z1]; z4=2.2[z0,z1]; z5=2.4[z0,z1]; z6=z1-z0; z7=z6 rotated 90; z8=z3+.05z7; z9=z3-.05z7; z10=(u,0); z11=(4u,.5u); z12=(2u,3u); z13=z12-z10; z14=z11+z13; pickup defaultpen; draw z0--z5; draw z8--z9; drawarrow z11--z14; pickup pencircle scaled 1pt; drawarrow z0--z1; drawarrow z0--z4; drawarrow z10--z11; drawarrow z10--z12; drawarrow z10--z14; pickup pencircle scaled 3pt; draw z0; draw z10; label.top(btex $0$ etex,z0); label.urt(btex $1$ etex,z8); label.lrt(btex $v$ etex,.5[z0,z1]); label.lrt(btex $2,\!2v$ etex,.5[z0,z4]); label.ulft(btex $v$ etex,.5[z10,z12]); label.lrt(btex $w$ etex,.5[z10,z11]); label.ulft(btex $v+w$ etex,.5[z10,z14]); endfig; load("draw")$ draw2d( explicit(x^2,x,-2,2) )$ draw2d( implicit(x^2+y^2=1,x,-1,1,y,-1,1), )$ draw2d( proportional_axes=xy, implicit(x^2+y^2=1,x,-1,1,y,-1,1), ellipse(0,0,1,1/2,0,270) )$ Vektor szorzĂĄsa szĂĄmmal Ă©s vektorok összeadĂĄsa v1:[1,3]; v2:[-7,5]; (%o83) [1,3](%o84) [−7,5] 4*v1; v1+v2; (%o86) [4,12](%o87) [−6,8] Feladat Feladat Feladat Feladat Feladat Feladat Feladat Feladat Feladat Feladat Feladat
PKV„kXńB–HmimetypePKV„kXQdBV55 5format.txtPKV„kX㟔–p:p: ’content.xmlPK§+A