PKBe|QBHmimetypetext/x-wxmathmlPKBe|QTD format.txt This file contains a wxMaxima session in the .wxmx format. .wxmx files are .xml-based files contained in a .zip container like .odt or .docx files. After changing their name to end in .zip the .xml and eventual bitmap files inside them can be extracted using any .zip file viewer. The reason why part of a .wxmx file still might still seem to make sense in a ordinary text viewer is that the text portion of .wxmx by default isn't compressed: The text is typically small and compressing it would mean that changing a single character would (with a high probability) change big parts of the whole contents of the compressed .zip archive. Even if version control tools like git and svn that remember all changes that were ever made to a file can handle binary files compression would make the changed part of the file bigger and therefore seriously reduce the efficiency of version control wxMaxima can be downloaded from https://github.com/andrejv/wxmaxima. It also is part of the windows installer for maxima (http://maxima.sourceforge.net). If a .wxmx file is broken but the content.xml portion of the file can still be viewed using an text editor just save the xml's text as "content.xml" and try to open it using a recent version of wxMaxima. If it is valid XML (the XML header is intact, all opened tags are closed again, the text is saved with the text encoding "UTF8 without BOM" and the few special characters XML requires this for are properly escaped) chances are high that wxMaxima will be able to recover all code and text from the XML file. PKBe|Qn content.xml Kedvenc Fizikai Kísérleteim Mechanika Hosszúság, terület, térfogat Kísérlet Átszámítások. load("ezunits")$ known_unit_conversions; (%o2) {AU=astronomical_unit,Bq=becquerel,Btu=1055*J,C=A*s,F=C2J,GA=1000000000*A,GC=1000000000*C,GF=1000000000*F,GH=1000000000*H,GHz=1000000000*Hz,GJ=1000000000*J,GK=1000000000*K,GN=1000000000*N,GOhm=1000000000*Ohm,GPa=1000000000*Pa,GS=1000000000*S,GT=1000000000*T,GV=1000000000*V,GW=1000000000*W,GWb=1000000000*Wb,Gg=1000000*kg,Gm=1000000000*m,Gmol=1000000*mol,Gs=1000000000*s,Gy=gray,H=JA2,Hz=1s,J=N*m,MA=1000000*A,MC=1000000*C,MF=1000000*F,MH=1000000*H,MHz=1000000*Hz,MJ=1000000*J,MK=1000000*K,MN=1000000*N,MOhm=1000000*Ohm,MPa=1000000*Pa,MS=1000000*S,MT=1000000*T,MV=1000000*V,MW=1000000*W,MWb=1000000*Wb,Mg=1000*kg,Mm=1000000*m,Mmol=1000000000*mol,Ms=1000000*s,N=kg*ms2,Ohm=J*sC2,Pa=Nm2,R=5*K9,S=1Ohm,Sv=sievert,T=JA*m2,V=JC,W=Js,Wb=JA,acre=4840*yard2,amp=A,ampere=A,astronomical_unit=149597870700*m,becquerel=1s,candela=cd,cfm=feet3minute,cm=m100,coulomb=C,cup=pint2,day=86400*s,degree=%pi180,fA=A1000000000000000,fC=C1000000000000000,fF=F1000000000000000,fH=H1000000000000000,fHz=Hz1000000000000000,fJ=J1000000000000000,fK=K1000000000000000,fN=N1000000000000000,fOhm=Ohm1000000000000000,fPa=Pa1000000000000000,fS=S1000000000000000,fT=T1000000000000000,fV=V1000000000000000,fW=W1000000000000000,fWb=Wb1000000000000000,farad=F,feet=381*m1250,fg=g1000000000000000,fl_oz=fluid_ounce,fluid_ounce=cup8,fm=m1000000000000000,fmol=mol1000000000000000,foot=feet,fs=s1000000000000000,ft=feet,g=kg1000,gallon=231*inch3,gill=cup2,gram=g,gray=Jkg,ha=hectare,hectare=10000*m2,henry=H,hertz=Hz,horsepower=550*foot*pound_forces,hour=3600*s,hp=horsepower,inch=feet12,joule=J,julian_year=31557600*s,kA=1000*A,kC=1000*C,kF=1000*F,kH=1000*H,kHz=1000*Hz,kJ=1000*J,kK=1000*K,kN=1000*N,kOhm=1000*Ohm,kPa=1000*Pa,kS=1000*S,kT=1000*T,kV=1000*V,kW=1000*W,kWb=1000*Wb,kat=