Bevezet\303\251s a matematik\303\241ba J\303\241rai Antal Ezek a programok csak szeml\303\251ltet\303\251sre szolg\303\241lnak.
<Text-field style="Heading 1" layout="Heading 1">1. Halmazok</Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">2. Term\303\251szetes sz\303\241mok</Font></Text-field>
<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">3. A sz\303\241mfogalom b\305\221v\303\255t\303\251se</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">4. V\303\251ges halmazok</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">5. V\303\251gtelen halmazok</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">6. Sz\303\241melm\303\251let</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">7. Gr\303\241felm\303\251let</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 1" layout="Heading 1">8. Algebra</Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">9. K\303\263dol\303\241s</Font></Text-field>
<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">9.1. Kommunik\303\241ci\303\263 \303\251s k\303\263dol\303\241s</Font></Text-field> restart;
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.1.1. Inform\303\241ci\303\263, bit, entr\303\263pia.</Font></Text-field> H:=proc(F::list(positive),r::positive) local i,s,h; s:=0; h:=0; for i to nops(F) do s:=s+F[i]; od; for i to nops(F) do h:=h-log[r](F[i]/s)*F[i]/s; od; h; end; H([1,1],2); H([1,3],2); evalf(%); Zio2JCdJIkZHNiItSSVsaXN0RyUqcHJvdGVjdGVkRzYjSSlwb3NpdGl2ZUdGKSdJInJHRiZGKzYlSSJpR0YmSSJzR0YmSSJoR0YmRiZGJkMnPkYwIiIhPkYxRjQ/KEYvIiIiRjctSSVub3BzR0YpNiNGJUkldHJ1ZUdGKT5GMCwmRjBGNyZGJTYjRi9GNz8oRi9GN0Y3RjhGOz5GMSwmRjFGNyooLSZJJGxvZ0dGJjYjRi02IyomRj5GN0YwISIiRjdGPkY3RjBGSkZKRjFGJkYmRiY= IiIi LCYjIiIiIiIjRiQqKCMiIiQiIiVGJC1JI2xuRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiNiNGJ0YkLUYrNiNGJSEiIkYz JCIrWDd5NyIpISM1 with(StringTools); N2p1SSlBbmFncmFtc0c2IkknQW5kTWFwR0YkSTJBcHByb3hpbWF0ZVNlYXJjaEdGJEk1QXBwcm94aW1hdGVTZWFyY2hBbGxHRiRJL0FyaXRobWV0aWNNZWFuR0YkSSdCb3JkZXJHRiRJLEJvcmRlckFycmF5R0YkSS1Cb3JkZXJMZW5ndGhHRiRJKkNhbWVsQ2FzZUdGJEkrQ2FwaXRhbGl6ZUdGJEkpQ2FzZUpvaW5HRiRJKkNhc2VTcGxpdEdGJEknQ2VudGVyR0YkSSdDZW50cmVHRiRJJUNoYXJHRiRJNUNoYXJhY3RlckZyZXF1ZW5jaWVzR0YkSS1DaGFyYWN0ZXJNYXBHRiRJJkNob21wR0YkSSVDaG9wR0YkSS1Db21tb25QcmVmaXhHRiRJLUNvbW1vblN1ZmZpeEdGJEkoQ29tcGFyZUdGJEkqQ29tcGFyZUNJR0YkSTpDb3VudENoYXJhY3Rlck9jY3VycmVuY2VzR0YkSSdEZWNvZGVHRiRJJ0RlbGV0ZUdGJEklRHJvcEdGJEktRWRpdERpc3RhbmNlR0YkSSdFbmNvZGVHRiRJKEVudHJvcHlHRiRJJ0VzY2FwZUdGJEkpRXhjaGFuZ2VHRiRJNUV4cGFuZENoYXJhY3RlckNsYXNzR0YkSStFeHBhbmRUYWJzR0YkSShFeHBsb2RlR0YkSSZGZW5jZUdGJEkqRmlib25hY2NpR0YkSSVGaWxsR0YkSS5GaXJzdEZyb21MZWZ0R0YkSS9GaXJzdEZyb21SaWdodEdGJEkuRm9ybWF0TWVzc2FnZUdGJEkrRm9ybWF0VGltZUdGJEkuRnJvbUJ5dGVBcnJheUdGJEkpR2VuZXJhdGVHRiRJJkdyb3VwR0YkSTBIYW1taW5nRGlzdGFuY2VHRiRJLkhhbW1pbmdTZWFyY2hHRiRJMUhhbW1pbmdTZWFyY2hBbGxHRiRJKUhhc0FTQ0lJR0YkSSlIYXNBbHBoYUdGJEkwSGFzQWxwaGFOdW1lcmljR0YkSS9IYXNCaW5hcnlEaWdpdEdGJEk0SGFzQ29udHJvbENoYXJhY3RlckdGJEkpSGFzRGlnaXRHRiRJK0hhc0dyYXBoaWNHRiRJLEhhc0hleERpZ2l0R0YkSS5IYXNJZGVudGlmaWVyR0YkSS9IYXNJZGVudGlmaWVyMUdGJEkpSGFzTG93ZXJHRiRJLkhhc09jdGFsRGlnaXRHRiRJLUhhc1ByaW50YWJsZUdGJEkvSGFzUHVuY3R1YXRpb25HRiRJKUhhc1NwYWNlR0YkSSlIYXNVcHBlckdGJEkpSGFzVm93ZWxHRiRJJUhhc2hHRiRJKEltcGxvZGVHRiRJJ0luc2VydEdGJEklSW90YUdGJEkoSXNBU0NJSUdGJEkoSXNBbHBoYUdGJEkvSXNBbHBoYU51bWVyaWNHRiRJKklzQW5hZ3JhbUdGJEkrSXNCYWxhbmNlZEdGJEkuSXNCaW5hcnlEaWdpdEdGJEksSXNDb25qdWdhdGVHRiRJM0lzQ29udHJvbENoYXJhY3RlckdGJEkoSXNEaWdpdEdGJEkqSXNHcmFwaGljR0YkSStJc0hleERpZ2l0R0YkSS1Jc0lkZW50aWZpZXJHRiRJLklzSWRlbnRpZmllcjFHRiRJKElzTG93ZXJHRiRJLElzTW9ub3RvbmljR0YkSS1Jc09jdGFsRGlnaXRHRiRJLUlzUGFsaW5kcm9tZUdGJEkpSXNQZXJpb2RHRiRJLklzUGVybXV0YXRpb25HRiRJKUlzUHJlZml4R0YkSSxJc1ByaW1pdGl2ZUdGJEksSXNQcmludGFibGVHRiRJLklzUHVuY3R1YXRpb25HRiRJKUlzU29ydGVkR0YkSShJc1NwYWNlR0YkSS5Jc1N1YlNlcXVlbmNlR0YkSSlJc1N1ZmZpeEdGJEkoSXNVcHBlckdGJEkoSXNWb3dlbEdGJEklSm9pbkdGJEkpTGVmdEZvbGRHRiRJN0xlZnRSZWN1cnNpdmVQYXRoT3JkZXJHRiRJJ0xlbmd0aEdGJEksTGV2ZW5zaHRlaW5HRiRJKUxleE9yZGVyR0YkSTlMb25nZXN0Q29tbW9uU3ViU2VxdWVuY2VHRiRJN0xvbmdlc3RDb21tb25TdWJTdHJpbmdHRiRJKkxvd2VyQ2FzZUdGJEkuTHluZG9uRmFjdG9yc0dGJEkkTWFwR0YkSShNYXhDaGFyR0YkSTxNYXhpbWFsUGFsaW5kcm9taWNTdWJzdHJpbmdHRiRJKk1ldGFwaG9uZUdGJEkoTWluQ2hhckdGJEkxTWluaW11bUNvbmp1Z2F0ZUdGJEkxTW9ub3RvbmljRmFjdG9yc0dGJEknTkdyYW1zR0YkSShOdGhXb3JkR0YkSSZPck1hcEdGJEkkT3JkR0YkSShPdmVybGFwR0YkSShQYWRMZWZ0R0YkSSlQYWRSaWdodEdGJEkqUGFyc2VUaW1lR0YkSTJQYXR0ZXJuRGljdGlvbmFyeUdGJEknUGVyaW9kR0YkSShQZXJtdXRlR0YkSS9QcmVmaXhEaXN0YW5jZUdGJEkuUHJpbWl0aXZlUm9vdEdGJEknUmFuZG9tR0YkSSpSYW5kb21pemVHRiRJKVJlZ01hdGNoR0YkSSlSZWdTcGxpdEdGJEknUmVnU3ViR0YkSShSZWdTdWJzR0YkSSdSZW1vdmVHRiRJJ1JlcGVhdEdGJEksUmV2TGV4T3JkZXJHRiRJKFJldmVyc2VHRiRJKlJpZ2h0Rm9sZEdGJEk4UmlnaHRSZWN1cnNpdmVQYXRoT3JkZXJHRiRJJ1JvdGF0ZUdGJEknU2VhcmNoR0YkSSpTZWFyY2hBbGxHRiRJJ1NlbGVjdEdGJEktU2VsZWN0UmVtb3ZlR0YkSSZTaGlmdEdGJEkuU2hvcnRMZXhPcmRlckdGJEkxU2hvcnRSZXZMZXhPcmRlckdGJEk2U2ltaWxhcml0eUNvZWZmaWNpZW50R0YkSSVTb3J0R0YkSShTb3VuZGV4R0YkSSZTcGxpdEdGJEkoU3F1ZWV6ZUdGJEklU3RlbUdGJEktU3RyaW5nQnVmZmVyR0YkSSpTdWJTdHJpbmdHRiRJK1N1YnN0aXR1dGVHRiRJLlN1YnN0aXR1dGVBbGxHRiRJL1N1ZmZpeERpc3RhbmNlR0YkSShTdXBwb3J0R0YkSS9TeWxsYWJsZUxlbmd0aEdGJEkpVGFidWxhdGVHRiRJJVRha2VHRiRJKlRodWVNb3JzZUdGJEksVG9CeXRlQXJyYXlHRiRJJVRyaW1HRiRJKVRyaW1MZWZ0R0YkSSpUcmltUmlnaHRHRiRJKlVwcGVyQ2FzZUdGJEkoVmlzaWJsZUdGJEkuV2lsZGNhcmRNYXRjaEdGJEkqV29yZENvdW50R0YkSSZXb3Jkc0dGJEkpV3JhcFRleHRHRiQ= Entropy("ab"); Entropy("aaab"); JCIiIiIiIQ== JCIzS0c4Zlc3eTciKSEjPQ== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.1.2. Seg\303\251dt\303\251tel.</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.1.3. T\303\251tel.</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3">->9.1.4. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.1.5. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.1.6. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.1.7. K\303\263dol\303\241s.</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">9.2. Gazdas\303\241gos k\303\263dol\303\241s</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.1. Bet\305\261nk\303\251nti k\303\263dol\303\241s.</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.2. P\303\251lda.</Font></Text-field> M:=table(): M["a"]:="10111": M["b"]:="111010101": M["c"]:="11101011101": M["d"]:="1110101": M["e"]:="1": M["f"]:="101011101": M["g"]:="111011101": M["h"]:="1010101": M["i"]:="101": M["j"]:="1011101110111": M["k"]:="111010111": M["l"]:="101110101": M["m"]:="1110111": M["n"]:="11101": M["o"]:="11101110111": M["p"]:="10111011101": M["q"]:="1110111010111": M["r"]:="1011101": M["s"]:="10101": M["t"]:="111": M["u"]:="1010111": M["v"]:="101010111": M["w"]:="101110111": M["x"]:="11101010111": M["y"]:="1110101110111": M["z"]:="11101110101": M[" "]:="": M["0"]:="1110111011101110111": M["1"]:="10111011101110111": M["2"]:="101011101110111": M["3"]:="1010101110111": M["4"]:="10101010111": M["5"]:="101010101": M["6"]:="11101010101": M["7"]:="1110111010101": M["8"]:="111011101110101": M["9"]:="11101110111011101": M["."]:="10111010111010111": M[","]:="1110111010101110111": M["?"]:="101011101110101": M[":"]:="11101110111010101": M["-"]:="111010101010111": ASCII2Morse:=proc(s::string) local i,m; m:=""; for i to length(s) do m:=cat(m,M[s[i]],"000") od; m; end; ASCII2Morse("ad "); ASCII2Morse("emi "); Zio2IydJInNHNiJJJ3N0cmluZ0clKnByb3RlY3RlZEc2JEkiaUdGJkkibUdGJkYmRiZDJT5GK1EhRiY/KEYqIiIiRjAtSSdsZW5ndGhHRig2I0YlSSV0cnVlR0YoPkYrLUkkY2F0R0YoNiVGKyZJIk1HRiY2IyZGJTYjRipRJDAwMEYmRitGJkYmRiY= UTYxMDExMTAwMDExMTAxMDEwMDAwMDA2Ig== UTgxMDAwMTExMDExMTAwMDEwMTAwMDAwMDYi addcomma:=proc(A,M,Ct,p) local i; for i to length(A) do Ct[A[i]]:=cat(M[A[i]],p) od; end; Zio2JkkiQUc2IkkiTUdGJUkjQ3RHRiVJInBHRiU2I0kiaUdGJUYlRiU/KEYqIiIiRiwtSSdsZW5ndGhHJSpwcm90ZWN0ZWRHNiNGJEkldHJ1ZUdGLz4mRic2IyZGJEYpLUkkY2F0R0YvNiQmRiZGNEYoRiVGJUYl Ct:=table(): A:="abcdefghijklmnopqrstuvwxyz 0123456789.,?:-"; addcomma(A,M,Ct,"000"): UUthYmNkZWZnaGlqa2xtbm9wcXJzdHV2d3h5en4wMTIzNDU2Nzg5Liw/Oi02Ig== Ct["m"]; USsxMTEwMTExMDAwNiI= code:=proc(m,Ct) local i,c; c:=""; for i to length(m) do c:=cat(c,Ct[m[i]]) od; end; Zio2JEkibUc2IkkjQ3RHRiU2JEkiaUdGJUkiY0dGJUYlRiVDJD5GKVEhRiU/KEYoIiIiRi4tSSdsZW5ndGhHJSpwcm90ZWN0ZWRHNiNGJEkldHJ1ZUdGMT5GKS1JJGNhdEdGMTYkRikmRiY2IyZGJDYjRihGJUYlRiU= c:=code("ad emi",Ct); UUoxMDExMTAwMDExMTAxMDEwMDAwMDAxMDAwMTExMDExMTAwMDEwMTAwMDYi LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3">9.2.3. Prefix, szuffix, infix.</Text-field> IsPrefix("a","abc"); IsPrefix("","abc"); IsPrefix("abc","abc"); SSV0cnVlRyUqcHJvdGVjdGVkRw== SSV0cnVlRyUqcHJvdGVjdGVkRw== SSV0cnVlRyUqcHJvdGVjdGVkRw== IsSuffix("c","abc"); IsSuffix("b","abc"); SSV0cnVlRyUqcHJvdGVjdGVkRw== SSZmYWxzZUclKnByb3RlY3RlZEc= HammingSearch("xy","axybcxyde",0); HammingSearch("xyz","axybcxyzde",0); HammingSearch("xyz","axybcxyzde",1); IiIj IiIn IiIj LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.4. K\303\263dfa.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.5. Prefix k\303\263d, egyenletes k\303\263d, vessz\305\221s k\303\263d. </Font></Text-field> isprefixcode:=proc(A,Ct) local f,i,j; f:=true; for i to length(A) do for j from i+1 to length(A) do if IsPrefix(Ct[A[i]],Ct[A[j]]) or IsPrefix(Ct[A[j]],Ct[A[i]]) then f:=false fi; od; od; f; end; Zio2JEkiQUc2IkkjQ3RHRiU2JUkiZkdGJUkiaUdGJUkiakdGJUYlRiVDJT5GKEkldHJ1ZUclKnByb3RlY3RlZEc/KEYpIiIiRjAtSSdsZW5ndGhHRi42I0YkRi0/KEYqLCZGKUYwRjBGMEYwRjFGLUAkNS1fSSxTdHJpbmdUb29sc0c2JEYuSShfc3lzbGliR0YlSSlJc1ByZWZpeEdGJTYkJkYmNiMmRiQ2I0YpJkYmNiMmRiQ2I0YqLUY5NiRGQ0Y/PkYoSSZmYWxzZUdGLkYoRiVGJUYl isprefixcode(A,Ct); SSV0cnVlRyUqcHJvdGVjdGVkRw== decodewithcodetable:=proc(c,A,Ct) local i,j,a,m,cc; m:=""; cc:=""; for i while i<=length(c) do cc:=cat(cc,c[i]); for j to length(A) do a:=A[j]; if Ct[a]=cc then m:=cat(m,a); cc:=""; break fi; od; od; if length(cc)>0 then FAIL else m fi; end; Zio2JUkiY0c2IkkiQUdGJUkjQ3RHRiU2J0kiaUdGJUkiakdGJUkiYUdGJUkibUdGJUkjY2NHRiVGJUYlQyY+RixRIUYlPkYtRjA/KEYpIiIiRjNGJTFGKS1JJ2xlbmd0aEclKnByb3RlY3RlZEc2I0YkQyQ+Ri0tSSRjYXRHRjc2JEYtJkYkNiNGKT8oRipGM0YzLUY2NiNGJkkldHJ1ZUdGN0MkPkYrJkYmNiNGKkAkLyZGJzYjRitGLUMlPkYsLUY8NiRGLEYrRjFbQCUyIiIhLUY2NiNGLUklRkFJTEdGN0YsRiVGJUYl decodewithcodetable(c,A,Ct); USdhZH5lbWk2Ig== makedecodetable:=proc(A,Ct,Dt) local i; for i to length(A) do Dt[Ct[A[i]]]:=A[i] od; end; Zio2JUkiQUc2IkkjQ3RHRiVJI0R0R0YlNiNJImlHRiVGJUYlPyhGKSIiIkYrLUknbGVuZ3RoRyUqcHJvdGVjdGVkRzYjRiRJJXRydWVHRi4+JkYnNiMmRiY2IyZGJEYoRjZGJUYlRiU= Dt:=table(): makedecodetable(A,Ct,Dt): print(Dt); LUkmVEFCTEVHJSpwcm90ZWN0ZWRHNiM3TC9RNzExMTAxMTEwMTAxMDExMTAxMTEwMDA2IlEiLEYpL1EvMTExMDExMTAxMDEwMDBGKVEiekYpL1E1MTExMDExMTAxMTEwMTAxMDEwMDBGKVEiOkYpL1ErMTExMDEwMTAwMEYpUSJkRikvUTUxMDExMTAxMDExMTAxMDExMTAwMEYpUSIuRikvUS0xMTEwMTAxMDEwMDBGKVEiYkYpL1EzMTAxMDExMTAxMTEwMTAxMDAwRilRIj9GKS9RJzExMTAwMEYpUSJ0RikvUS8xMTEwMTAxMTEwMTAwMEYpUSJjRikvUS0xMTEwMTAxMTEwMDBGKVEia0YpL1ExMTExMDExMTAxMDEwMTAwMEYpUSI3RikvUSsxMTEwMTExMDAwRilRIm1GKS9RLTEwMTAxMDExMTAwMEYpUSJ2RikvUTMxMTEwMTExMDExMTAxMDEwMDBGKVEiOEYpL1EtMTAxMTEwMTExMDAwRilRIndGKS9RLzEwMTAxMDEwMTExMDAwRilRIjRGKS9RNTExMTAxMTEwMTExMDExMTAxMDAwRilRIjlGKS9RMTEwMTExMDExMTAxMTEwMDBGKVEiakYpL1ErMTAxMDEwMTAwMEYpUSJoRikvUSkxMDEwMTAwMEYpUSJzRikvUTcxMTEwMTExMDExMTAxMTEwMTExMDAwRilRIjBGKS9RMTExMTAxMDExMTAxMTEwMDBGKVEieUYpL1EvMTExMDExMTAxMTEwMDBGKVEib0YpL1EkMDAwRilRIn5GKS9RJTEwMDBGKVEiZUYpL1ErMTAxMDExMTAwMEYpUSJ1RikvUS0xMTEwMTExMDEwMDBGKVEiZ0YpL1ExMTExMDExMTAxMDExMTAwMEYpUSJxRikvUTUxMDExMTAxMTEwMTExMDExMTAwMEYpUSIxRikvUS0xMDEwMTAxMDEwMDBGKVEiNUYpL1EvMTExMDEwMTAxMTEwMDBGKVEieEYpL1EpMTExMDEwMDBGKVEibkYpL1ExMTAxMDEwMTExMDExMTAwMEYpUSIzRikvUS8xMTEwMTAxMDEwMTAwMEYpUSI2RikvUSkxMDExMTAwMEYpUSJhRikvUS0xMDExMTAxMDEwMDBGKVEibEYpL1EnMTAxMDAwRilRImlGKS9RMzEwMTAxMTEwMTExMDExMTAwMEYpUSIyRikvUS8xMDExMTAxMTEwMTAwMEYpUSJwRikvUTMxMTEwMTAxMDEwMTAxMTEwMDBGKVEiLUYpL1EtMTAxMDExMTAxMDAwRilRImZGKS9RKzEwMTExMDEwMDBGKVEickYp decode:=proc(c::string,Dt::table) local i,m,cc; m:=""; cc:=""; for i while i<=length(c) do cc:=cat(cc,c[i]); if type(Dt[cc],string) then m:=cat(m,Dt[cc]); cc:=""; fi; od; if length(cc)>0 then FAIL else m fi; end; Zio2JCdJImNHNiJJJ3N0cmluZ0clKnByb3RlY3RlZEcnSSNEdEdGJkkmdGFibGVHRig2JUkiaUdGJkkibUdGJkkjY2NHRiZGJkYmQyY+Ri5RIUYmPkYvRjI/KEYtIiIiRjVGJjFGLS1JJ2xlbmd0aEdGKDYjRiVDJD5GLy1JJGNhdEdGKDYkRi8mRiU2I0YtQCQtSSV0eXBlR0YoNiQmRio2I0YvRidDJD5GLi1GPTYkRi5GRUYzQCUyIiIhLUY4RkZJJUZBSUxHRihGLkYmRiZGJg== decode(c,Dt); USdhZH5lbWk2Ig== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.6. P\303\251ld\303\241k.