katal,katal=mols,kelvin=K,kilogram=kg,kilometer=km,km=1000*m,kmol=1000*mol,ks=1000*s,l=liter,lbf=pound_force,lbm=pound_mass,light_year=299792458*julian_year*ms,liter=m31000,lumen=cd,lux=lumenm2,mA=A1000,mC=C1000,mF=F1000,mH=H1000,mHz=Hz1000,mJ=J1000,mK=K1000,mN=N1000,mOhm=Ohm1000,mPa=Pa1000,mS=S1000,mT=T1000,mV=V1000,mW=W1000,mWb=Wb1000,meter=m,metric_ton=Mg,mg=kg1000000,microA=A1000000,microC=C1000000,microF=F1000000,microH=H1000000,microHz=Hz1000000,microJ=J1000000,microK=K1000000,microN=N1000000,microOhm=Ohm1000000,microPa=Pa1000000,microS=S1000000,microT=T1000000,microV=V1000000,microW=W1000000,microWb=Wb1000000,microampere=microA,microcoulomb=microC,microfarad=microF,microg=g1000000,microgram=kg1000000000,microhenry=microH,microhertz=microHz,microjoule=microJ,microkelvin=microK,microm=m1000000,micrometer=m1000000,micromol=mol1000000,micromole=micromol,micron=microm,micron=micrometer,micronewton=microN,micropascal=microPa,micros=s1000000,microsecond=s1000000,microsievert=microS,microtesla=microT,microvolt=microV,microwatt=microW,microweber=microWb,mile=5280*feet,minute=60*s,ml=l1000,mm=m1000,mmol=mol1000,mole=mol,month=2629800*s,ms=s1000,nA=A1000000000,nC=C1000000000,nF=F1000000000,nH=H1000000000,nHz=Hz1000000000,nJ=J1000000000,nK=K1000000000,nN=N1000000000,nOhm=Ohm1000000000,nPa=Pa1000000000,nS=S1000000000,nT=T1000000000,nV=V1000000000,nW=W1000000000,nWb=Wb1000000000,newton=N,ng=g1000000000,nm=m1000000000,nmol=mol1000000000,ns=s1000000000,ohm=Ohm,ounce=pound_mass16,oz=ounce,pA=A1000000000000,pC=C1000000000000,pF=F1000000000000,pH=H1000000000000,pHz=Hz1000000000000,pJ=J1000000000000,pK=K1000000000000,pN=N1000000000000,pOhm=Ohm1000000000000,pPa=Pa1000000000000,pS=S1000000000000,pT=T1000000000000,pV=V1000000000000,pW=W1000000000000,pWb=Wb1000000000000,parsec=648000*astronomical_unit%pi,pascal=Pa,pc=parsec,pg=g1000000000000,pint=quart2,pm=m1000000000000,pmol=mol1000000000000,pound_force=196133*ft*pound_mass6096*s2,pound_mass=45359237*kg100000000,ps=s1000000000000,psi=pound_forceinch2,quart=gallon4,rod=33*feet2,#{Lisp function}=s,short_ton=2000*lbm,siemens=S,sievert=gray,slug=pound_force*s2foot,tablespoon=fluid_ounce2,tbsp=tablespoon,teaspoon=tablespoon3,tesla=T,tsp=teaspoon,volt=V,watt=W,weber=Wb,week=604800*s,yard=3*feet,year=31557600*s} öl:2`yard; (%o11) 2 ` yard qty(öl); (%o12) 2 units(öl); (%o13) yard fundamental_units(öl); (%o15) m öl``ft; (%o22) 6 ` ft öl``inch; (%o23) 72 ` inch öl``m; (%o19) 1143625 ` m %,numer; (%o20) 1.8288 ` m 1`AU``m; (%o21) 149597870700 ` m Fizikai állandók. load(physical_constants)$ propvars(physical_constant); (%o4) [%c,%mu0,%e0,%Z0,%G,%h,%h_bar,%mP,%%k,%TP,%lP,%tP,%%e,%phi0,%G0,%KJ,%RK,%muB,%muN,%alpha,%R_inf,%a0,%eh,%ratio_h_me,%me,%NA,%mu,%F,%R,%Vm,%n0,%ratio_S0R,%sigma,%c1,%c_1L,%c2,%b,%b_prime] get(%c,description); (%o8) speed of light in vacuum constvalue(%c); (%o9) 299792458 ` ms Hatványozás. 10^2; (%o31) 100 10^3; (%o32) 1000 10^6; (%o33) 1000000 2^10; (%o34) 1024 3.14^12; (%o35) 918662.05184295 10^0; (%o36) 1 10^(-2); (%o37) 1100 ((3.14)^3)^4; (%o38) 918662.0518429502 Kísérlet Kísérlet Kísérlet Véletlen számok. x:0; (%o39) 0 s:0; (%o40) 0 n:2; (%o41) 2 for i thru n^2 do block([y],y:random(1.0),x:x+y,s:s+y^2); (%o42) done xx:x/n^2; (%o45) 0.4867061998553976 s; (%o47) 1.232183272069567 ss:s-n^2*xx^2; (%o48) 0.2846515721588386 Terület. A sin alatti terület 0-tól π-ig. %pi; (%o49) %pi %,numer; (%o65) 2 2`m*3`m; (%o66) 6 ` m2 trapez:%pi/8*(sin(0)+2*sin(%pi/4)+2*sin(%pi/2)+2*sin(3*%pi/4)+sin(%pi)); (%o51)