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.2.7. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.2.8. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.2.9. <Font encoding="UTF-8">T\303\251tel: McMillan-egyenl\305\221tlens\303\251g.</Font></Text-field> mcmillan:=proc(L::list(posint),r::posint) convert(map(x->r^(-x),L),`+`) end; mcmillan([6,7,5],2); Zio2JCdJIkxHNiItSSVsaXN0RyUqcHJvdGVjdGVkRzYjSSdwb3NpbnRHRiknSSJyR0YmRitGJkYmRiYtSShjb252ZXJ0R0YpNiQtSSRtYXBHRik2JGYqNiNJInhHRiZGJjYkSSlvcGVyYXRvckdGJkkmYXJyb3dHRiZGJilGLSwkRjYhIiJGJkYmNiRGLTklRiVJIitHRilGJkYmRiY= IyIiKCIkRyI= shannoncode:=proc(B::string,L::list(posint)) local i,s,c,r,C,LL; r:=length(B); s:=0; C:=[]; LL:=[[L[i],i]$i=1..nops(L)]; LL:=sort(%,(x,y)->x[1]<y[1]); for i to nops(LL) do c:=convert(s*r^LL[i][1],base,r); c:=map(x->B[x+1],c); c:=cat("",op(c)); c:=Reverse(c); c:=cat(Fill(B[1],LL[i][1]-length(c)),c); C:=[op(C),[c,LL[i][2]]]; s:=s+1/r^LL[i][1]; od; C:=sort(C,(x,y)->x[2]<y[2]); map(x->x[1],C); end; Zio2JCdJIkJHNiJJJ3N0cmluZ0clKnByb3RlY3RlZEcnSSJMR0YmLUklbGlzdEdGKDYjSSdwb3NpbnRHRig2KEkiaUdGJkkic0dGJkkiY0dGJkkickdGJkkiQ0dGJkkjTExHRiZGJkYmQyo+RjMtSSdsZW5ndGhHRig2I0YlPkYxIiIhPkY0NyI+RjU3Iy1JIiRHRig2JDckJkYqNiNGMEYwL0YwOyIiIi1JJW5vcHNHRig2I0YqPkY1LUklc29ydEdGKDYkSSIlR0YmZio2JEkieEdGJkkieUdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmMiZGVDYjRkkmRlVGZW5GJkYmRiY/KEYwRklGSS1GSzYjRjVJJXRydWVHRihDKT5GMi1JKGNvbnZlcnRHRig2JSomRjFGSSlGMyYmRjVGRkZlbkZJSSViYXNlR0YmRjM+RjItSSRtYXBHRig2JGYqNiNGVEYmRlZGJiZGJTYjLCZGVEZJRklGSUYmRiY2JEYlOSRGMj5GMi1JJGNhdEdGKDYkUSFGJi1JI29wR0YoNiNGMj5GMi1fSSxTdHJpbmdUb29sc0c2JEYoSShfc3lzbGliR0YmSShSZXZlcnNlR0YmRmdwPkYyLUZicDYkLV9GW3FJJUZpbGxHRiY2JCZGJUZlbiwmRmJvRkktRjlGZ3AhIiJGMj5GNDckLUZmcDYjRjQ3JEYyJkZjbzYjIiIjPkYxLCZGMUZJKiRGYW9GaXFGST5GNC1GTzYkRjRmKkZTRiZGVkYmMiZGVEZgciZGVUZgckYmRiZGJi1GZ282JGYqRmpvRiZGVkYmRlpGJkYmRiZGNEYmRiZGJg== L:=[6,7,5]; B:="ab"; shannoncode(B,L); NyUiIiciIigiIiY= USNhYjYi NyVRJ2FhYWFiYTYiUShhYWFhYmJhRiRRJmFhYWFhRiQ= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3">->9.2.10. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.2.11. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.2.12. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.2.13. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.14. \303\201tlagos sz\303\263hossz\303\272s\303\241g, optim\303\241lis k\303\263d.</Font></Text-field> meanlength:=proc(F::list(nonnegative),L::list(posint)) local i,s,m; if nops(F)<>nops(L) then return FAIL fi; s:=0; m:=0; for i to nops(F) do s:=s+F[i] od; if s=0 then return FAIL fi; for i to nops(F) do m:=m+L[i]*F[i] od; m/s; end; Zio2JCdJIkZHNiItSSVsaXN0RyUqcHJvdGVjdGVkRzYjSSxub25uZWdhdGl2ZUdGKSdJIkxHRiYtRig2I0kncG9zaW50R0YpNiVJImlHRiZJInNHRiZJIm1HRiZGJkYmQylAJDAtSSVub3BzR0YpNiNGJS1GOTYjRi1PSSVGQUlMR0YpPkYzIiIhPkY0RkA/KEYyIiIiRkNGOEkldHJ1ZUdGKT5GMywmRjNGQyZGJTYjRjJGQ0AkL0YzRkBGPT8oRjJGQ0ZDRjhGRD5GNCwmRjRGQyomJkYtRkhGQ0ZHRkNGQyomRjRGQ0YzISIiRiZGJkYm meanlength([1,1,2],[6,7,5]); IyIjQiIiJQ== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.15. Shannon t\303\251tele zajmentes csatorn\303\241ra.</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.16. T\303\251tel: Shannon-k\303\263d l\303\251tez\303\251se.</Font></Text-field> shannonlength:=proc(F::list(positive),r::posint) local i,j,s,L; s:=0; L:=[]; if r<=1 then return FAIL fi; for i to nops(F) do s:=s+F[i] od; for i to nops(F) do for j while r^j<s/F[i] do od; L:=[op(L),j]; od; L; end; Zio2JCdJIkZHNiItSSVsaXN0RyUqcHJvdGVjdGVkRzYjSSlwb3NpdGl2ZUdGKSdJInJHRiZJJ3Bvc2ludEdGKTYmSSJpR0YmSSJqR0YmSSJzR0YmSSJMR0YmRiZGJkMoPkYyIiIhPkYzNyJAJDFGLSIiIk9JJUZBSUxHRik/KEYwRjtGOy1JJW5vcHNHRik2I0YlSSV0cnVlR0YpPkYyLCZGMkY7JkYlNiNGMEY7PyhGMEY7RjtGP0ZCQyQ/KEYxRjtGO0YmMilGLUYxKiZGMkY7RkUhIiJGJj5GMzckLUkjb3BHRik2I0YzRjFGM0YmRiZGJg== F:=[1,1,2,2]; L:=shannonlength([1,1,2,2],4); shannoncode("0123",%); NyYiIiJGIyIiI0Yk NyYiIiNGIyIiIkYk NyZRIzIxNiJRIzIwRiRRIjFGJFEiMEYk H(F,4); evalf(%); meanlength(F,L); evalf(%); LCYqKCMiIiIiIidGJS1JI2xuRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiNiNGJkYlLUYoNiMiIiMhIiJGJSooI0YlIiIkRiUtRig2I0Y0RiVGLkYxRiU= JCIrcSJ6OWYqISM1 IyIiJSIiJA== JCIrTExMTDghIio= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.17. T\303\251tel: optim\303\241lis k\303\263d konstrukci\303\263ja.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.18. Huffmann-k\303\263d.</Font></Text-field> huffmannlength:=proc(F::list(nonnegative),r::posint) local i,l,h,rr,s,L,HH; if r<=1 then return FAIL fi; if nops(F)<=r then return [1$i=1..nops(F)] fi; L:=[[F[i],0,i]$i=1..nops(F)]; HH:=heap[new]((x,y)->x[1]>=y[1],op(L)); rr:=2+((nops(L)-2) mod (r-1)); do h:=heap[extract](HH); if heap[empty](HH) then break fi; s:=h[1]; L:=[h]; for i from 2 to rr do h:=heap[extract](HH); L:=[op(L),h]; s:=s+h[1]; od; heap[insert]([s,1,L],HH); rr:=r; od; HH:=heap[new]((x,y)->x[1]<=y[1],[h[2],0,h[3]]); do h:=heap[extract](HH); if h[1]=0 then heap[insert](h,HH); break fi; L:=h[3]; l:=h[2]+1; for i to nops(L) do heap[insert]([L[i][2],l,L[i][3]],HH); od; od; L:=[]; while not heap[empty](HH) do h:=heap[extract](HH); L:=[op(L),[h[2],h[3]]]; od; sort(L,(x,y)->x[2]<y[2]); map(x->x[1],%); end; Zio2JCdJIkZHNiItSSVsaXN0RyUqcHJvdGVjdGVkRzYjSSxub25uZWdhdGl2ZUdGKSdJInJHRiZJJ3Bvc2ludEdGKTYpSSJpR0YmSSJsR0YmSSJoR0YmSSNyckdGJkkic0dGJkkiTEdGJkkjSEhHRiZGJkYmQy5AJDFGLSIiIk9JJUZBSUxHRilAJDEtSSVub3BzR0YpNiNGJUYtTzcjLUkiJEdGKTYkRjovRjA7RjpGPz5GNTcjLUZFNiQ3JSZGJTYjRjAiIiFGMEZHPkY2LSZJJWhlYXBHRiY2I0kkbmV3R0YmNiRmKjYkSSJ4R0YmSSJ5R0YmRiY2JEkpb3BlcmF0b3JHRiZJJmFycm93R0YmRiYxJkZlbjYjRjomRlpGW29GJkYmRiYtSSNvcEdGKTYjRjU+RjMsJiIiI0Y6LUkkbW9kR0YmNiQsJi1GQEZfb0Y6RmJvISIiLCZGLUY6RjpGaG9GOj8oRiZGOkY6RiZJJXRydWVHRilDKT5GMi0mRlQ2I0koZXh0cmFjdEdGJjYjRjZAJC0mRlQ2I0kmZW1wdHlHRiZGYnBbPkY0JkYyRltvPkY1NyNGMj8oRjBGYm9GOkYzRltwQyVGXXA+RjU3JEZdb0YyPkY0LCZGNEY6RmpwRjotJkZUNiNJJ2luc2VydEdGJjYkNyVGNEY6RjVGNj5GM0YtPkY2LUZTNiRmKkZZRiZGZm5GJjFGXG9Gam5GJkYmRiY3JSZGMjYjRmJvRlAmRjI2IyIiJD8oRiZGOkY6RiZGW3BDJ0ZdcEAkL0ZqcEZQQyQtRmRxNiRGMkY2RmhwPkY1RmJyPkYxLCZGYHJGOkY6Rjo/KEYwRjpGOkZnb0ZbcC1GZHE2JDclJiZGNUZPRmFyRjEmRmRzRmNyRjY+RjU3Ij8oRiZGOkY6RiY0RmRwQyRGXXA+RjU3JEZdbzckRmByRmJyLUklc29ydEdGKTYkRjVmKkZZRiZGZm5GJjImRlpGYXImRmVuRmFyRiZGJkYmLUkkbWFwR0YpNiRmKjYjRlpGJkZmbkYmRlxvRiZGJkYmSSIlR0YmRiZGJkYm F:=[1,1,2,2,3]; L:=huffmannlength(F,2); evalf(H(F,2)); evalf(meanlength(F,L)); NyciIiJGIyIiI0YkIiIk NyciIiRGIyIiI0YkRiQ= JCIrQyhmcj4jISIq JCIrQUFBQUEhIio= huffmanncode:=proc(B::string,L::list(posint)) local i,j,l,ll,b,c,LL,C; LL:=[[L[i],i]$i=1..nops(L)]; LL:=sort(LL,(x,y)->x[1]<y[1]); ll:=1; b[ll]:=0; C:=[]; for i to nops(LL) do l:=ll; b[l]:=b[l]+1; while b[l]>length(B) do b[l]:=1; l:=l-1; b[l]:=b[l]+1; od; l:=LL[i][1]; while ll<l do ll:=ll+1; b[ll]:=1; od; c:=""; for j to l do c:=cat(c,B[b[j]]) od; C:=[op(C),[c,LL[i][2]]]; od; sort(C,(x,y)->x[2]<y[2]); map(x->x[1],%); end; Zio2JCdJIkJHNiJJJ3N0cmluZ0clKnByb3RlY3RlZEcnSSJMR0YmLUklbGlzdEdGKDYjSSdwb3NpbnRHRig2KkkiaUdGJkkiakdGJkkibEdGJkkjbGxHRiZJImJHRiZJImNHRiZJI0xMR0YmSSJDR0YmRiZGJkMqPkY2NyMtSSIkR0YoNiQ3JCZGKjYjRjBGMC9GMDsiIiItSSVub3BzR0YoNiNGKj5GNi1JJXNvcnRHRig2JEY2Zio2JEkieEdGJkkieUdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmMiZGTTYjRkMmRk5GVEYmRiZGJj5GM0ZDPiZGNDYjRjMiIiE+Rjc3Ij8oRjBGQ0ZDLUZFNiNGNkkldHJ1ZUdGKEMqPkYyRjM+JkY0NiNGMiwmRl5vRkNGQ0ZDPyhGJkZDRkNGJjItSSdsZW5ndGhHRig2I0YlRl5vQyU+Rl5vRkM+RjIsJkYyRkNGQyEiIkZdbz5GMiYmRjZGQEZUPyhGJkZDRkNGJjJGM0YyQyQ+RjMsJkYzRkNGQ0ZDPkZYRkM+RjVRIUYmPyhGMUZDRkNGMkZqbj5GNS1JJGNhdEdGKDYkRjUmRiU2IyZGNDYjRjE+Rjc3JC1JI29wR0YoNiNGNzckRjUmRl1wNiMiIiMtRkk2JEY3ZipGTEYmRk9GJjImRk1GZnEmRk5GZnFGJkYmRiYtSSRtYXBHRig2JGYqNiNGTUYmRk9GJkZTRiZGJkYmSSIlR0YmRiZGJkYm huffmanncode("ab",L); NydRJGJiYjYiUSRiYmFGJFEjYmFGJFEjYWJGJFEjYWFGJA== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.19. P\303\251lda.</Font></Text-field> F:=[17,2,13,2,1,31,2,17,6,9]; L:=huffmannlength(F,3); evalf(H(F,3)); evalf(meanlength(F,L)); huffmanncode("012",L); NywiIzwiIiMiIzhGJCIiIiIjSkYkRiMiIiciIio= NywiIiMiIiRGI0YkIiIlIiIiRiVGI0YjRiM= JCIrIWZzbnMiISIq JCIrKysrIXoiISIq NyxRIzIxNiJRJDIyMUYkUSMyMEYkUSQyMjBGJFElMjIyMUYkUSIwRiRRJTIyMjBGJFEjMTJGJFEjMTFGJFEjMTBGJA== L:=shannonlength(F,3); shannoncode("012",L); evalf(meanlength(F,L)); NywiIiMiIiVGI0YkIiImRiNGJEYjIiIkRiY= NyxRIzEwNiJRJTExMjJGJFEjMDJGJFElMTEyMUYkUSYxMjAwMEYkUSMwMUYkUSUxMTIwRiRRIzAwRiRRJDExMUYkUSQxMTBGJA== JCIrKysrK0IhIio= F:=[1247,190,65,197,1407,78,326,165,444,105,541,605,352,638,683,96,0,367,600,761,226,199,9,1,261,437]; L:=huffmannlength(F,2); huffmanncode("01",L); evalf(meanlength(F,L)); NzwiJVo3IiQhPiIjbCIkKD4iJTI5IiN5IiRFJCIkbCIiJFclIiQwIiIkVCYiJDAnIiRfJCIkUSciJCRvIiMnKiIiISIkbiQiJCsnIiRoKCIkRSMiJCo+IiIqIiIiIiRoIyIkUCU= NzwiIiQiIiciIilGJEYjIiIoIiImRiQiIiVGJkYoRihGJ0YoRihGJiIjNUYnRihGKEYnRiQiIipGKUYnRig= NzxRJDAwMTYiUScxMTExMDFGJFEpMTExMTExMTBGJFEnMTExMTAwRiRRJDAwMEYkUSgxMTExMTEwRiRRJjExMTAwRiRRJzExMTAxMUYkUSUxMDExRiRRKDExMTExMDFGJFElMTAxMEYkUSUxMDAxRiRRJjExMDExRiRRJTEwMDBGJFElMDExMUYkUSgxMTExMTAwRiRRKzExMTExMTExMTFGJFEmMTEwMTBGJFElMDExMEYkUSUwMTAxRiRRJjExMDAxRiRRJzExMTAxMEYkUSoxMTExMTExMTBGJFErMTExMTExMTExMEYkUSYxMTAwMEYkUSUwMTAwRiQ= JCIrKyshRzolISIq F:=map(x->x+1,F); L:=shannonlength(F,2); shannoncode("01",L); evalf(meanlength(F,L)); evalf(H(F,2)); NzwiJVs3IiQiPiIjbSIkKT4iJTM5IiN6IiRGJCIkbSIiJFglIiQxIiIkVSYiJDEnIiRgJCIkUiciJCVvIiMoKiIiIiIkbyQiJCwnIiRpKCIkRiMiJCsjIiM1IiIjIiRpIyIkUSU= NzwiIiUiIiciIilGJCIiJCIiKCIiJkYkRihGJ0YoRihGKEYjRiNGJyIjOUYoRihGI0YkRiQiIzUiIzhGJEYo NzxRJTAxMDE2IlEnMTAxMTAxRiRRKTEwMTExMTEwRiRRJzEwMTEwMEYkUSQwMDBGJFEoMTAxMTExMEYkUSYxMDAxMUYkUScxMDEwMTFGJFEmMTAwMTBGJFEoMTAxMTEwMUYkUSYxMDAwMUYkUSYxMDAwMEYkUSYwMTExMUYkUSUwMTAwRiRRJTAwMTFGJFEoMTAxMTEwMEYkUS8xMDExMTExMTAxMDAxMEYkUSYwMTExMEYkUSYwMTEwMUYkUSUwMDEwRiRRJzEwMTAxMEYkUScxMDEwMDFGJFErMTAxMTExMTEwMEYkUS4xMDExMTExMTAxMDAwRiRRJzEwMTAwMEYkUSYwMTEwMEYk JCIrUFxEJWYlISIq JCIrP3pPTFQhIio= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3">9.2.20. Adapt<Font encoding="UTF-8">\303\255v Huffmann-k\303\263d.