232+2

*%pi
8
%,numer; (%o52) 1.89611889793704 simpson:%pi/24*(sin(0)+4*sin(%pi/8)+2*sin(%pi/4)+4*sin(3*%pi/8)+2*sin(%pi/2)+4*sin(5*%pi/8)+2*sin(3*%pi/4)+4*sin(7*%pi/8)+sin(%pi)); (%o59) %pi*

4*sin

7*%pi8

+4*sin

5*%pi8

+4*sin

3*%pi8

+4*sin

%pi8

+232+2

24
%,numer; (%o60) 2.000269169948388 integrate(sin(t),t,0,%pi); (%o63) 2 Kísérlet Kísérlet Kísérlet 1`mm^2; (%o68) 1 ` mm2 %/%pi; (%o69) 1%pi ` mm2 %^(1/2); (%o70) 1%pi ` mm %,numer; (%o72) 0.5641895835477563 ` mm Kísérlet Kísérlet 2^1.5; (%o1) 2.82842712474619 ? log; −− Function: log (<x>) Represents the natural (base e) logarithm of <x>. Maxima does not have a built−in function for the base 10 logarithm or other bases. 'log10(x) := log(x) / log(10)' is a useful definition. Simplification and evaluation of logarithms is governed by several global flags: 'logexpand' causes 'log(a^b)' to become 'b*log(a)'. If it is set to 'all', 'log(a*b)' will also simplify to 'log(a)+log(b)'. If it is set to 'super', then 'log(a/b)' will also simplify to 'log(a)−log(b)' for rational numbers 'a/b', 'a#1'. ('log(1/b)', for 'b' integer, always simplifies.) If it is set to 'false', all of these simplifications will be turned off. 'logsimp' if 'false' then no simplification of '%e' to a power containing 'log''s is done. 'lognegint' if 'true' implements the rule 'log(−n)' → 'log(n)+%i*%pi' for 'n' a positive integer. '%e_to_numlog' when 'true', 'r' some rational number, and 'x' some expression, the expression '%e^(r*log(x))' will be simplified into 'x^r'. It should be noted that the 'radcan' command also does this transformation, and more complicated transformations of this as well. The 'logcontract' command "contracts" expressions containing 'log'. There are also some inexact matches for `log'. Try `?? log' to see them.(%o3) true Kísérlet Kísérlet Kísérlet %e; (%o25) %e %,numer; (%o26) %e %enumer; (%o27) false %enumer:not %enumer; (%o28) true %e,numer; (%o29) 2.718281828459045 Kísérlet solve(a*x^2+b*x+c,x); (%o30) [x=b24*a*c+b2*a,x=b24*a*cb2*a] solve(y^3+p*y+q,y); (%o31) [y=