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.2.21. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.2.22. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.2.23. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.24. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.2.25. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.26. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.2.27. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.28. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.2.29. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.30. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.31. A k\303\263doland\303\263 \303\241b\303\251c\303\251 kiterjeszt\303\251se.</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3">->9.2.32. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.33. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.2.34. Sz\303\263t\303\241rk\303\263dok.</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.35. Futamk\303\263dol\303\241s.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.36. LZ77.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.37. A gzip parancs.</Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.38. LZW-k\303\263dok.</Font></Text-field> LZW:=proc(m,T,N) local i,n,alpha,beta,gamma,L; n:=128; L:=[]; for i from 0 to n-1 do T[convert([i],bytes)]:=cat("",convert(i,hex)); od; if length(m)=0 then return L fi; alpha:=m[1]; for i from 2 to length(m) do beta:=m[i]; gamma:=cat(alpha,beta); if type(T[gamma],string) then alpha:=gamma; next fi; if n<N then T[gamma]:=cat("",convert(n,hex)); n:=n+1; fi; L:=[op(L),T[alpha]]; alpha:=beta; od; L:=[op(L),T[alpha]]; end; Zio2JUkibUc2IkkiVEdGJUkiTkdGJTYoSSJpR0YlSSJuR0YlSSZhbHBoYUdGJUklYmV0YUdGJUkmZ2FtbWFHJSpwcm90ZWN0ZWRHSSJMR0YlRiVGJUMpPkYqIiRHIj5GLzciPyhGKSIiISIiIiwmRipGN0Y3ISIiSSV0cnVlR0YuPiZGJjYjLUkoY29udmVydEdGLjYkNyNGKUkmYnl0ZXNHRiUtSSRjYXRHRi42JFEhRiUtRj82JEYpSSRoZXhHRiVAJC8tSSdsZW5ndGhHRi42I0YkRjZPRi8+RismRiQ2I0Y3PyhGKSIiI0Y3RkxGOkMoPkYsJkYkNiNGKT5GLS1GRDYkRitGLEAkLUkldHlwZUdGLjYkJkYmNiNGLUknc3RyaW5nR0YuQyQ+RitGLVxAJDJGKkYnQyQ+RmpuLUZENiRGRi1GPzYkRipGST5GKiwmRipGN0Y3Rjc+Ri83JC1JI29wR0YuNiNGLyZGJjYjRis+RitGLEZqb0YlRiVGJQ== m:="GUGOGOGOGOL"; Ct:=table(); L:=LZW(m,Ct,256); USxHVUdPR09HT0dPTDYi PTYiSSZmYWxzZUclKnByb3RlY3RlZEdFXFtsIQ== NypRIzQ3NiJRIzU1RiRGI1EjNEZGJFEjODJGJFEjODRGJEYmUSM0Q0Yk iLZW:=proc(L,T,N) local i,j,m,n,alpha,beta,gamma; n:=128; m:=""; for i from 0 to n-1 do T[cat("",convert(i,hex))]:=convert([i],bytes); od; if nops(L)=0 then return m fi; j:=L[1]; alpha:=T[j]; for i from 2 to nops(L) do j:=L[i]; if type(T[j],string) then beta:=T[j]; gamma:=beta[1]; if n<N then T[cat("",convert(n,hex))]:=cat(alpha,gamma); n:=n+1; fi; m:=cat(m,alpha); alpha:=beta; else gamma:=alpha[1]; beta:=cat(alpha,gamma); T[cat("",convert(n,hex))]:=beta; n:=n+1; m:=cat(m,alpha); alpha:=beta; fi; od; m:=cat(m,alpha); end; Zio2JUkiTEc2IkkiVEdGJUkiTkdGJTYpSSJpR0YlSSJqR0YlSSJtR0YlSSJuR0YlSSZhbHBoYUdGJUklYmV0YUdGJUkmZ2FtbWFHJSpwcm90ZWN0ZWRHRiVGJUMqPkYsIiRHIj5GK1EhRiU/KEYpIiIhIiIiLCZGLEY4RjghIiJJJXRydWVHRjA+JkYmNiMtSSRjYXRHRjA2JEY1LUkoY29udmVydEdGMDYkRilJJGhleEdGJS1GQzYkNyNGKUkmYnl0ZXNHRiVAJC8tSSVub3BzR0YwNiNGJEY3T0YrPkYqJkYkNiNGOD5GLSZGJjYjRio/KEYpIiIjRjhGTEY7QyQ+RiomRiQ2I0YpQCUtSSV0eXBlR0YwNiRGVEknc3RyaW5nR0YwQyc+Ri5GVD5GLyZGLkZSQCQyRixGJ0MkPiZGJjYjLUZANiRGNS1GQzYkRixGRS1GQDYkRi1GLz5GLCwmRixGOEY4Rjg+RistRkA2JEYrRi0+Ri1GLkMoPkYvJkYtRlI+Ri5GaW8+RmNvRi5GW3BGXXBGYHBGXXBGJUYlRiU= Dt:=table(); iLZW(L,Ct,256); PTYiSSZmYWxzZUclKnByb3RlY3RlZEdFXFtsIQ== USxHVUdPR09HT0dPTDYi LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.39. P\303\251lda az LZW-k\303\263dra.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.40. A compress parancs.</Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.41. Digitaliz\303\241l\303\241s.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.42. DFT \303\251s IDFT.</Font></Text-field> with(DiscreteTransforms); NyRJMUZvdXJpZXJUcmFuc2Zvcm1HNiJJOEludmVyc2VGb3VyaWVyVHJhbnNmb3JtR0Yk Z:=Vector(5,[0,1+I,0,0,0]); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEiWkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2Ji1GIzYjLUknbXRhYmxlR0YkNictSSRtdHJHRiQ2Iy1JJG10ZEdGJDYjLUkjbW5HRiQ2JFEiMEYnRjktRltvNiMtRl5vNiMtRiM2JS1GYW82JEZURjktRjY2MFEiK0YnRjlGO0Y+RkBGQkZERkZGSEZKL0ZOUTBtZWRpdW1tYXRoc3BhY2VGJy9GUUZgcEZSRlUtRmFvNiRRIklGJ0Y5RmpuRmpuRmpuLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnL0krbXNlbWFudGljc0dGJFEqQ29sVmVjdG9yRic= ZZ:=FourierTransform(Z); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjWlpGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSVmb3JtR1EmaW5maXhGJy8lJ2xzcGFjZUdRL3RoaWNrbWF0aHNwYWNlRicvJSdyc3BhY2VHRk8vJShtaW5zaXplR1EiMUYnLyUobWF4c2l6ZUdRKWluZmluaXR5RictSShtZmVuY2VkR0YkNiYtRiM2Iy1JJ210YWJsZUdGJDYnLUkkbXRyR0YkNiMtSSRtdGRHRiQ2Iy1GIzYlLUkjbW5HRiQ2JFE1MC40NDcyMTM1OTU0OTk5NTc5MjhGJ0Y5LUY2NjBRIitGJ0Y5RjtGPkZARkJGREZGRkhGSi9GTlEwbWVkaXVtbWF0aHNwYWNlRicvRlFGam9GUkZVLUYjNiVGYm8tRjY2MFExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSEZKL0ZOUSQwZW1GJy9GUUZicEZSRlUtRmNvNiRRIklGJ0Y5LUZbbzYjLUZebzYjLUYjNiUtRmNvNiRRNTAuNTYzNTIyMDA1MzAxMDMwNDcxRidGOS1GNjYwUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRkpGaW9GW3BGUkZVLUYjNiUtRmNvNiRRNTAuMjg3MTI4ODAzMDUxMDA5NDYzRidGOUZecEZkcC1GW282Iy1GXm82Iy1GIzYmLUY2NjBRKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EncHJlZml4RidGYXAvRlFRMnZlcnl0aGlubWF0aHNwYWNlRidGUkZVLUZjbzYkUTYwLjA5ODkzNzg0MjgxNTQyMjY4NThGJ0Y5RmBxLUYjNiUtRmNvNiRRNTAuNjI0NjY4OTU0OTM0NTU2MzIwRidGOUZecEZkcC1GW282Iy1GXm82Iy1GIzYmRl5yRmpyRmBxLUYjNiVGZXJGXnBGZHAtRltvNiMtRl5vNiMtRiM2JkZeckZlcUZmby1GIzYlRl1xRl5wRmRwLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnL0krbXNlbWFudGljc0dGJFEqQ29sVmVjdG9yRic= InverseFourierTransform(ZZ); LUkobWZlbmNlZEc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUklbXJvd0dGJDYjLUknbXRhYmxlR0YkNictSSRtdHJHRiQ2Iy1JJG10ZEdGJDYjLUYsNiYtSSNtb0dGJDYwUSomdW1pbnVzMDtGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRkIvJSlzdHJldGNoeUdGQi8lKnN5bW1ldHJpY0dGQi8lKGxhcmdlb3BHRkIvJS5tb3ZhYmxlbGltaXRzR0ZCLyUnYWNjZW50R0ZCLyUlZm9ybUdRJ3ByZWZpeEYnLyUnbHNwYWNlR1EkMGVtRicvJSdyc3BhY2VHUTJ2ZXJ5dGhpbm1hdGhzcGFjZUYnLyUobWluc2l6ZUdRIjFGJy8lKG1heHNpemVHUSlpbmZpbml0eUYnLUYsNiUtSSNtbkdGJDYkUTQ0Ljk2NTA2ODMwNjQ5NDU0NTg2RidGPS1GOjYwUTEmSW52aXNpYmxlVGltZXM7RidGPUZARkNGRUZHRklGS0ZNL0ZQUSZpbmZpeEYnRlIvRlZGVEZYRmVuLUklbXN1cEdGJDYlLUZbbzYkUSMxMEYnRj0tRltvNiRRJC0xN0YnRj0vJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY6NjBRKCZtaW51cztGJ0Y9RkBGQ0ZFRkdGSUZLRk1GYW8vRlNRMG1lZGl1bW1hdGhzcGFjZUYnL0ZWRmRwRlhGZW4tRiw2JUZobkZeby1GW282JFEiSUYnRj0tRjI2Iy1GNTYjLUYsNiUtRltvNiRRIzEuRidGPS1GOjYwUSIrRidGPUZARkNGRUZHRklGS0ZNRmFvRmNwRmVwRlhGZW4tRiw2JUZhcUZeb0ZocC1GMjYjLUY1NiMtRiw2JkY5LUYsNiUtRltvNiRRNDEuMDc4ODM1NjQyNzY4NTkwMzFGJ0Y9Rl5vLUZlbzYlRmdvLUZbbzYkUSQtMThGJ0Y9Rl1wRmBwLUYsNiVGX3JGXm9GaHAtRjI2Iy1GNTYjLUYsNiZGOS1GLDYlLUZbbzYkUTQzLjE2Mzc3NjQzNTUzNDg1NDU4RidGPUZeb0ZkckZgcC1GLDYlRmFzRl5vRmhwLUYyNiMtRjU2Iy1GLDYlLUYsNiUtRltvNiRRNDcuNzU3OTE5MjI4ODk3NzI3OTJGJ0Y9Rl5vLUZlbzYlRmdvLUZbbzYkUSQtMTlGJ0Y9Rl1wRmRxLUYsNiVGXnRGXm9GaHAvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvSSttc2VtYW50aWNzR0YkUSpDb2xWZWN0b3JGJw== FourierTransform(ZZ); LUkobWZlbmNlZEc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUklbXJvd0dGJDYjLUknbXRhYmxlR0YkNictSSRtdHJHRiQ2Iy1JJG10ZEdGJDYjLUYsNiYtSSNtb0dGJDYwUSomdW1pbnVzMDtGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRkIvJSlzdHJldGNoeUdGQi8lKnN5bW1ldHJpY0dGQi8lKGxhcmdlb3BHRkIvJS5tb3ZhYmxlbGltaXRzR0ZCLyUnYWNjZW50R0ZCLyUlZm9ybUdRJ3ByZWZpeEYnLyUnbHNwYWNlR1EkMGVtRicvJSdyc3BhY2VHUTJ2ZXJ5dGhpbm1hdGhzcGFjZUYnLyUobWluc2l6ZUdRIjFGJy8lKG1heHNpemVHUSlpbmZpbml0eUYnLUYsNiUtSSNtbkdGJDYkUTQ0Ljk2NTA2ODMwNjQ5NDU0NTg2RidGPS1GOjYwUTEmSW52aXNpYmxlVGltZXM7RidGPUZARkNGRUZHRklGS0ZNL0ZQUSZpbmZpeEYnRlIvRlZGVEZYRmVuLUklbXN1cEdGJDYlLUZbbzYkUSMxMEYnRj0tRltvNiRRJC0xN0YnRj0vJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY6NjBRKCZtaW51cztGJ0Y9RkBGQ0ZFRkdGSUZLRk1GYW8vRlNRMG1lZGl1bW1hdGhzcGFjZUYnL0ZWRmRwRlhGZW4tRiw2JUZobkZeby1GW282JFEiSUYnRj0tRjI2Iy1GNTYjLUYsNiUtRiw2JS1GW282JFE0Ny43NTc5MTkyMjg4OTc3Mjc5MkYnRj1GXm8tRmVvNiVGZ28tRltvNiRRJC0xOUYnRj1GXXAtRjo2MFEiK0YnRj1GQEZDRkVGR0ZJRktGTUZhb0ZjcEZlcEZYRmVuLUYsNiVGYXFGXm9GaHAtRjI2Iy1GNTYjLUYsNiZGOS1GLDYlLUZbbzYkUTQzLjE2Mzc3NjQzNTUzNDg1NDU4RidGPUZeby1GZW82JUZnby1GW282JFEkLTE4RidGPUZdcEZgcC1GLDYlRmZyRl5vRmhwLUYyNiMtRjU2Iy1GLDYmRjktRiw2JS1GW282JFE0MS4wNzg4MzU2NDI3Njg1OTAzMUYnRj1GXm9GW3NGYHAtRiw2JUZoc0Zeb0ZocC1GMjYjLUY1NiMtRiw2JS1GW282JFEjMS5GJ0Y9RltyLUYsNiVGZXRGXm9GaHAvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvSSttc2VtYW50aWNzR0YkUSpDb2xWZWN0b3JGJw==
<Text-field style="Heading 3" layout="Heading 3">*9.2.43. FFT.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.44. FFT algoritmus.</Text-field> # # This procedure do the bit reversation of the # number x which is k bit long. # reverse:=proc(x,k) local xx,i,y; xx:=x; y:=0; for i to k do if type(xx,odd) then y:=2*y+1; xx:=(xx-1)/2; else y:=2*y; xx:=xx/2; fi; od; y; end; Zio2JEkieEc2Ikkia0dGJTYlSSN4eEdGJUkiaUdGJUkieUdGJUYlRiVDJj5GKEYkPkYqIiIhPyhGKSIiIkYwRiZJJXRydWVHJSpwcm90ZWN0ZWRHQCUtSSV0eXBlR0YyNiRGKEkkb2RkR0YyQyQ+RiosJiomIiIjRjBGKkYwRjBGMEYwPkYoLCYqJiNGMEY8RjBGKEYwRjBGQCEiIkMkPkYqLCRGO0YwPkYoLCRGP0YwRipGJUYlRiU= # # This procedure do the butterfly operation # between the two terms A[i] and A[j] of the # table A. The multiplier is w. # butterfly:=proc(A,i,j,w) local X,Y; X:=A[i]; Y:=A[j]*w; A[i]:=X+Y; A[j]:=X-Y; end; Zio2JkkiQUc2IkkiaUdGJUkiakdGJUkid0dGJTYkSSJYR0YlSSJZR0YlRiVGJUMmPkYqJkYkNiNGJj5GKyomJkYkNiNGJyIiIkYoRjQ+Ri4sJkYqRjRGK0Y0PkYyLCZGKkY0RishIiJGJUYlRiU= # # This is an FFT procedure. # It use the butterfly procedure to operate on the vector A. # The number of rounds is k in the FFT. # T is a table of the powers of primitive root of unity. # fft:=proc(A,T,k) local l,s,w,t; for l from 0 to k-1 do for s from 0 to 2^l-1 do w:=T[s]; for t from 0 to 2^(k-l-1)-1 do butterfly(A,2^(k-l)*s+t,2^(k-l)*s+t+2^(k-l-1),w); od; od; od; end; Zio2JUkiQUc2IkkiVEdGJUkia0dGJTYmSSJsR0YlSSJzR0YlSSJ3R0YlSSJ0R0YlRiVGJT8oRikiIiEiIiIsJkYnRi9GLyEiIkkldHJ1ZUclKnByb3RlY3RlZEc/KEYqRi5GLywmKSIiI0YpRi9GL0YxRjJDJD5GKyZGJjYjRio/KEYsRi5GLywmKUY3LChGJ0YvRilGMUYvRjFGL0YvRjFGMi1JKmJ1dHRlcmZseUdGJTYmRiQsJiomKUY3LCZGJ0YvRilGMUYvRipGL0YvRixGLywoRkRGL0YsRi9GPkYvRitGJUYlRiU= # # The pre procedure do the preparation for FFT: # The table T[0..2^(k-1)] of powers of the primitive # root of unity prepared. # pre:=proc(T,k) local i; Digits:=2*Digits; for i from 0 to 2^k-1 do T[i]:=evalf(exp(-2*Pi*I*reverse(i,k)/2^(k+1))); od; Digits:=Digits/2; end; Zio2JEkiVEc2Ikkia0dGJTYjSSJpR0YlRiVGJUMlPkknRGlnaXRzR0YlLCQqJiIiIyIiIkYrRi9GLz8oRigiIiFGLywmKUYuRiZGL0YvISIiSSV0cnVlRyUqcHJvdGVjdGVkRz4mRiRGJy1JJmV2YWxmR0Y2NiMtSSRleHBHNiRGNkkoX3N5c2xpYkdGJTYjLCQqKiwkKiZGLkYvXiNGL0YvRi9GL0kjUGlHRjZGLy1JKHJldmVyc2VHRiU2JEYoRiZGLylGLiwmRiZGL0YvRi9GNEY0PkYrLCQqJiNGL0YuRi9GK0YvRi9GJUYlRiU= k:=5; A:=array(0..2^k-1); for i from 0 to 2^k -1 do A[i]:=0 od: T:=array(0..2^(k-1)-1); IiIm PTYiNiM7IiIhIiNKRVxbbCE= PTYiNiM7IiIhIiM6RVxbbCE= pre(T,k-1): A[1]:=1+I: print(A); SSJBRzYi fft(A,T,k): print(A); SSJBRzYi for i from 0 to 2^k-1 do j:=reverse(i,k); if i<j then x:=A[i]; A[i]:=A[j]; A[j]:=x; fi; od: print(A); SSJBRzYi