123*%i2

*

27*q2+4*p32*332q2

13

3*%i2+12

*p
3*

27*q2+4*p32*332q2

13
,y=

3*%i2+12

*

27*q2+4*p32*332q2

13

123*%i2

*p
3*

27*q2+4*p32*332q2

13
,y=

27*q2+4*p32*332q2

13
p3*

27*q2+4*p32*332q2

13
]
z:x+%i*y; (%o57) %i*y+x w:u+%i*v; (%o15) %i*v+u z+w; (%o16) %i*y+x+%i*v+u z*w; (%o17)

%i*v+u

*

%i*y+x

expand(%); (%o18) v*y+%i*u*y+%i*v*x+u*x abs(z); (%o37) %i*y+x 1/z; (%o58) 1%i*y+x expand(%); (%o59) 1%i*y+x rectform(expand(%)); (%o60) xy2+x2%i*yy2+x2 Kísérlet kill(all); (%o0) done z:[x,y]; (%o1) [x,y] w:[u,v]; (%o2) [u,v] z+w; (%o3) [x+u,y+v] 5*z; (%o4) [5*x,5*y] r1:[x1,y1,z1]; (%o5) [x1,y1,z1] r2:[x2,y2,z2]; (%o6) [x2,y2,z2] r1+r2; (%o7) [x2+x1,y2+y1,z2+z1] 5*r1; (%o8) [5*x1,5*y1,5*z1] r1:matrix(r1); (%o9) x1y1z1 r2:matrix(r2); (%o10) x2y2z2 r1+r2; (%o11) x2+x1y2+y1z2+z1 5*r1; (%o12) 5*x15*y15*z1 Kísérlet z:x+%i*y; (%o54) %i*y+x conjugate(z); (%o53) 1%i z*conjugate(z); (%o55)

x%i*y

*

%i*y+x

expand(%); (%o56) y2+x2 [z,w]:[1+%i,2+3*%i]; (%o42) [%i+1,3*%i+2] abs(z); (%o43) 2 abs(w); (%o44) 13 abs(z*w); (%o47) 2*13 conjugate(z); (%o48) 1%i z; (%o50) %i+1 polarform(%); (%o51) 2*%e%i*%pi4 rectform(%); (%o52) %i+1 Kísérlet z:float(1+2.^(-24)*%i); (%o5) 5.960464477539063*10−8*%i+1.0 for e from -24 thru 2 do (print(e,float(z)),z:expand(z^2)); 24 5.960464477539063*10−8*%i+1.0 23 1.192092895507812*10−7*%i+0.9999999999999965 22 2.384185791015616*10−7*%i+0.9999999999999787 21 4.768371582031131*10−7*%i+0.9999999999999005 20 9.536743164061314*10−7*%i+0.9999999999995737 19 1.907348632811449*10−6*%i+0.9999999999982379 18 3.814697265616177*10−6*%i+0.9999999999928377 17 7.629394531177711*10−6*%i+0.9999999999711235 16 1.52587890619148*10−5*%i+0.9999999998840394 15 3.051757812029076*10−5*%i+0.9999999995352482 14 6.103515621221534*10−5*%i+0.9999999981391738 13 1.22070312197279*10−4*%i+0.9999999925530574 12 2.441406225764568*10−4*%i+0.9999999702049537 11 4.882812306045514*10−4*%i+0.9999998808052647 10 9.765623448079988*10−4*%i+0.9999995231919835 9 0.001953123758350488*%i+0.999998092710181 8 0.003906240066354857*%i+0.9999923707315844 7 0.007812420529201791*%i+0.9999694828099186 6 0.01562436423215901*%i+0.9998779326366111 5 0.03124491401442513*%i+0.9995117594160042 4 0.06245931795871966*%i+0.9980475125591075 3 0.1246747338496771*%i+0.9921976709255533 2 0.2474039610978257*%i+0.9689124289296048 1 0.4794255457481995*%i+0.877582574967372 0 0.8414710098856851*%i+0.5403023219704042 1 0.9092974810240332*%i0.4161468613514245 2 0.7568025855258157*%i0.6536436987840103 (%o6) done plot2d([realpart(%e^(%i*t)),imagpart(%e^(%i*t))], [t,0,2^%pi])$ z:x+%i*y; (%o65) %i*y+x polarform(%); (%o66) y2+x2*%e%i*atan2

y,x

rectform(%); (%o67) %i*y+x
PKBe|QBHmimetypePKBe|QTD 5format.txtPKBe|Qn tcontent.xmlPK%