<Text-field style="Heading 3" layout="Heading 3">*9.2.45. IFFT algoritmus.</Text-field> # # This procedure do the inverse butterfly operation # between the two terms A[i] and A[j] of the # table A. The power of primitive unity is w. # ibutterfly:=proc(A,i,j,w) local X,Y,e; X:=A[i]+A[j]; Y:=A[i]-A[j]; A[i]:=X; A[j]:=Y/w; end; Zio2JkkiQUc2IkkiaUdGJUkiakdGJUkid0dGJTYlSSJYR0YlSSJZR0YlSSJlR0YlRiVGJUMmPkYqLCYmRiQ2I0YmIiIiJkYkNiNGJ0YyPkYrLCZGMEYyRjMhIiI+RjBGKj5GMyomRitGMkYoRjdGJUYlRiU= # # This procedure is a floating point IFFT procedure. # It use the ibutterfly procedure to operate on the vector A. # The number of round in the FFT is k and T is a table of the # powers of primitive root of unity. # ifft:=proc(A,T,k) local l,s,w,t; for l from k-1 to 0 by -1 do for s from 0 to 2^l-1 do w:=T[s]; for t from 0 to 2^(k-l-1)-1 do ibutterfly(A,2^(k-l)*s+t,2^(k-l)*s+t+2^(k-l-1),w); od; od; od; end; Zio2JUkiQUc2IkkiVEdGJUkia0dGJTYmSSJsR0YlSSJzR0YlSSJ3R0YlSSJ0R0YlRiVGJT8oRiksJkYnIiIiRi8hIiJGMCIiIUkldHJ1ZUclKnByb3RlY3RlZEc/KEYqRjFGLywmKSIiI0YpRi9GL0YwRjJDJD5GKyZGJjYjRio/KEYsRjFGLywmKUY3LChGJ0YvRilGMEYvRjBGL0YvRjBGMi1JK2lidXR0ZXJmbHlHRiU2JkYkLCYqJilGNywmRidGL0YpRjBGL0YqRi9GL0YsRi8sKEZERi9GLEYvRj5GL0YrRiVGJUYl for i from 0 to 2^k-1 do j:=reverse(i,k); if i<j then x:=A[i]; A[i]:=A[j]; A[j]:=x; fi; od: print(A); SSJBRzYi ifft(A,T,k): print(A); SSJBRzYi
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.46. Gyors szorz\303\241s FFT-vel.</Font></Text-field> # # The digmul procedure do the digit-by-digit # multiplication of the two numbers after the # fft's. The result will be in the first table. # digmul:=proc(A,B,k) local i; for i from 0 to 2^k-1 do A[i]:=A[i]*B[i]; od; end; Zio2JUkiQUc2IkkiQkdGJUkia0dGJTYjSSJpR0YlRiVGJT8oRikiIiEiIiIsJikiIiNGJ0YsRiwhIiJJJXRydWVHJSpwcm90ZWN0ZWRHPiZGJEYoKiZGNEYsJkYmRihGLEYlRiVGJQ== A:=array(0..2^k-1); for i from 0 to 2^k -1 do A[i]:=0 od: B:=array(0..2^k-1); for i from 0 to 2^k -1 do B[i]:=0 od: PTYiNiM7IiIhIiNKRVxbbCE= PTYiNiM7IiIhIiNKRVxbbCE= A[0]:=1: A[1]:=1: A[2]:=1: print(A); SSJBRzYi # # This is the polynom multiplication, do multiplication or squaring. # A and B are the two polynomials, the FFT and IFFT use k rounds. # polmulfft:=proc(A,B,k) global T; if A=B then fft(A,T,k); digmul(A,A,k); ifft(A,T,k); else fft(A,T,k); fft(B,T,k); digmul(A,B,k); ifft(A,T,k); fi; A; end; Zio2JUkiQUc2IkkiQkdGJUkia0dGJUYlRiVGJUMkQCUvRiRGJkMlLUkkZmZ0R0YlNiVGJEkiVEdGJUYnLUknZGlnbXVsR0YlNiVGJEYkRictSSVpZmZ0R0YlRi5DJkYsLUYtNiVGJkYvRictRjFGI0YzRiRGJTYjRi9GJQ== polmulfft(A,A,k): print(map(x->x/2^k,A)); PTYiNiM7IiIhIiNKRVxbbEFGJiwmJCIrJSoqKioqKioqKiEjNSIiIiomJEYmRiZGLV4jRi1GLUYtRi0sJiQiKyoqKioqKioqPiEiKkYtRi5GLSIiIywmJCIrKioqKioqKipIRjRGLUYuRi0iIiQsJiQiKysrKys/RjRGLUYuRi0iIiYsJiQiKz5FZSEzKSEjP0YtRi5GLSIiJSwmJCIrKysrKzVGNEYtRi5GLSIiKCwmJCIrSXpzXkEhIz5GLUYuRi0iIicsJiQiK19dTGg1RkohIiJGLkYtIiM1LCYkIis+O0I+OUZKRk9GLkYtIiM2LCYkIitBTTRWaUZKRk9GLkYtIiIpLCZGL0YtRi5GLSIiKiwmJCIrKysrdj1GSkZPRi5GLSIjOiwmJCIrUT1FKHkmRkpGLUYuRi0iIzksJiQiK1FpaCQqb0ZKRi1GLkYtIiM4LCYkIis6XyNlSyJGSkYtRi5GLSIjNywmJCIrd00pKWVGRkpGT0YuRi0iI0AsJiQiK1E8JT5wIkZKRi1GLkYtIiM/LCYkIisrKytdaUZKRi1GLkYtIiNCLCYkIitELVJnd0ZBRi1GLkYtIiNBLCYkIitHJj1fJT5GSkYtRi5GLSIjO0ZdcCIjPEZdcCIjPUZdcCIjPiwmJCIrKysrREpGSkYtRi5GLUYnLCYkIispeUddSSdGSkZPRi5GTyIjSSwmJCIrNygqXHh4RkpGT0YuRk8iI0gsJkZib0ZPRi5GLSIjRywmJCIrUV87NioqRkFGT0YuRi0iI0UsJkZSRi1GLkYtIiNGLCYkIisrdmQxcCEjQUZPRi5GLSIjQ0ZZIiNELCZGZm5GLUYuRi0= # # The fftpre procedure do the preparation for the # table for fft, where x is the number, A is the # table, m the modulus, and k is the number of # rounds for the fft, hence the table is 2^k long. # fftpre:=proc(x,A,m,k) local i,xx; xx:=x; for i from 0 to 2^k-1 do A[i]:=irem(xx,m,'xx'); od; end; Zio2JkkieEc2IkkiQUdGJUkibUdGJUkia0dGJTYkSSJpR0YlSSN4eEdGJUYlRiVDJD5GK0YkPyhGKiIiISIiIiwmKSIiI0YoRjBGMCEiIkkldHJ1ZUclKnByb3RlY3RlZEc+JkYmNiNGKi1JJWlyZW1HRjY2JUYrRicuRitGJUYlRiU= # # The norm procedure do the normalization # after the ifft. A is the table, m the modulus, # and k is the number of rounds for the fft, # hence the table is 2^k long. The fraction parts are # left in the table A. # fftnorm:=proc(A,m,k) local i,x; x:=0; for i from 2^k-1 to 0 by -1 do A[i]:=A[i]/2^k; x:=m*x+round(A[i]); A[i]:=A[i]-round(A[i]); od; x; end; Zio2JUkiQUc2IkkibUdGJUkia0dGJTYkSSJpR0YlSSJ4R0YlRiVGJUMlPkYqIiIhPyhGKSwmKSIiI0YnIiIiRjIhIiJGM0YtSSV0cnVlRyUqcHJvdGVjdGVkR0MlPiZGJDYjRikqJkY4RjJGMEYzPkYqLCYqJkYmRjJGKkYyRjItSSZyb3VuZEc2JEY1SShfc3lzbGliR0YlNiNGOEYyPkY4LCZGOEYyRj5GM0YqRiVGJUYl # # This is the main procedure, do the multiplication or the squaring. # a and b are the two numbers, m is the modulus for the preparation. # The FFT and IFFT use k rounds. # mulfft:=proc(a,b,m,k) global A,B,T; if a=b then fftpre(a,A,m,k); fft(A,T,k); digmul(A,A,k); ifft(A,T,k); fftnorm(A,m,k); else fftpre(a,A,m,k); fft(A,T,k); fftpre(b,B,m,k); fft(B,T,k); digmul(A,B,k); ifft(A,T,k); fftnorm(A,m,k); fi; end; Zio2JkkiYUc2IkkiYkdGJUkibUdGJUkia0dGJUYlRiVGJUAlL0YkRiZDJy1JJ2ZmdHByZUdGJTYmRiRJIkFHRiVGJ0YoLUkkZmZ0R0YlNiVGL0kiVEdGJUYoLUknZGlnbXVsR0YlNiVGL0YvRigtSSVpZmZ0R0YlRjItSShmZnRub3JtR0YlNiVGL0YnRihDKUYsRjAtRi02JkYmSSJCR0YlRidGKC1GMTYlRj9GM0YoLUY1NiVGL0Y/RihGN0Y5RiU2JUYvRj9GM0Yl mulfft(123456789,987654321,20,5); IjNwX2o3NmpLPjc= 123456789*987654321; IjNwX2o3NmpLPjc= print(A); SSJBRzYi
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.47. DCT \303\251s IDCT.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.48. K\303\251tdimenzi\303\263s DFT \303\251s DCT.</Font></Text-field> # # This procedure is one round of an FFT procedure. # It use the butterfly procedure to operate on the # vector A. Round r is done, with siccor size s, # and repeated until the vector A is finished, # i.e. in size N. The T is a table of the powers of # primitive root of unity. # fftround:=proc(A,T,r,s,N) local i,j,w,t; i:=0; while i<N do for j from 0 to 2^r-1 do w:=T[j]; for t from 0 to s-1 do butterfly(A,i+t,i+s+t,w); od; i:=i+2*s; od; od; end; Zio2J0kiQUc2IkkiVEdGJUkickdGJUkic0dGJUkiTkdGJTYmSSJpR0YlSSJqR0YlSSJ3R0YlSSJ0R0YlRiVGJUMkPkYrIiIhPyhGJSIiIkYzRiUyRitGKT8oRixGMUYzLCYpIiIjRidGM0YzISIiSSV0cnVlRyUqcHJvdGVjdGVkR0MlPkYtJkYmNiNGLD8oRi5GMUYzLCZGKEYzRjNGOUY6LUkqYnV0dGVyZmx5R0YlNiZGJCwmRitGM0YuRjMsKEYrRjNGKEYzRi5GM0YtPkYrLCZGK0YzKiZGOEYzRihGM0YzRiVGJUYl # # This procedure is an IFFT round. It use the ibutterfly # procedure to operate on the vector A. Round r is done # with siccor size s and repeated until the vector A is # finished, i.e. in size N. The T is a table of the # powers of primitive root of unity. # ifftround:=proc(A,T,r,s,N) local i,j,w,t; i:=0; while i<N do for j from 0 to 2^r-1 do w:=T[j]; for t from 0 to s-1 do ibutterfly(A,i+t,i+s+t,w); od; i:=i+2*s; od; od; end; Zio2J0kiQUc2IkkiVEdGJUkickdGJUkic0dGJUkiTkdGJTYmSSJpR0YlSSJqR0YlSSJ3R0YlSSJ0R0YlRiVGJUMkPkYrIiIhPyhGJSIiIkYzRiUyRitGKT8oRixGMUYzLCYpIiIjRidGM0YzISIiSSV0cnVlRyUqcHJvdGVjdGVkR0MlPkYtJkYmNiNGLD8oRi5GMUYzLCZGKEYzRjNGOUY6LUkraWJ1dHRlcmZseUdGJTYmRiQsJkYrRjNGLkYzLChGK0YzRihGM0YuRjNGLT5GKywmRitGMyomRjhGM0YoRjNGM0YlRiVGJQ== # # This is a several-dimensional fft procedure. It works # on the array A having size 2^(k[1]+k[2]+..+k[n]), # i.e. as if it would have dimensions k[1],..k[n]. # ffts:=proc(A,T,k) local i,r,s,N; N:=convert(k,`+`); N:=2^N; s:=N; for i to nops(k) do for r from 0 to k[i]-1 do s:=s/2; fftround(A,T,r,s,N); od; od; end; Zio2JUkiQUc2IkkiVEdGJUkia0dGJTYmSSJpR0YlSSJyR0YlSSJzR0YlSSJOR0YlRiVGJUMmPkYsLUkoY29udmVydEclKnByb3RlY3RlZEc2JEYnSSIrR0YxPkYsKSIiI0YsPkYrRiw/KEYpIiIiRjktSSVub3BzR0YxNiNGJ0kldHJ1ZUdGMT8oRioiIiFGOSwmJkYnNiNGKUY5RjkhIiJGPUMkPkYrLCQqJiNGOUY2RjlGK0Y5RjktSSlmZnRyb3VuZEdGJTYnRiRGJkYqRitGLEYlRiVGJQ== # # This is a several-dimensional ifft procedure. It works # on the array A having size 2^(k[1]+k[2]+..+k[n]), # i.e. as if it would have dimensions k[1],..k[n]. # iffts:=proc(A,T,k) local i,r,s,N; N:=convert(k,`+`); N:=2^N; s:=1; for i from nops(k) to 1 by -1 do for r from k[i]-1 to 0 by -1 do ifftround(A,T,r,s,N); s:=s*2; od; od; end; Zio2JUkiQUc2IkkiVEdGJUkia0dGJTYmSSJpR0YlSSJyR0YlSSJzR0YlSSJOR0YlRiVGJUMmPkYsLUkoY29udmVydEclKnByb3RlY3RlZEc2JEYnSSIrR0YxPkYsKSIiI0YsPkYrIiIiPyhGKS1JJW5vcHNHRjE2I0YnISIiRjhJJXRydWVHRjE/KEYqLCYmRic2I0YpRjhGOEY9Rj0iIiFGPkMkLUkqaWZmdHJvdW5kR0YlNidGJEYmRipGK0YsPkYrLCQqJkY2RjhGK0Y4RjhGJUYlRiU= A:=array(0..2^k-1); for i from 0 to 2^k -1 do A[i]:=0 od: A[1]:=1.+I; print(A); PTYiNiM7IiIhIiNKRVxbbCE= LCYkIiIiIiIhRiQqJkYjRiReI0YkRiRGJA== SSJBRzYi ffts(A,T,[2,3]): print(A); SSJBRzYi iffts(A,T,[2,3]): print(A); SSJBRzYi
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.49. Hangt\303\266m\303\266r\303\255t\303\251s.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.50. K\303\251pt\303\266m\303\266r\303\255t\303\251s.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.51. PNG.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.52. JPEG</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.2.53. DjVu.</Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.2.54. Mozg\303\263k\303\251p-t\303\266m\303\266r\303\255t\303\251s: MPEG.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.2.55. Tov<Font encoding="UTF-8">\303\241</Font>bbi feladatok megold<Font encoding="UTF-8">\303\241sokkal.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.2.56. Tov<Font encoding="UTF-8">\303\241</Font>bbi feladatok.</Text-field>
LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">9.3. Hibakorl\303\241toz\303\263 k\303\263dol\303\241s</Font></Text-field> restart; with(StringTools); N2p1SSlBbmFncmFtc0c2IkknQW5kTWFwR0YkSTJBcHByb3hpbWF0ZVNlYXJjaEdGJEk1QXBwcm94aW1hdGVTZWFyY2hBbGxHRiRJL0FyaXRobWV0aWNNZWFuR0YkSSdCb3JkZXJHRiRJLEJvcmRlckFycmF5R0YkSS1Cb3JkZXJMZW5ndGhHRiRJKkNhbWVsQ2FzZUdGJEkrQ2FwaXRhbGl6ZUdGJEkpQ2FzZUpvaW5HRiRJKkNhc2VTcGxpdEdGJEknQ2VudGVyR0YkSSdDZW50cmVHRiRJJUNoYXJHRiRJNUNoYXJhY3RlckZyZXF1ZW5jaWVzR0YkSS1DaGFyYWN0ZXJNYXBHRiRJJkNob21wR0YkSSVDaG9wR0YkSS1Db21tb25QcmVmaXhHRiRJLUNvbW1vblN1ZmZpeEdGJEkoQ29tcGFyZUdGJEkqQ29tcGFyZUNJR0YkSTpDb3VudENoYXJhY3Rlck9jY3VycmVuY2VzR0YkSSdEZWNvZGVHRiRJJ0RlbGV0ZUdGJEklRHJvcEdGJEktRWRpdERpc3RhbmNlR0YkSSdFbmNvZGVHRiRJKEVudHJvcHlHRiRJJ0VzY2FwZUdGJEkpRXhjaGFuZ2VHRiRJNUV4cGFuZENoYXJhY3RlckNsYXNzR0YkSStFeHBhbmRUYWJzR0YkSShFeHBsb2RlR0YkSSZGZW5jZUdGJEkqRmlib25hY2NpR0YkSSVGaWxsR0YkSS5GaXJzdEZyb21MZWZ0R0YkSS9GaXJzdEZyb21SaWdodEdGJEkuRm9ybWF0TWVzc2FnZUdGJEkrRm9ybWF0VGltZUdGJEkuRnJvbUJ5dGVBcnJheUdGJEkpR2VuZXJhdGVHRiRJJkdyb3VwR0YkSTBIYW1taW5nRGlzdGFuY2VHRiRJLkhhbW1pbmdTZWFyY2hHRiRJMUhhbW1pbmdTZWFyY2hBbGxHRiRJKUhhc0FTQ0lJR0YkSSlIYXNBbHBoYUdGJEkwSGFzQWxwaGFOdW1lcmljR0YkSS9IYXNCaW5hcnlEaWdpdEdGJEk0SGFzQ29udHJvbENoYXJhY3RlckdGJEkpSGFzRGlnaXRHRiRJK0hhc0dyYXBoaWNHRiRJLEhhc0hleERpZ2l0R0YkSS5IYXNJZGVudGlmaWVyR0YkSS9IYXNJZGVudGlmaWVyMUdGJEkpSGFzTG93ZXJHRiRJLkhhc09jdGFsRGlnaXRHRiRJLUhhc1ByaW50YWJsZUdGJEkvSGFzUHVuY3R1YXRpb25HRiRJKUhhc1NwYWNlR0YkSSlIYXNVcHBlckdGJEkpSGFzVm93ZWxHRiRJJUhhc2hHRiRJKEltcGxvZGVHRiRJJ0luc2VydEdGJEklSW90YUdGJEkoSXNBU0NJSUdGJEkoSXNBbHBoYUdGJEkvSXNBbHBoYU51bWVyaWNHRiRJKklzQW5hZ3JhbUdGJEkrSXNCYWxhbmNlZEdGJEkuSXNCaW5hcnlEaWdpdEdGJEksSXNDb25qdWdhdGVHRiRJM0lzQ29udHJvbENoYXJhY3RlckdGJEkoSXNEaWdpdEdGJEkqSXNHcmFwaGljR0YkSStJc0hleERpZ2l0R0YkSS1Jc0lkZW50aWZpZXJHRiRJLklzSWRlbnRpZmllcjFHRiRJKElzTG93ZXJHRiRJLElzTW9ub3RvbmljR0YkSS1Jc09jdGFsRGlnaXRHRiRJLUlzUGFsaW5kcm9tZUdGJEkpSXNQZXJpb2RHRiRJLklzUGVybXV0YXRpb25HRiRJKUlzUHJlZml4R0YkSSxJc1ByaW1pdGl2ZUdGJEksSXNQcmludGFibGVHRiRJLklzUHVuY3R1YXRpb25HRiRJKUlzU29ydGVkR0YkSShJc1NwYWNlR0YkSS5Jc1N1YlNlcXVlbmNlR0YkSSlJc1N1ZmZpeEdGJEkoSXNVcHBlckdGJEkoSXNWb3dlbEdGJEklSm9pbkdGJEkpTGVmdEZvbGRHRiRJN0xlZnRSZWN1cnNpdmVQYXRoT3JkZXJHRiRJJ0xlbmd0aEdGJEksTGV2ZW5zaHRlaW5HRiRJKUxleE9yZGVyR0YkSTlMb25nZXN0Q29tbW9uU3ViU2VxdWVuY2VHRiRJN0xvbmdlc3RDb21tb25TdWJTdHJpbmdHRiRJKkxvd2VyQ2FzZUdGJEkuTHluZG9uRmFjdG9yc0dGJEkkTWFwR0YkSShNYXhDaGFyR0YkSTxNYXhpbWFsUGFsaW5kcm9taWNTdWJzdHJpbmdHRiRJKk1ldGFwaG9uZUdGJEkoTWluQ2hhckdGJEkxTWluaW11bUNvbmp1Z2F0ZUdGJEkxTW9ub3RvbmljRmFjdG9yc0dGJEknTkdyYW1zR0YkSShOdGhXb3JkR0YkSSZPck1hcEdGJEkkT3JkR0YkSShPdmVybGFwR0YkSShQYWRMZWZ0R0YkSSlQYWRSaWdodEdGJEkqUGFyc2VUaW1lR0YkSTJQYXR0ZXJuRGljdGlvbmFyeUdGJEknUGVyaW9kR0YkSShQZXJtdXRlR0YkSS9QcmVmaXhEaXN0YW5jZUdGJEkuUHJpbWl0aXZlUm9vdEdGJEknUmFuZG9tR0YkSSpSYW5kb21pemVHRiRJKVJlZ01hdGNoR0YkSSlSZWdTcGxpdEdGJEknUmVnU3ViR0YkSShSZWdTdWJzR0YkSSdSZW1vdmVHRiRJJ1JlcGVhdEdGJEksUmV2TGV4T3JkZXJHRiRJKFJldmVyc2VHRiRJKlJpZ2h0Rm9sZEdGJEk4UmlnaHRSZWN1cnNpdmVQYXRoT3JkZXJHRiRJJ1JvdGF0ZUdGJEknU2VhcmNoR0YkSSpTZWFyY2hBbGxHRiRJJ1NlbGVjdEdGJEktU2VsZWN0UmVtb3ZlR0YkSSZTaGlmdEdGJEkuU2hvcnRMZXhPcmRlckdGJEkxU2hvcnRSZXZMZXhPcmRlckdGJEk2U2ltaWxhcml0eUNvZWZmaWNpZW50R0YkSSVTb3J0R0YkSShTb3VuZGV4R0YkSSZTcGxpdEdGJEkoU3F1ZWV6ZUdGJEklU3RlbUdGJEktU3RyaW5nQnVmZmVyR0YkSSpTdWJTdHJpbmdHRiRJK1N1YnN0aXR1dGVHRiRJLlN1YnN0aXR1dGVBbGxHRiRJL1N1ZmZpeERpc3RhbmNlR0YkSShTdXBwb3J0R0YkSS9TeWxsYWJsZUxlbmd0aEdGJEkpVGFidWxhdGVHRiRJJVRha2VHRiRJKlRodWVNb3JzZUdGJEksVG9CeXRlQXJyYXlHRiRJJVRyaW1HRiRJKVRyaW1MZWZ0R0YkSSpUcmltUmlnaHRHRiRJKlVwcGVyQ2FzZUdGJEkoVmlzaWJsZUdGJEkuV2lsZGNhcmRNYXRjaEdGJEkqV29yZENvdW50R0YkSSZXb3Jkc0dGJEkpV3JhcFRleHRHRiQ=
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.1. Parit\303\241sbites k\303\263d.</Font></Text-field> addparity:=proc(m::string) local i,c; c:=0; for i to length(m) do if m[i]="1" then c:=1-c; next; fi; if m[i]<>"0" then return FAIL fi; od; if c=1 then cat(m,"1") else cat(m,"0") fi; end; Zio2IydJIm1HNiJJJ3N0cmluZ0clKnByb3RlY3RlZEc2JEkiaUdGJkkiY0dGJkYmRiZDJT5GKyIiIT8oRioiIiJGMC1JJ2xlbmd0aEdGKDYjRiVJJXRydWVHRihDJEAkLyZGJTYjRipRIjFGJkMkPkYrLCZGMEYwRishIiJcQCQwRjhRIjBGJk9JJUZBSUxHRihAJS9GK0YwLUkkY2F0R0YoNiRGJUY6LUZINiRGJUZCRiZGJkYm addparity("0110"); addparity("0010"); USYwMTEwMDYi USYwMDEwMTYi LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.2. P\303\251lda.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.3. P\303\251lda: parit\303\241</Font>sbites <Font encoding="UTF-8">k\303\263d.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.4. Hibajelz\305\221 k\303\263d.</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.5. K\303\263dok t\303\241vols\303\241ga \303\251s s\303\272lya.</Font></Text-field> HammingDistance("abcd","abdd"); IiIi LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.6. Minim\303\241lis t\303\241vols\303\241g\303\272 dek\303\263dol\303\241s.</Font></Text-field> Dt:=table(): Dt["0000"]:=FAIL: Dt["0001"]:=FAIL: Dt["0010"]:="0010": Dt["0011"]:="0010": Dt["0100"]:="0100": Dt["0101"]:="0100": Dt["0110"]:=FAIL: Dt["0111"]:="1111": Dt["1000"]:=FAIL: Dt["1001"]:="1111": Dt["1010"]:="0010": Dt["1011"]:="1111": Dt["1100"]:="0100": Dt["1101"]:="1111": Dt["1110"]:="1111": Dt["1111"]:="1111": Dt["0011"]; Dt["0000"]; Dt["1110"]; USUwMDEwNiI= SSVGQUlMRyUqcHJvdGVjdGVkRw== USUxMTExNiI= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.7. Hibajav\303\255t\303\263 k\303\263d.</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.3.8. Hibajav\303\255t\303\241</Font>s ismert hibahelyekkel.</Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.9. Ism\303\251tl\303\251ses k\303\263d.</Font></Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.10. K\303\251tdimenzi\303\263s parit\303\241sellen\305\221rz\303\251s.</Font></Text-field> m:=9: n:=8: rnd:=rand(0..1): A:=Matrix(m,n): for i to m do for j to n do A[i,j]:=rnd(): od: od: A; LUkobWZlbmNlZEc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUklbXJvd0dGJDYjLUknbXRhYmxlR0YkNistSSRtdHJHRiQ2Ki1JJG10ZEdGJDYjLUkjbW5HRiQ2JFEiMEYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJ0Y0RjQtRjU2Iy1GODYkUSIxRidGO0Y0Rj5GPkY+LUYyNipGNEY+Rj5GPkY0RjRGPkY0LUYyNipGPkY0Rj5GNEY+Rj5GPkY+LUYyNipGNEY0RjRGPkY0Rj5GNEY+LUYyNipGPkY0RjRGPkY+Rj5GPkY0LUYyNipGNEY0Rj5GNEY+RjRGPkY0LUYyNipGPkY0RjRGPkY0RjRGNEY0LUYyNipGNEY+RjRGNEY+Rj5GNEY0LUYyNipGNEY0RjRGNEY+Rj5GPkY0LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnL0krbXNlbWFudGljc0dGJFEnTWF0cml4Ric= B:=Matrix(m+1,n+1): for i to m do s:=0: for j to n do B[i,j]:=A[i,j]: if A[i,j]<>0 then s:=1-s fi: od: B[i,n+1]:=s od: for j to n+1 do s:=0: for i to m do if B[i,j]<>0 then s:=1-s; fi: od: B[m+1,j]:=s: od: B; LUkobWZlbmNlZEc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUklbXJvd0dGJDYjLUknbXRhYmxlR0YkNiwtSSRtdHJHRiQ2Ky1JJG10ZEdGJDYjLUkjbW5HRiQ2JFEiMEYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJ0Y0RjQtRjU2Iy1GODYkUSIxRidGO0Y0Rj5GPkY+RjQtRjI2K0Y0Rj5GPkY+RjRGNEY+RjRGNC1GMjYrRj5GNEY+RjRGPkY+Rj5GPkY0LUYyNitGNEY0RjRGPkY0Rj5GNEY+Rj4tRjI2K0Y+RjRGNEY+Rj5GPkY+RjRGPi1GMjYrRjRGNEY+RjRGPkY0Rj5GNEY+LUYyNitGPkY0RjRGPkY0RjRGNEY0RjQtRjI2K0Y0Rj5GNEY0Rj5GPkY0RjRGPi1GMjYrRjRGNEY0RjRGPkY+Rj5GNEY+LUYyNitGPkY0Rj5GPkY+RjRGNEY+Rj4vJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvSSttc2VtYW50aWNzR0YkUSdNYXRyaXhGJw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.11. Hamming-korl\303\241t.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.12. Singleton-korl\303\241t.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.13. Line\303\241ris k\303\263d.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.14. Gener\303\241torm\303\241trix, ellen\305\221rz\305\221 m\303\241trix.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.15. Szindr\303\263madek\303\263dol\303\241s.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.3.16<Font encoding="UTF-8">. P\303\251lda: Fano-k\303\263d.</Font></Text-field> isvectorspacemod2:=proc(S) local x,y,z; for x in S do for y in S do z:=zip((xx,yy)->xx+yy mod 2,x,y); if not z in S then return false fi; od; od; true; end; Zio2I0kiU0c2IjYlSSJ4R0YlSSJ5R0YlSSJ6R0YlRiVGJUMkPyZGJ0YkSSV0cnVlRyUqcHJvdGVjdGVkRz8mRihGJEYsQyQ+RiktSSR6aXBHRiU2JWYqNiRJI3h4R0YlSSN5eUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkbW9kR0YlNiQsJkY2IiIiRjdGPyIiI0YlRiVGJUYnRihAJDQtSSNpbkdGLTYkRilGJE9JJmZhbHNlR0YtRixGJUYlRiU= Fano:={[0,0,0,0,0,0,0],[1,1,1,1,1,1,1],[1,1,1,0,0,0,0],[0,0,0,1,1,1,1],[1,0,0,1,1,0,0],[0,1,1,0,0,1,1],[0,1,0,1,0,1,0],[1,0,1,0,1,0,1],[0,0,1,1,0,0,1],[1,1,0,0,1,1,0],[1,0,0,0,0,1,1],[0,1,1,1,1,0,0],[0,1,0,0,1,0,1],[1,0,1,1,0,1,0],[0,0,1,0,1,1,0],[1,1,0,1,0,0,1]}; isvectorspacemod2(Fano); PDI3KSIiIUYkRiRGJEYkRiRGJDcpIiIiRiZGJkYmRiZGJkYmNylGJkYmRiZGJEYkRiRGJDcpRiRGJEYkRiZGJkYmRiY3KUYmRiRGJEYmRiZGJEYkNylGJEYmRiZGJEYkRiZGJjcpRiRGJkYkRiZGJEYmRiQ3KUYmRiRGJkYkRiZGJEYmNylGJEYkRiZGJkYkRiRGJjcpRiZGJkYkRiRGJkYmRiQ3KUYmRiRGJEYkRiRGJkYmNylGJEYmRiZGJkYmRiRGJDcpRiRGJkYkRiRGJkYkRiY3KUYmRiRGJkYmRiRGJkYkNylGJEYkRiZGJEYmRiZGJDcpRiZGJkYkRiZGJEYkRiY= SSV0cnVlRyUqcHJvdGVjdGVkRw== with(linalg); N15ySS5CbG9ja0RpYWdvbmFsRzYiSSxHcmFtU2NobWlkdEdGJEksSm9yZGFuQmxvY2tHRiRJKUxVZGVjb21wR0YkSSlRUmRlY29tcEdGJEkqV3JvbnNraWFuR0YkSSdhZGRjb2xHRiRJJ2FkZHJvd0dGJEkkYWRqR0YkSShhZGpvaW50R0YkSSZhbmdsZUdGJEkoYXVnbWVudEdGJEkoYmFja3N1YkdGJEklYmFuZEdGJEkmYmFzaXNHRiRJJ2Jlem91dEdGJEksYmxvY2ttYXRyaXhHRiRJKGNoYXJtYXRHRiRJKWNoYXJwb2x5R0YkSSljaG9sZXNreUdGJEkkY29sR0YkSSdjb2xkaW1HRiRJKWNvbHNwYWNlR0YkSShjb2xzcGFuR0YkSSpjb21wYW5pb25HRiRJJ2NvbmNhdEdGJEklY29uZEdGJEkpY29weWludG9HRiRJKmNyb3NzcHJvZEdGJEklY3VybEdGJEkpZGVmaW5pdGVHRiRJKGRlbGNvbHNHRiRJKGRlbHJvd3NHRiRJJGRldEdGJEklZGlhZ0dGJEkoZGl2ZXJnZUdGJEkoZG90cHJvZEdGJEkqZWlnZW52YWxzR0YkSSxlaWdlbnZhbHVlc0dGJEktZWlnZW52ZWN0b3JzR0YkSStlaWdlbnZlY3RzR0YkSSxlbnRlcm1hdHJpeEdGJEkmZXF1YWxHRiRJLGV4cG9uZW50aWFsR0YkSSdleHRlbmRHRiRJLGZmZ2F1c3NlbGltR0YkSSpmaWJvbmFjY2lHRiRJK2ZvcndhcmRzdWJHRiRJKmZyb2Jlbml1c0dGJEkqZ2F1c3NlbGltR0YkSSpnYXVzc2pvcmRHRiRJKGdlbmVxbnNHRiRJKmdlbm1hdHJpeEdGJEklZ3JhZEdGJEkpaGFkYW1hcmRHRiRJKGhlcm1pdGVHRiRJKGhlc3NpYW5HRiRJKGhpbGJlcnRHRiRJK2h0cmFuc3Bvc2VHRiRJKWloZXJtaXRlR0YkSSppbmRleGZ1bmNHRiRJKmlubmVycHJvZEdGJEkpaW50YmFzaXNHRiRJKGludmVyc2VHRiRJJ2lzbWl0aEdGJEkqaXNzaW1pbGFyR0YkSSdpc3plcm9HRiRJKWphY29iaWFuR0YkSSdqb3JkYW5HRiRJJ2tlcm5lbEdGJEkqbGFwbGFjaWFuR0YkSSpsZWFzdHNxcnNHRiRJKWxpbnNvbHZlR0YkSSdtYXRhZGRHRiRJJ21hdHJpeEdGJEkmbWlub3JHRiRJKG1pbnBvbHlHRiRJJ211bGNvbEdGJEknbXVscm93R0YkSSltdWx0aXBseUdGJEklbm9ybUdGJEkqbm9ybWFsaXplR0YkSSpudWxsc3BhY2VHRiRJJ29ydGhvZ0dGJEkqcGVybWFuZW50R0YkSSZwaXZvdEdGJEkqcG90ZW50aWFsR0YkSStyYW5kbWF0cml4R0YkSStyYW5kdmVjdG9yR0YkSSVyYW5rR0YkSShyYXRmb3JtR0YkSSRyb3dHRiRJJ3Jvd2RpbUdGJEkpcm93c3BhY2VHRiRJKHJvd3NwYW5HRiRJJXJyZWZHRiRJKnNjYWxhcm11bEdGJEktc2luZ3VsYXJ2YWxzR0YkSSZzbWl0aEdGJEksc3RhY2ttYXRyaXhHRiRJKnN1Ym1hdHJpeEdGJEkqc3VidmVjdG9yR0YkSSlzdW1iYXNpc0dGJEkoc3dhcGNvbEdGJEkoc3dhcHJvd0dGJEkqc3lsdmVzdGVyR0YkSSl0b2VwbGl0ekdGJEkmdHJhY2VHRiRJKnRyYW5zcG9zZUdGJEksdmFuZGVybW9uZGVHRiRJKnZlY3BvdGVudEdGJEkodmVjdGRpbUdGJEkndmVjdG9yR0YkSSp3cm9uc2tpYW5HRiQ= rangemod2:=proc(A::matrix) local m,n,i,j,v,S; m:=rowdim(A); n:=coldim(A); S:={}; for i from 0 to 2^n-1 do v:=convert(i,base,2); v:=[op(v),0$j=nops(v)+1..n]; v:=vector(n,v); v:=multiply(A,v); v:=map(x->x mod 2,v); v:=convert(v,list); S:=S union {v}; od; S; end; Zio2IydJIkFHNiJfSSdsaW5hbGdHNislKnByb3RlY3RlZEdJKF9zeXNsaWJHRiZGK0YrRitGK0YrRitGK0knbWF0cml4R0YmNihJIm1HRiZJIm5HRiZJImlHRiZJImpHRiZJInZHRiZJIlNHRiZGJkYmQyc+Ri4tX0YoSSdyb3dkaW1HRiY2I0YlPkYvLV9GKEknY29sZGltR0YmRjk+RjM8Ij8oRjAiIiEiIiIsJikiIiNGL0ZCRkIhIiJJJXRydWVHRipDKT5GMi1JKGNvbnZlcnRHRio2JUYwSSViYXNlR0YmRkU+RjI3JC1JI29wR0YqNiNGMi1JIiRHRio2JEZBL0YxOywmLUklbm9wc0dGKkZSRkJGQkZCRi8+RjItX0YoSSd2ZWN0b3JHRiY2JEYvRjI+RjItX0YoSSltdWx0aXBseUdGJjYkRiVGMj5GMi1JJG1hcEdGKjYkZio2I0kieEdGJkYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkbW9kR0YmNiRGZW9GRUYmRiZGJkYyPkYyLUZLNiRGMkklbGlzdEdGKj5GMy1JJnVuaW9uR0YqNiRGMzwjRjJGM0YmRiZGJg== G:=matrix([[1,1,1,1],[1,0,0,1],[1,0,1,1],[0,0,1,1],[0,0,0,1],[0,1,1,1],[0,1,0,1]]); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEiR0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1GIzYjLUknbXRhYmxlR0YkNiktSSRtdHJHRiQ2Ji1JJG10ZEdGJDYjLUkjbW5HRiQ2JEZURjlGXW9GXW9GXW8tRltvNiZGXW8tRl5vNiMtRmFvNiRRIjBGJ0Y5RmVvRl1vLUZbbzYmRl1vRmVvRl1vRl1vLUZbbzYmRmVvRmVvRl1vRl1vLUZbbzYmRmVvRmVvRmVvRl1vLUZbbzYmRmVvRl1vRl1vRl1vLUZbbzYmRmVvRl1vRmVvRl1vLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYn rangemod2(G); evalb(Fano=%); PDI3KSIiIUYkRiRGJEYkRiRGJDcpIiIiRiZGJkYmRiZGJkYmNylGJkYmRiZGJEYkRiRGJDcpRiRGJEYkRiZGJkYmRiY3KUYmRiRGJEYmRiZGJEYkNylGJEYmRiZGJEYkRiZGJjcpRiRGJkYkRiZGJEYmRiQ3KUYmRiRGJkYkRiZGJEYmNylGJEYkRiZGJkYkRiRGJjcpRiZGJkYkRiRGJkYmRiQ3KUYmRiRGJEYkRiRGJkYmNylGJEYmRiZGJkYmRiRGJDcpRiRGJkYkRiRGJkYkRiY3KUYmRiRGJkYmRiRGJkYkNylGJEYkRiZGJEYmRiZGJDcpRiZGJkYkRiZGJEYkRiY= SSV0cnVlRyUqcHJvdGVjdGVkRw== addcol(G,1,2,1):addcol(%,1,3,1):addcol(%,1,4,1):map(x->x mod 2,%); LUkobWZlbmNlZEc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUklbXJvd0dGJDYjLUknbXRhYmxlR0YkNiktSSRtdHJHRiQ2Ji1JJG10ZEdGJDYjLUkjbW5HRiQ2JFEiMUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GNTYjLUY4NiRRIjBGJ0Y7Rj5GPi1GMjYmRjRGNEY0Rj4tRjI2JkY0RjRGPkY+LUYyNiZGPkY+RjRGNC1GMjYmRj5GPkY+RjQtRjI2JkY+RjRGNEY0LUYyNiZGPkY0Rj5GNC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJw== addcol(%,2,1,1):addcol(%,2,3,1):map(x->x mod 2,%); LUkobWZlbmNlZEc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUklbXJvd0dGJDYjLUknbXRhYmxlR0YkNiktSSRtdHJHRiQ2Ji1JJG10ZEdGJDYjLUkjbW5HRiQ2JFEiMUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GNTYjLUY4NiRRIjBGJ0Y7Rj5GPi1GMjYmRj5GNEY+Rj4tRjI2JkY+RjRGNEY+LUYyNiZGPkY+RjRGNC1GMjYmRj5GPkY+RjQtRjI2JkY0RjRGPkY0LUYyNiZGNEY0RjRGNC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJw== addcol(%,3,2,1):map(x->x mod 2,%); LUkobWZlbmNlZEc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUklbXJvd0dGJDYjLUknbXRhYmxlR0YkNiktSSRtdHJHRiQ2Ji1JJG10ZEdGJDYjLUkjbW5HRiQ2JFEiMUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GNTYjLUY4NiRRIjBGJ0Y7Rj5GPi1GMjYmRj5GNEY+Rj4tRjI2JkY+Rj5GNEY+LUYyNiZGPkY0RjRGNC1GMjYmRj5GPkY+RjQtRjI2JkY0RjRGPkY0LUYyNiZGNEY+RjRGNC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJw== addcol(%,4,2,1):addcol(%,4,3,1):G1:=map(x->x mod 2,%); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjRzFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSVmb3JtR1EmaW5maXhGJy8lJ2xzcGFjZUdRL3RoaWNrbWF0aHNwYWNlRicvJSdyc3BhY2VHRk8vJShtaW5zaXplR1EiMUYnLyUobWF4c2l6ZUdRKWluZmluaXR5RictSShtZmVuY2VkR0YkNiUtRiM2Iy1JJ210YWJsZUdGJDYpLUkkbXRyR0YkNiYtSSRtdGRHRiQ2Iy1JI21uR0YkNiRGVEY5LUZebzYjLUZhbzYkUSIwRidGOUZjb0Zjby1GW282JkZjb0Zdb0Zjb0Zjby1GW282JkZjb0Zjb0Zdb0Zjby1GW282JkZjb0Zjb0Zjb0Zdby1GW282JkZjb0Zdb0Zdb0Zdby1GW282JkZdb0Zjb0Zdb0Zdby1GW282JkZdb0Zdb0Zjb0Zdby8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJw== rangemod2(G1); evalb(Fano=%); PDI3KSIiIUYkRiRGJEYkRiRGJDcpIiIiRiZGJkYmRiZGJkYmNylGJkYmRiZGJEYkRiRGJDcpRiRGJEYkRiZGJkYmRiY3KUYmRiRGJEYmRiZGJEYkNylGJEYmRiZGJEYkRiZGJjcpRiRGJkYkRiZGJEYmRiQ3KUYmRiRGJkYkRiZGJEYmNylGJEYkRiZGJkYkRiRGJjcpRiZGJkYkRiRGJkYmRiQ3KUYmRiRGJEYkRiRGJkYmNylGJEYmRiZGJkYmRiRGJDcpRiRGJkYkRiRGJkYkRiY3KUYmRiRGJkYmRiRGJkYkNylGJEYkRiZGJEYmRiZGJDcpRiZGJkYkRiZGJEYkRiY= SSV0cnVlRyUqcHJvdGVjdGVkRw== H:=matrix([[0,1,1,1,1,0,0],[1,0,1,1,0,1,0],[1,1,0,1,0,0,1]]); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEiSEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1GIzYjLUknbXRhYmxlR0YkNiUtSSRtdHJHRiQ2KS1JJG10ZEdGJDYjLUkjbW5HRiQ2JFEiMEYnRjktRl5vNiMtRmFvNiRGVEY5RmRvRmRvRmRvRl1vRl1vLUZbbzYpRmRvRl1vRmRvRmRvRl1vRmRvRl1vLUZbbzYpRmRvRmRvRl1vRmRvRl1vRl1vRmRvLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYn sindromemod2:=proc(H::matrix,St::table) local i,j,k,m,n,s,ss,sss,x; m:=rowdim(H); n:=coldim(H); if m>=n then return FAIL fi; for i from 0 to 2^m-1 do s:=convert(i,base,2); s:=[op(s),0$j=nops(s)+1..m]; St[s]:=[1$j=1..n] od; for i from 0 to 2^n-1 do ss:=convert(i,base,2); ss:=[op(ss),0$j=nops(%)+1..n]; sss:=convert(ss,vector); k:=multiply(H,sss); k:=map(x->x mod 2,k); k:=convert(k,list); s:=St[%]; if convert(ss,`+`)<convert(s,`+`) then St[k]:=ss fi; od; end; Zio2JCdJIkhHNiJfSSdsaW5hbGdHNislKnByb3RlY3RlZEdJKF9zeXNsaWJHRiZGK0YrRitGK0YrRitGK0knbWF0cml4R0YmJ0kjU3RHRiZJJnRhYmxlR0YqNitJImlHRiZJImpHRiZJImtHRiZJIm1HRiZJIm5HRiZJInNHRiZJI3NzR0YmSSRzc3NHRiZJInhHRiZGJkYmQyc+RjQtX0YoSSdyb3dkaW1HRiY2I0YlPkY1LV9GKEknY29sZGltR0YmRj9AJDFGNUY0T0klRkFJTEdGKj8oRjEiIiEiIiIsJikiIiNGNEZKRkohIiJJJXRydWVHRipDJT5GNi1JKGNvbnZlcnRHRio2JUYxSSViYXNlR0YmRk0+RjY3JC1JI29wR0YqNiNGNi1JIiRHRio2JEZJL0YyOywmLUklbm9wc0dGKkZaRkpGSkZKRjQ+JkYuRlo3Iy1GZm42JEZKL0YyO0ZKRjU/KEYxRklGSiwmKUZNRjVGSkZKRk5GT0MqPkY3RlI+Rjc3JC1GWTYjRjctRmZuNiRGSS9GMjssJi1GXG82I0kiJUdGJkZKRkpGSkY1PkY4LUZTNiRGN19GKEkndmVjdG9yR0YmPkYzLV9GKEkpbXVsdGlwbHlHRiY2JEYlRjg+RjMtSSRtYXBHRio2JGYqNiNGOUYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkkbW9kR0YmNiRGOUZNRiZGJkYmRjM+RjMtRlM2JEYzSSVsaXN0R0YqPkY2JkYuRmNwQCQyLUZTNiRGN0kiK0dGKi1GUzYkRjZGZXI+JkYuNiNGM0Y3RiZGJkYm St:=table(): sindromemod2(H,St); print(St); LUkmVEFCTEVHJSpwcm90ZWN0ZWRHNiM3Ki83JSIiISIiIkYqNylGKkYpRilGKUYpRilGKS83JUYpRilGKjcpRilGKUYpRilGKUYpRiovNyVGKkYqRik3KUYpRilGKkYpRilGKUYpLzclRilGKkYpNylGKUYpRilGKUYpRipGKS83JUYpRilGKTcpRilGKUYpRilGKUYpRikvNyVGKkYqRio3KUYpRilGKUYqRilGKUYpLzclRipGKUYqNylGKUYqRilGKUYpRilGKS83JUYqRilGKTcpRilGKUYpRilGKkYpRik= c:=vector([0,1,0,0,1,0,1]); multiply(H,c); map(x->x mod 2,%); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEiY0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1JJ210YWJsZUdGJDYjLUkkbXRyR0YkNiktSSRtdGRHRiQ2Iy1JI21uR0YkNiRRIjBGJ0Y5LUZcbzYjLUZfbzYkRlRGOUZbb0Zbb0Zib0Zbb0Ziby8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJw== LUkobWZlbmNlZEc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUknbXRhYmxlR0YkNiMtSSRtdHJHRiQ2JS1JJG10ZEdGJDYjLUkjbW5HRiQ2JFEiMkYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1GMjYjLUY1NiRRIjBGJ0Y4RjEvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRic= LUkobWZlbmNlZEc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUknbXRhYmxlR0YkNiMtSSRtdHJHRiQ2JS1JJG10ZEdGJDYjLUkjbW5HRiQ2JFEiMEYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJ0YxRjEvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRic= e:=vector([0,0,0,0,1,0,0]); v:=evalm(c+e); s:=multiply(H,v); s:=convert(s,list) mod 2; St[s]; LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEiZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1JJ210YWJsZUdGJDYjLUkkbXRyR0YkNiktSSRtdGRHRiQ2Iy1JI21uR0YkNiRRIjBGJ0Y5RltvRltvRltvLUZcbzYjLUZfbzYkRlRGOUZbb0Zbby8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEidkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1JJ210YWJsZUdGJDYjLUkkbXRyR0YkNiktSSRtdGRHRiQ2Iy1JI21uR0YkNiRRIjBGJ0Y5LUZcbzYjLUZfbzYkRlRGOUZbb0Zbby1GXG82Iy1GX282JFEiMkYnRjlGW29GYm8vJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRic= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEic0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1JJ210YWJsZUdGJDYjLUkkbXRyR0YkNiUtSSRtdGRHRiQ2Iy1JI21uR0YkNiRRIjNGJ0Y5LUZcbzYjLUZfbzYkUSIwRidGOS1GXG82Iy1GX282JFEiMkYnRjkvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRic= NyUiIiIiIiFGJA== NykiIiFGI0YjRiMiIiJGI0Yj e:=vector([0,0,0,0,1,0,1]); v:=evalm(c+e); s:=multiply(H,v); s:=convert(s,list) mod 2; St[s]; LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEiZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1JJ210YWJsZUdGJDYjLUkkbXRyR0YkNiktSSRtdGRHRiQ2Iy1JI21uR0YkNiRRIjBGJ0Y5RltvRltvRltvLUZcbzYjLUZfbzYkRlRGOUZbb0Ziby8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEidkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1JJ210YWJsZUdGJDYjLUkkbXRyR0YkNiktSSRtdGRHRiQ2Iy1JI21uR0YkNiRRIjBGJ0Y5LUZcbzYjLUZfbzYkRlRGOUZbb0Zbby1GXG82Iy1GX282JFEiMkYnRjlGW29GZm8vJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRic= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEic0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1JJ210YWJsZUdGJDYjLUkkbXRyR0YkNiUtSSRtdGRHRiQ2Iy1JI21uR0YkNiRRIjNGJ0Y5LUZcbzYjLUZfbzYkUSIwRidGOUZbby8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJw== NyUiIiIiIiFGIw== NykiIiEiIiJGI0YjRiNGI0Yj e:=vector([1,1,1,0,0,0,0]); v:=evalm(c+e); s:=multiply(H,v); s:=convert(s,list) mod 2; St[s]; LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEiZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1JJ210YWJsZUdGJDYjLUkkbXRyR0YkNiktSSRtdGRHRiQ2Iy1JI21uR0YkNiRGVEY5RltvRltvLUZcbzYjLUZfbzYkUSIwRidGOUZhb0Zhb0Zhby8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEidkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1JJ210YWJsZUdGJDYjLUkkbXRyR0YkNiktSSRtdGRHRiQ2Iy1JI21uR0YkNiRGVEY5LUZcbzYjLUZfbzYkUSIyRidGOUZbby1GXG82Iy1GX282JFEiMEYnRjlGW29GZm9GW28vJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRic= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEic0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJWZvcm1HUSZpbmZpeEYnLyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGJy8lJ3JzcGFjZUdGTy8lKG1pbnNpemVHUSIxRicvJShtYXhzaXplR1EpaW5maW5pdHlGJy1JKG1mZW5jZWRHRiQ2JS1JJ210YWJsZUdGJDYjLUkkbXRyR0YkNiUtSSRtdGRHRiQ2Iy1JI21uR0YkNiRRIjRGJ0Y5LUZcbzYjLUZfbzYkUSIyRidGOUZbby8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJw== NyUiIiFGI0Yj NykiIiFGI0YjRiNGI0YjRiM=
<Text-field style="Heading 3" layout="Heading 3">9.3.17<Font encoding="UTF-8">. P\303\251lda: Reed-M\303\274ller-k\303\263dok.</Font></Text-field> RM51basis:={ [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0], [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0], [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0], [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]}; PCg3QiIiIkYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkN0JGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJCIiIUYmRiZGJkYmRiZGJkYmRiZGJkYmRiZGJkYmRiZGJjdCRiRGJEYkRiRGJEYkRiRGJEYmRiZGJkYmRiZGJkYmRiZGJEYkRiRGJEYkRiRGJEYkRiZGJkYmRiZGJkYmRiZGJjdCRiRGJEYkRiRGJkYmRiZGJkYkRiRGJEYkRiZGJkYmRiZGJEYkRiRGJEYmRiZGJkYmRiRGJEYkRiRGJkYmRiZGJjdCRiRGJEYmRiZGJEYkRiZGJkYkRiRGJkYmRiRGJEYmRiZGJEYkRiZGJkYkRiRGJkYmRiRGJEYmRiZGJEYkRiZGJjdCRiRGJkYkRiZGJEYmRiRGJkYkRiZGJEYmRiRGJkYkRiZGJEYmRiRGJkYkRiZGJEYmRiRGJkYkRiZGJEYmRiRGJg== linenvelop:=proc(S) local x,y,SS,SSS; SS:=S; while true do SSS:=SS; for x in SS do for y in SS do SSS:=SSS union {zip((xx,yy)->xx+yy mod 2,x,y)} od; od; if SS=SSS then return(SS) fi; SS:=SSS; od; end; Zio2I0kiU0c2IjYmSSJ4R0YlSSJ5R0YlSSNTU0dGJUkkU1NTR0YlRiVGJUMkPkYpRiQ/KEYlIiIiRi5GJUkldHJ1ZUclKnByb3RlY3RlZEdDJj5GKkYpPyZGJ0YpRi8/JkYoRilGLz5GKi1JJnVuaW9uR0YwNiRGKjwjLUkkemlwR0koX3N5c2xpYkdGJTYlZio2JEkjeHhHRiVJI3l5R0YlRiU2JEkpb3BlcmF0b3JHRiVJJmFycm93R0YlRiUtSSRtb2RHRiU2JCwmRkBGLkZBRi4iIiNGJUYlRiVGJ0YoQCQvRilGKk9GKT5GKUYqRiVGJUYl linenvelop(RM51basis); nops(%); PFxvN0IiIiJGJCIiIUYlRiVGJUYkRiRGJEYkRiVGJUYlRiVGJEYkRiRGJEYlRiVGJUYlRiRGJEYkRiRGJUYlRiVGJUYkRiQ3QkYkRiVGJEYlRiVGJEYlRiRGJEYlRiRGJUYlRiRGJUYkRiRGJUYkRiVGJUYkRiVGJEYkRiVGJEYlRiVGJEYlRiQ3QkYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiQ3QkYkRiRGJEYkRiVGJUYlRiVGJEYkRiRGJEYlRiVGJUYlRiVGJUYlRiVGJEYkRiRGJEYlRiVGJUYlRiRGJEYkRiQ3QkYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiQ3QkYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiQ3QkYkRiVGJUYkRiVGJEYkRiVGJUYkRiRGJUYkRiVGJUYkRiVGJEYkRiVGJEYlRiVGJEYkRiVGJUYkRiVGJEYkRiU3QkYkRiVGJUYkRiRGJUYlRiRGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYkRiVGJUYkRiRGJUYlRiQ3QkYkRiVGJUYkRiVGJEYkRiVGJUYkRiRGJUYkRiVGJUYkRiRGJUYlRiRGJUYkRiRGJUYlRiRGJEYlRiRGJUYlRiQ3QkYlRiRGJUYkRiVGJEYlRiRGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYlRiRGJUYkRiVGJEYlRiQ3QkYlRiVGJEYkRiRGJEYlRiVGJUYlRiRGJEYkRiRGJUYlRiRGJEYlRiVGJUYlRiRGJEYkRiRGJUYlRiVGJUYkRiQ3QkYlRiRGJUYkRiRGJUYkRiVGJUYkRiVGJEYkRiVGJEYlRiRGJUYkRiVGJUYkRiVGJEYkRiVGJEYlRiVGJEYlRiQ3QkYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiQ3QkYlRiRGJEYlRiRGJUYlRiRGJUYkRiRGJUYkRiVGJUYkRiVGJEYkRiVGJEYlRiVGJEYlRiRGJEYlRiRGJUYlRiQ3QkYlRiRGJEYlRiRGJUYlRiRGJEYlRiVGJEYlRiRGJEYlRiVGJEYkRiVGJEYlRiVGJEYkRiVGJUYkRiVGJEYkRiU3QkYlRiVGJEYkRiRGJEYlRiVGJEYkRiVGJUYlRiVGJEYkRiRGJEYlRiVGJUYlRiRGJEYlRiVGJEYkRiRGJEYlRiU3QkYlRiRGJUYkRiRGJUYkRiVGJEYlRiRGJUYlRiRGJUYkRiRGJUYkRiVGJUYkRiVGJEYlRiRGJUYkRiRGJUYkRiU3QkYkRiRGJEYkRiRGJEYkRiRGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYkRiRGJEYkRiRGJEYkRiQ3QkYlRiVGJUYlRiRGJEYkRiRGJEYkRiRGJEYlRiVGJUYlRiVGJUYlRiVGJEYkRiRGJEYkRiRGJEYkRiVGJUYlRiU3QkYlRiVGJEYkRiVGJUYkRiRGJEYkRiVGJUYkRiRGJUYlRiVGJUYkRiRGJUYlRiRGJEYkRiRGJUYlRiRGJEYlRiU3QkYlRiRGJUYkRiVGJEYlRiRGJEYlRiRGJUYkRiVGJEYlRiVGJEYlRiRGJUYkRiVGJEYkRiVGJEYlRiRGJUYkRiU3QkYlRiVGJEYkRiRGJEYlRiVGJEYkRiVGJUYlRiVGJEYkRiVGJUYkRiRGJEYkRiVGJUYkRiRGJUYlRiVGJUYkRiQ3QkYlRiRGJUYkRiRGJUYkRiVGJEYlRiRGJUYlRiRGJUYkRiVGJEYlRiRGJEYlRiRGJUYkRiVGJEYlRiVGJEYlRiQ3QkYkRiRGJUYlRiRGJEYlRiVGJUYlRiRGJEYlRiVGJEYkRiRGJEYlRiVGJEYkRiVGJUYlRiVGJEYkRiVGJUYkRiQ3QkYkRiVGJUYkRiVGJEYkRiVGJEYlRiVGJEYlRiRGJEYlRiVGJEYkRiVGJEYlRiVGJEYlRiRGJEYlRiRGJUYlRiQ3QkYkRiVGJEYlRiVGJEYlRiRGJUYkRiVGJEYkRiVGJEYlRiVGJEYlRiRGJEYlRiRGJUYkRiVGJEYlRiVGJEYlRiQ3QkYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiQ3QkYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiU3QkYkRiRGJEYkRiRGJEYkRiRGJUYlRiVGJUYlRiVGJUYlRiRGJEYkRiRGJEYkRiRGJEYlRiVGJUYlRiVGJUYlRiU3QkYkRiRGJEYkRiVGJUYlRiVGJEYkRiRGJEYlRiVGJUYlRiRGJEYkRiRGJUYlRiVGJUYkRiRGJEYkRiVGJUYlRiU3QkYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiU3QkYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiU3QkYkRiRGJUYlRiRGJEYlRiVGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYkRiRGJUYlRiRGJEYlRiU3QkYkRiVGJUYkRiRGJUYlRiRGJUYkRiRGJUYlRiRGJEYlRiRGJUYlRiRGJEYlRiVGJEYlRiRGJEYlRiVGJEYkRiU3QkYlRiVGJEYkRiVGJUYkRiRGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYlRiVGJEYkRiVGJUYkRiQ3QkYkRiVGJUYkRiVGJEYkRiVGJEYlRiVGJEYlRiRGJEYlRiRGJUYlRiRGJUYkRiRGJUYkRiVGJUYkRiVGJEYkRiU3QkYkRiRGJUYlRiVGJUYkRiRGJEYkRiVGJUYlRiVGJEYkRiVGJUYkRiRGJEYkRiVGJUYlRiVGJEYkRiRGJEYlRiU3QkYkRiVGJEYlRiVGJEYlRiRGJEYlRiRGJUYlRiRGJUYkRiVGJEYlRiRGJEYlRiRGJUYlRiRGJUYkRiRGJUYkRiU3QkYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiU3QkYlRiRGJEYlRiRGJUYlRiRGJUYkRiRGJUYkRiVGJUYkRiRGJUYlRiRGJUYkRiRGJUYkRiVGJUYkRiVGJEYkRiU3QkYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiVGJUYlRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiQ3QkYlRiVGJEYkRiRGJEYlRiVGJUYlRiRGJEYkRiRGJUYlRiVGJUYkRiRGJEYkRiVGJUYlRiVGJEYkRiRGJEYlRiU3QkYlRiRGJUYkRiRGJUYkRiVGJUYkRiVGJEYkRiVGJEYlRiVGJEYlRiRGJEYlRiRGJUYlRiRGJUYkRiRGJUYkRiU3QkYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiU3QkYlRiVGJUYlRiRGJEYkRiRGJUYlRiVGJUYkRiRGJEYkRiRGJEYkRiRGJUYlRiVGJUYkRiRGJEYkRiVGJUYlRiU3QkYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiU3QkYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiU3QkYlRiVGJUYlRiVGJUYlRiVGJEYkRiRGJEYkRiRGJEYkRiVGJUYlRiVGJUYlRiVGJUYkRiRGJEYkRiRGJEYkRiQ3QkYlRiRGJEYlRiVGJEYkRiVGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYlRiRGJEYlRiVGJEYkRiU3QkYlRiVGJUYlRiRGJEYkRiRGJUYlRiVGJUYkRiRGJEYkRiVGJUYlRiVGJEYkRiRGJEYlRiVGJUYlRiRGJEYkRiQ3QkYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiU3QkYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiRGJUYlRiRGJEYlRiVGJEYkRiVGJUYkRiQ3QkYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiQ3QkYlRiRGJEYlRiRGJUYlRiRGJEYlRiVGJEYlRiRGJEYlRiRGJUYlRiRGJUYkRiRGJUYlRiRGJEYlRiRGJUYlRiQ3QkYkRiRGJUYlRiVGJUYkRiRGJUYlRiRGJEYkRiRGJUYlRiVGJUYkRiRGJEYkRiVGJUYkRiRGJUYlRiVGJUYkRiQ3QkYlRiRGJEYlRiVGJEYkRiVGJEYlRiVGJEYkRiVGJUYkRiVGJEYkRiVGJUYkRiRGJUYkRiVGJUYkRiRGJUYlRiQ3QkYkRiVGJEYlRiRGJUYkRiVGJUYkRiVGJEYlRiRGJUYkRiRGJUYkRiVGJEYlRiRGJUYlRiRGJUYkRiVGJEYlRiQ3QkYkRiVGJEYlRiRGJUYkRiVGJUYkRiVGJEYlRiRGJUYkRiVGJEYlRiRGJUYkRiVGJEYkRiVGJEYlRiRGJUYkRiU3QkYlRiVGJUYlRiVGJUYlRiVGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYkRiRGJEYlRiVGJUYlRiVGJUYlRiU3QkYkRiRGJEYkRiVGJUYlRiVGJUYlRiVGJUYkRiRGJEYkRiRGJEYkRiRGJUYlRiVGJUYlRiVGJUYlRiRGJEYkRiQ3QkYkRiRGJEYkRiVGJUYlRiVGJUYlRiVGJUYkRiRGJEYkRiVGJUYlRiVGJEYkRiRGJEYkRiRGJEYkRiVGJUYlRiU3QkYkRiRGJUYlRiVGJUYkRiRGJUYlRiRGJEYkRiRGJUYlRiRGJEYlRiVGJUYlRiRGJEYlRiVGJEYkRiRGJEYlRiU3QkYkRiVGJEYlRiVGJEYlRiRGJUYkRiVGJEYkRiVGJEYlRiRGJUYkRiVGJUYkRiVGJEYlRiRGJUYkRiRGJUYkRiU3QkYlRiVGJUYlRiRGJEYkRiRGJEYkRiRGJEYlRiVGJUYlRiRGJEYkRiRGJUYlRiVGJUYlRiVGJUYlRiRGJEYkRiQ= IiNr
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.3.18. Hamming-k\303\263dok.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.3.19. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.20. Polinomk\303\263dok.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.21. CRC-k\303\263dok.</Font></Text-field> CRC1:=modp1(ConvertIn(x+1,x),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJiokSSJ4RzYiIiIiRixGLEYsRioiIiM= CRC5USB:=modp1(ConvertIn(x^5+x^2+1,x),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsKCokKUkieEc2IiIiJiIiIkYuKiQpRisiIiNGLkYuRi5GLkYrRjE= m:=5: k:=10: L:=[0,1,1,0,1,1,1,1,1,1]; [0$'i'=1..m,op(L)]; l:=modp1(ConvertIn(%,x),2); modp1(Rem(%,CRC5USB),2); modp1(Add(l,%),2); modp1(ConvertOut(%),2); NywiIiEiIiJGJEYjRiRGJEYkRiRGJEYk NzEiIiFGI0YjRiNGI0YjIiIiRiRGI0YkRiRGJEYkRiRGJA== LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsMiokKUkieEc2IiIjOSIiIkYuKiQpRisiIzhGLkYuKiQpRisiIzdGLkYuKiQpRisiIzZGLkYuKiQpRisiIzVGLkYuKiQpRisiIipGLkYuKiQpRisiIihGLkYuKiQpRisiIidGLkYuRisiIiM= LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsKiokKUkieEc2IiIiJSIiIkYuKiQpRisiIiRGLkYuKiQpRisiIiNGLkYuRi5GLkYrRjQ= LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsOiokKUkieEc2IiIjOSIiIkYuKiQpRisiIzhGLkYuKiQpRisiIzdGLkYuKiQpRisiIzZGLkYuKiQpRisiIzVGLkYuKiQpRisiIipGLkYuKiQpRisiIihGLkYuKiQpRisiIidGLkYuKiQpRisiIiVGLkYuKiQpRisiIiRGLkYuKiQpRisiIiNGLkYuRi5GLkYrRkw= NzEiIiIiIiFGI0YjRiNGJEYjRiNGJEYjRiNGI0YjRiNGIw== CRC8:=modp1(ConvertIn(x^8+x^2+x+1,x),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsKiokKUkieEc2IiIiKSIiIkYuKiQpRisiIiNGLkYuKiRGK0YuRi5GLkYuRitGMQ== CRC16IBM:=modp1(ConvertIn(x^16+x^15+x^2+1,x),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsKiokKUkieEc2IiIjOyIiIkYuKiQpRisiIzpGLkYuKiQpRisiIiNGLkYuRi5GLkYrRjQ= CRC16CCITT:=modp1(ConvertIn(x^16+x^12+x^5+1,x),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsKiokKUkieEc2IiIjOyIiIkYuKiQpRisiIzdGLkYuKiQpRisiIiZGLkYuRi5GLkYrIiIj CRC32:=modp1(ConvertIn(x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1,x),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsQCokKUkieEc2IiIjSyIiIkYuKiQpRisiI0VGLkYuKiQpRisiI0JGLkYuKiQpRisiI0FGLkYuKiQpRisiIztGLkYuKiQpRisiIzdGLkYuKiQpRisiIzZGLkYuKiQpRisiIzVGLkYuKiQpRisiIilGLkYuKiQpRisiIihGLkYuKiQpRisiIiZGLkYuKiQpRisiIiVGLkYuKiQpRisiIiNGLkYuKiRGK0YuRi5GLkYuRitGUg== CRC64ISO:=modp1(ConvertIn(x^64+x^4+x^3+x+1,x),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsLCokKUkieEc2IiIjayIiIkYuKiQpRisiIiVGLkYuKiQpRisiIiRGLkYuKiRGK0YuRi5GLkYuRisiIiM= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.3.22. A CRC-k\303\263dok hibajelz\305\221</Font> k<Font encoding="UTF-8">\303\251</Font>pess<Font encoding="UTF-8">\303\251</Font>ge.</Text-field> modp1(Factors(CRC1),2); m:=1; ifactor(2^m-1); NyQiIiI3IzckLSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJiokSSJ4RzYiRiNGI0YjRiNGLiIiI0Yj IiIi IiIi modp1(Factors(CRC5USB),2); m:=5; ifactor(2^m-1); NyQiIiI3IzckLSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsKCokKUkieEc2IiIiJkYjRiMqJClGLyIiI0YjRiNGI0YjRi9GNEYj IiIm LUkhRzYiNiMiI0o= p:=modp1(ConvertIn(x,x),2); modp1(Powmod(p,31,CRC5USB),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJCokSSJ4RzYiIiIiRixGKiIiIw== LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJCIiIkYpSSJ4RzYiIiIj modp1(Factors(CRC8),2); m:=7; ifactor(2^m-1); NyQiIiI3JDckLSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJiokSSJ4RzYiRiNGI0YjRiNGLiIiI0YjNyQtRic2JC1GKjYkLDAqJClGLiIiKEYjRiMqJClGLiIiJ0YjRiMqJClGLiIiJkYjRiMqJClGLiIiJUYjRiMqJClGLiIiJEYjRiMqJClGLkYwRiNGI0YjRiNGLkYwRiM= IiIo LUkhRzYiNiMiJEYi modp1(Factors(CRC16IBM),2); m:=15; ifactor(2^m-1); NyQiIiI3JDckLSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJiokSSJ4RzYiRiNGI0YjRiNGLiIiI0YjNyQtRic2JC1GKjYkLCgqJClGLiIjOkYjRiNGLUYjRiNGI0YuRjBGIw== IiM6 KigtSSFHNiI2IyIiKCIiIi1GJDYjIiNKRigtRiQ2IyIkXiJGKA== modp1(Powmod(p,32767,CRC16IBM),2); modp1(Powmod(p,32767/7,CRC16IBM),2); modp1(Powmod(p,32767/31,CRC16IBM),2); modp1(Powmod(p,32767/151,CRC16IBM),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJCIiIkYpSSJ4RzYiIiIj LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsMCokKUkieEc2IiIjOiIiIkYuKiQpRisiIzdGLkYuKiQpRisiIzVGLkYuKiQpRisiIipGLkYuKiQpRisiIiZGLkYuKiQpRisiIiVGLkYuRi5GLkYrIiIj LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsMCokKUkieEc2IiIjOiIiIkYuKiQpRisiIipGLkYuKiQpRisiIidGLkYuKiQpRisiIiZGLkYuKiQpRisiIiVGLkYuKiRGK0YuRi5GLkYuRisiIiM= LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsNCokKUkieEc2IiIjOiIiIkYuKiQpRisiIzhGLkYuKiQpRisiIzZGLkYuKiQpRisiIipGLkYuKiQpRisiIidGLkYuKiQpRisiIiZGLkYuKiQpRisiIiVGLkYuKiQpRisiIiRGLkYuKiQpRisiIiNGLkYuRitGRg== modp1(Factors(CRC16CCITT),2); m:=15; ifactor(2^m-1); NyQiIiI3JDckLSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJiokSSJ4RzYiRiNGI0YjRiNGLiIiI0YjNyQtRic2JC1GKjYkLDQqJClGLiIjOkYjRiMqJClGLiIjOUYjRiMqJClGLiIjOEYjRiMqJClGLiIjN0YjRiMqJClGLiIiJUYjRiMqJClGLiIiJEYjRiMqJClGLkYwRiNGI0YtRiNGI0YjRi5GMEYj IiM6 KigtSSFHNiI2IyIiKCIiIi1GJDYjIiNKRigtRiQ2IyIkXiJGKA== modp1(Powmod(p,32767,CRC16CCITT),2); modp1(Powmod(p,32767/7,CRC16CCITT),2); modp1(Powmod(p,32767/31,CRC16CCITT),2); modp1(Powmod(p,32767/151,CRC16CCITT),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJCIiIkYpSSJ4RzYiIiIj LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsLCokKUkieEc2IiIjOCIiIkYuKiQpRisiIzZGLkYuKiQpRisiIzVGLkYuKiQpRisiIidGLkYuKiRGK0YuRi5GKyIiIw== LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsOCokKUkieEc2IiIjOiIiIkYuKiQpRisiIzlGLkYuKiQpRisiIzhGLkYuKiQpRisiIzdGLkYuKiQpRisiIipGLkYuKiQpRisiIihGLkYuKiQpRisiIiZGLkYuKiQpRisiIiRGLkYuKiQpRisiIiNGLkYuKiRGK0YuRi5GLkYuRitGRg== LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsMCokKUkieEc2IiIjOSIiIkYuKiQpRisiIzZGLkYuKiQpRisiIihGLkYuKiQpRisiIidGLkYuKiQpRisiIiZGLkYuKiRGK0YuRi5GLkYuRisiIiM= modp1(Factors(CRC32),2); m:=32; ifactor(2^m-1); NyQiIiI3IzckLSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsQCokKUkieEc2IiIjS0YjRiMqJClGLyIjRUYjRiMqJClGLyIjQkYjRiMqJClGLyIjQUYjRiMqJClGLyIjO0YjRiMqJClGLyIjN0YjRiMqJClGLyIjNkYjRiMqJClGLyIjNUYjRiMqJClGLyIiKUYjRiMqJClGLyIiKEYjRiMqJClGLyIiJkYjRiMqJClGLyIiJUYjRiMqJClGLyIiI0YjRiMqJEYvRiNGI0YjRiNGL0ZVRiM= IiNL KiwtSSFHNiI2IyIiJCIiIi1GJDYjIiImRigtRiQ2IyIjPEYoLUYkNiMiJGQjRigtRiQ2IyImUGInRig= modp1(Powmod(p,2^32-1,CRC32),2); modp1(Powmod(p,(2^32-1)/3,CRC32),2); modp1(Powmod(p,(2^32-1)/5,CRC32),2); modp1(Powmod(p,(2^32-1)/17,CRC32),2); modp1(Powmod(p,(2^32-1)/257,CRC32),2); modp1(Powmod(p,(2^32-1)/65537,CRC32),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJCIiIkYpSSJ4RzYiIiIj LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsRiokKUkieEc2IiIjSSIiIkYuKiQpRisiI0ZGLkYuKiQpRisiI0RGLkYuKiQpRisiI0JGLkYuKiQpRisiI0FGLkYuKiQpRisiIz9GLkYuKiQpRisiIz1GLkYuKiQpRisiIzxGLkYuKiQpRisiIztGLkYuKiQpRisiIzlGLkYuKiQpRisiIzhGLkYuKiQpRisiIzZGLkYuKiQpRisiIzVGLkYuKiQpRisiIihGLkYuKiQpRisiIidGLkYuKiQpRisiIiZGLkYuKiRGK0YuRi5GLkYuRisiIiM= LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsNCokKUkieEc2IiIjRyIiIkYuKiQpRisiI0ZGLkYuKiQpRisiI0VGLkYuKiQpRisiI0RGLkYuKiQpRisiI0FGLkYuKiQpRisiIz5GLkYuKiQpRisiIzpGLkYuKiQpRisiIiZGLkYuRi5GLkYrIiIj LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsOCokKUkieEc2IiIjRSIiIkYuKiQpRisiI0NGLkYuKiQpRisiI0BGLkYuKiQpRisiIz9GLkYuKiQpRisiIz5GLkYuKiQpRisiIz1GLkYuKiQpRisiIzdGLkYuKiQpRisiIzVGLkYuKiQpRisiIiZGLkYuKiQpRisiIiVGLkYuRi5GLkYrIiIj LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsPCokKUkieEc2IiIjSiIiIkYuKiQpRisiI0dGLkYuKiQpRisiI0RGLkYuKiQpRisiI0NGLkYuKiQpRisiI0FGLkYuKiQpRisiIz1GLkYuKiQpRisiIzhGLkYuKiQpRisiIzdGLkYuKiQpRisiIzZGLkYuKiQpRisiIihGLkYuKiQpRisiIiZGLkYuKiQpRisiIiRGLkYuKiQpRisiIiNGLkYuRitGUg== LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsTCokKUkieEc2IiIjSiIiIkYuKiQpRisiI0lGLkYuKiQpRisiI0hGLkYuKiQpRisiI0dGLkYuKiQpRisiI0ZGLkYuKiQpRisiI0RGLkYuKiQpRisiI0BGLkYuKiQpRisiIz9GLkYuKiQpRisiIz5GLkYuKiQpRisiIzxGLkYuKiQpRisiIzpGLkYuKiQpRisiIzlGLkYuKiQpRisiIzdGLkYuKiQpRisiIzZGLkYuKiQpRisiIzVGLkYuKiQpRisiIipGLkYuKiQpRisiIiZGLkYuKiQpRisiIiVGLkYuKiQpRisiIiRGLkYuKiRGK0YuRi5GLkYuRisiIiM= modp1(Factors(CRC64ISO),2); m:=64; ifactor(2^m-1); NyQiIiI3IzckLSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsLCokKUkieEc2IiIja0YjRiMqJClGLyIiJUYjRiMqJClGLyIiJEYjRiMqJEYvRiNGI0YjRiNGLyIiI0Yj IiNr KjAtSSFHNiI2IyIiJCIiIi1GJDYjIiImRigtRiQ2IyIjPEYoLUYkNiMiJGQjRigtRiQ2IyIkVCdGKC1GJDYjIig8L3EnRigtRiQ2IyImUGInRig= modp1(Powmod(p,2^64-1,CRC64ISO),2); modp1(Powmod(p,(2^64-1)/3,CRC64ISO),2); modp1(Powmod(p,(2^64-1)/5,CRC64ISO),2); modp1(Powmod(p,(2^64-1)/17,CRC64ISO),2); modp1(Powmod(p,(2^64-1)/257,CRC64ISO),2); modp1(Powmod(p,(2^64-1)/65537,CRC64ISO),2); modp1(Powmod(p,(2^64-1)/6700417,CRC64ISO),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsJCIiIkYpSSJ4RzYiIiIj LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsaG4qJClJInhHNiIiI2ciIiJGLiokKUYrIiNmRi5GLiokKUYrIiNjRi5GLiokKUYrIiNiRi5GLiokKUYrIiNhRi5GLiokKUYrIiNeRi5GLiokKUYrIiNbRi5GLiokKUYrIiNYRi5GLiokKUYrIiNXRi5GLiokKUYrIiNVRi5GLiokKUYrIiNURi5GLiokKUYrIiNSRi5GLiokKUYrIiNPRi5GLiokKUYrIiNORi5GLiokKUYrIiNNRi5GLiokKUYrIiNMRi5GLiokKUYrIiNLRi5GLiokKUYrIiNIRi5GLiokKUYrIiNFRi5GLiokKUYrIiNERi5GLiokKUYrIiNDRi5GLiokKUYrIiNCRi5GLiokKUYrIiM+Ri5GLiokKUYrIiM8Ri5GLiokKUYrIiM6Ri5GLiokKUYrIiM5Ri5GLiokKUYrIiM3Ri5GLiokKUYrIiM2Ri5GLiokKUYrIiM1Ri5GLiokRitGLkYuRisiIiM= LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsXm8qJClJInhHNiIiI2kiIiJGLiokKUYrIiNnRi5GLiokKUYrIiNmRi5GLiokKUYrIiNlRi5GLiokKUYrIiNjRi5GLiokKUYrIiNiRi5GLiokKUYrIiNgRi5GLiokKUYrIiNfRi5GLiokKUYrIiNeRi5GLiokKUYrIiNZRi5GLiokKUYrIiNURi5GLiokKUYrIiNTRi5GLiokKUYrIiNRRi5GLiokKUYrIiNPRi5GLiokKUYrIiNNRi5GLiokKUYrIiNMRi5GLiokKUYrIiNLRi5GLiokKUYrIiNKRi5GLiokKUYrIiNJRi5GLiokKUYrIiNGRi5GLiokKUYrIiNFRi5GLiokKUYrIiNERi5GLiokKUYrIiNBRi5GLiokKUYrIiNARi5GLiokKUYrIiM/Ri5GLiokKUYrIiM+Ri5GLiokKUYrIiM5Ri5GLiokKUYrIiM3Ri5GLiokKUYrIiM2Ri5GLiokKUYrIiM1Ri5GLiokKUYrIiIpRi5GLiokKUYrIiIkRi5GLkYuRi5GKyIiIw== LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsam4qJClJInhHNiIiI2YiIiJGLiokKUYrIiNlRi5GLiokKUYrIiNiRi5GLiokKUYrIiNhRi5GLiokKUYrIiNgRi5GLiokKUYrIiNfRi5GLiokKUYrIiNdRi5GLiokKUYrIiNcRi5GLiokKUYrIiNbRi5GLiokKUYrIiNaRi5GLiokKUYrIiNYRi5GLiokKUYrIiNXRi5GLiokKUYrIiNWRi5GLiokKUYrIiNQRi5GLiokKUYrIiNORi5GLiokKUYrIiNKRi5GLiokKUYrIiNJRi5GLiokKUYrIiNIRi5GLiokKUYrIiNHRi5GLiokKUYrIiNERi5GLiokKUYrIiNBRi5GLiokKUYrIiNARi5GLiokKUYrIiM/Ri5GLiokKUYrIiM6Ri5GLiokKUYrIiM5Ri5GLiokKUYrIiIoRi5GLiokKUYrIiInRi5GLiokKUYrIiIlRi5GLiokKUYrIiIkRi5GLiokRitGLkYuRi5GLkYrIiIj LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsam4qJClJInhHNiIiI2kiIiJGLiokKUYrIiNnRi5GLiokKUYrIiNlRi5GLiokKUYrIiNkRi5GLiokKUYrIiNiRi5GLiokKUYrIiNhRi5GLiokKUYrIiNfRi5GLiokKUYrIiNeRi5GLiokKUYrIiNdRi5GLiokKUYrIiNcRi5GLiokKUYrIiNbRi5GLiokKUYrIiNaRi5GLiokKUYrIiNZRi5GLiokKUYrIiNWRi5GLiokKUYrIiNVRi5GLiokKUYrIiNURi5GLiokKUYrIiNTRi5GLiokKUYrIiNSRi5GLiokKUYrIiNNRi5GLiokKUYrIiNMRi5GLiokKUYrIiNLRi5GLiokKUYrIiNIRi5GLiokKUYrIiM/Ri5GLiokKUYrIiM+Ri5GLiokKUYrIiM7Ri5GLiokKUYrIiM6Ri5GLiokKUYrIiM5Ri5GLiokKUYrIiM3Ri5GLiokKUYrIiIoRi5GLiokKUYrIiInRi5GLkYuRi5GKyIiIw== LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsYm8qJClJInhHNiIiI2ciIiJGLiokKUYrIiNmRi5GLiokKUYrIiNlRi5GLiokKUYrIiNfRi5GLiokKUYrIiNeRi5GLiokKUYrIiNdRi5GLiokKUYrIiNcRi5GLiokKUYrIiNZRi5GLiokKUYrIiNYRi5GLiokKUYrIiNXRi5GLiokKUYrIiNWRi5GLiokKUYrIiNTRi5GLiokKUYrIiNRRi5GLiokKUYrIiNQRi5GLiokKUYrIiNNRi5GLiokKUYrIiNMRi5GLiokKUYrIiNKRi5GLiokKUYrIiNHRi5GLiokKUYrIiNGRi5GLiokKUYrIiNERi5GLiokKUYrIiNDRi5GLiokKUYrIiNCRi5GLiokKUYrIiM/Ri5GLiokKUYrIiM9Ri5GLiokKUYrIiM7Ri5GLiokKUYrIiM6Ri5GLiokKUYrIiM4Ri5GLiokKUYrIiM1Ri5GLiokKUYrIiIqRi5GLiokKUYrIiIpRi5GLiokKUYrIiIoRi5GLiokKUYrIiInRi5GLiokKUYrIiIkRi5GLiokKUYrIiIjRi5GLiokRitGLkYuRitGW3I= LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsVCokKUkieEc2IiIjYiIiIkYuKiQpRisiI2FGLkYuKiQpRisiI2BGLkYuKiQpRisiI19GLkYuKiQpRisiI11GLkYuKiQpRisiI1tGLkYuKiQpRisiI1lGLkYuKiQpRisiI1RGLkYuKiQpRisiI1FGLkYuKiQpRisiI1BGLkYuKiQpRisiI0dGLkYuKiQpRisiI0VGLkYuKiQpRisiI0RGLkYuKiQpRisiI0NGLkYuKiQpRisiIzxGLkYuKiQpRisiIztGLkYuKiQpRisiIzpGLkYuKiQpRisiIzlGLkYuKiQpRisiIzhGLkYuKiQpRisiIzdGLkYuKiQpRisiIzZGLkYuKiQpRisiIilGLkYuKiQpRisiIihGLkYuKiQpRisiIiVGLkYuRi5GLkYrIiIj CRCcodeweigth:=proc(k::posint,crcpoly::modp1) local i,l,L,m,s,w; m:=modp1(Degree(crcpoly),2); w:=k+m; for i to 2^k-1 do L:=convert(i,base,2); [0$'i'=1..m,op(L)]; modp1(ConvertIn(%,x),2); modp1(Multiply(%,crcpoly),2); L:=modp1(ConvertOut(%),2); s:=convert(%,`+`); if s<w then w:=s fi; od; w; end; Zio2JCdJImtHNiJJJ3Bvc2ludEclKnByb3RlY3RlZEcnSShjcmNwb2x5R0YmSSZtb2RwMUdGKDYoSSJpR0YmSSJsR0YmSSJMR0YmSSJtR0YmSSJzR0YmSSJ3R0YmRiZGJkMmPkYwLUYrNiQtSSdEZWdyZWVHRiY2I0YqIiIjPkYyLCZGJSIiIkYwRj0/KEYtRj1GPSwmKUY6RiVGPUY9ISIiSSV0cnVlR0YoQyk+Ri8tSShjb252ZXJ0R0YoNiVGLUklYmFzZUdGJkY6NyQtSSIkR0YoNiQiIiEvLkYtO0Y9RjAtSSNvcEdGKDYjRi8tRis2JC1JKkNvbnZlcnRJbkc2JEYoSShfc3lzbGliR0YmNiRJIiVHRiZJInhHRiZGOi1GKzYkLUkpTXVsdGlwbHlHRiY2JEZlbkYqRjo+Ri8tRis2JC1JK0NvbnZlcnRPdXRHRlg2I0ZlbkY6PkYxLUZGNiRGZW5JIitHRihAJDJGMUYyPkYyRjFGMkYmRiZGJg== CRCcodeweigth(4,CRC32); IiM6 CRCcodeweigth(8,CRC32); IiM6 CRCcodeweigth(12,CRC32); IiM3 CRCcodeweigth(16,CRC32); IiM2 CRCcodeweigth(20,CRC32); IiM2 CRCcodeweigth(4,CRC64ISO); IiIm CRCcodeweigth(8,CRC64ISO); IiIm CRCcodeweigth(12,CRC64ISO); IiIm CRCcodeweigth(16,CRC64ISO); IiIm CRCcodeweigth(20,CRC64ISO); IiIm
<Text-field style="Heading 3" layout="Heading 3">*9.3.23. A n<Font encoding="UTF-8">\303\251</Font>gy Golay-k<Font encoding="UTF-8">\303\263d.</Font></Text-field> Golay2:=modp1(ConvertIn(x^11+x^10+x^6+x^5+x^4+x^2+1,x),2); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsMCokKUkieEc2IiIjNiIiIkYuKiQpRisiIzVGLkYuKiQpRisiIidGLkYuKiQpRisiIiZGLkYuKiQpRisiIiVGLkYuKiQpRisiIiNGLkYuRi5GLkYrRj0= codedistribution:=proc(p::posint,k::posint,genpoly::modp1,y) local i,j,L,m,s,S; m:=modp1(Degree(genpoly),p); S:=0; for i to p^k-1 do L:=convert(i,base,p); modp1(ConvertIn(%,x),p); modp1(Multiply(%,genpoly),p); L:=modp1(ConvertOut(%),p); [0$j=1..k+m-nops(L),op(L)]; s:=map(j->y[j],%); s:=convert(%,`*`); S:=S+s; od; S; end; Zio2JidJInBHNiJJJ3Bvc2ludEclKnByb3RlY3RlZEcnSSJrR0YmRicnSShnZW5wb2x5R0YoSSZtb2RwMUdGKEkieUdGJjYoSSJpR0YmSSJqR0YmSSJMR0YmSSJtR0YmSSJzR0YmSSJTR0YmRiZGJkMmPkYzLUYtNiQtSSdEZWdyZWVHNiRGKEkoX3N5c2xpYkdGJjYjRixGJT5GNSIiIT8oRjAiIiJGQiwmKUYlRipGQkZCISIiSSV0cnVlR0YoQyo+RjItSShjb252ZXJ0R0YoNiVGMEklYmFzZUdGJkYlLUYtNiQtSSpDb252ZXJ0SW5HRjw2JEkiJUdGJkkieEdGJkYlLUYtNiQtSSlNdWx0aXBseUdGPDYkRlJGLEYlPkYyLUYtNiQtSStDb252ZXJ0T3V0R0Y8NiNGUkYlNyQtSSIkR0YoNiRGQC9GMTtGQiwoRipGQkYzRkItSSVub3BzR0YoNiNGMkZFLUkjb3BHRihGYm8+RjQtSSRtYXBHRig2JGYqNiNGMUYmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmJkYuRmpvRiZGJjYkRi45J0ZSPkY0LUZKNiRGUkkiKkdGKD5GNSwmRjVGQkY0RkJGNUYmRiZGJg== codedistribution(2,12,Golay2,`y`); LDAqKCIkYCMiIiIpJkkieUc2IjYjIiIhIiM7RiUpJkYoNiNGJSIiKEYlRiUqKCIkMSZGJSlGJyIjOkYlKUYuIiIpRiVGJSooIiUpRyJGJSlGJyIjNkYlKUYuIiM3RiVGJSooRjhGJSlGJ0Y8RiUpRi5GOkYlRiUqKEYyRiUpRidGNkYlKUYuRjRGJUYlKihGJEYlKUYnRjBGJSlGLkYsRiVGJSokKUYuIiNCRiVGJQ== alias(alpha=RootOf(x^5+2*x+1)); SSZhbHBoYUc2Ig== beta:=Expand(alpha^22) mod 3; LCoqJiIiIyIiIilJJmFscGhhRzYiIiIkRiVGJSomRiRGJSlGJ0YkRiVGJUYnRiVGJUYl p:=Expand((x-beta)*(x-beta^3)*(x-beta^4)*(x-beta^5)*(x-beta^9)) mod 3; LCwqJClJInhHNiIiIiYiIiJGKComIiIjRigpRiUiIiRGKEYoKiQpRiUiIiVGKEYoRipGKCokKUYlRipGKEYo Golay3:=modp1(ConvertIn(p,x),3); LSUmbW9kcDFHNiQtJSpDb252ZXJ0SW5HNiQsLCokKUkieEc2IiIiJiIiIkYuKiQpRisiIiVGLkYuKiYiIiNGLilGKyIiJEYuRi4qJClGK0YzRi5GLkYzRi5GK0Y1 codedistribution(3,6,Golay3,`y`); LEQqKiIjYiIiIikmSSJ5RzYiNiMiIiEiIidGJSkmRig2IyIiI0YwRiUpJkYoNiNGJSIiJEYlRiUqKkYkRiVGJkYlKUYyRjBGJSlGLkY0RiVGJSoqIiQ1IkYlKUYnIiImRiVGMUYlRjdGJUYlKigiIzZGJUY6RiUpRjJGLEYlRiUqKkY5RiUpRidGNEYlRjFGJSlGLkY7RiVGJSooRj1GJUYmRiUpRjJGO0YlRiUqKEY9RiVGOkYlKUYuRixGJUYlKihGPUYlRiZGJUZBRiVGJSoqRjlGJUZARiVGN0YlRkNGJUYlKipGJEYlRkBGJUY+RiVGLUYlRiUqKkYkRiUpRidGMEYlRj5GJUY3RiVGJSoqRiRGJUZARiVGRUYlRjZGJUYlKipGJEYlRkpGJUZFRiVGMUYlRiUqKEY9RiVGPkYlRkFGJUYlKihGPUYlRkNGJUZFRiVGJSokKUYyRj1GJUYlKiQpRi5GPUYlRiU= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3">9.3.24. Vandermonde-determin<Font encoding="UTF-8">\303\241</Font>ns.</Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.25. Reed-Solomon-k\303\263dok.</Font></Text-field> with(PolynomialTools); NzNJMENvZWZmaWNpZW50TGlzdEc2IkkyQ29lZmZpY2llbnRWZWN0b3JHRiRJLUdjZEZyZWVCYXNpc0dGJEk/R3JlYXRlc3RGYWN0b3JpYWxGYWN0b3JpemF0aW9uR0YkSShIdXJ3aXR6R0YkSTFJc1NlbGZSZWNpcHJvY2FsR0YkSTJNaW5pbWFsUG9seW5vbWlhbEdGJEkwUERFVG9Qb2x5bm9taWFsR0YkSTBQb2x5bm9taWFsVG9QREVHRiRJMFNoaWZ0RXF1aXZhbGVudEdGJEk3U2hpZnRsZXNzRGVjb21wb3NpdGlvbkdGJEkoU2hvcnRlbkdGJEkoU2hvcnRlckdGJEklU29ydEdGJEkmU3BsaXRHRiRJJ1NwbGl0c0dGJEkqVHJhbnNsYXRlR0Yk lgn:=8; n:=2^lgn-1; M:=Nextprime(Z^lgn,Z) mod 2; alpha:=Z+1; IiIp IiRiIw== LCwqJClJIlpHNiIiIikiIiJGKCokKUYlIiIlRihGKCokKUYlIiIkRihGKEYlRihGKEYo LCZJIlpHNiIiIiJGJUYl ordermodM:=proc(M,Z,lgn,alpha) local i,beta; beta:=1; for i to 2^lgn-1 do beta:=modpol(beta*alpha,M,Z,2); if beta=1 then return i fi; od; FAIL end; ordermodM(M,Z,lgn,alpha); Zio2JkkiTUc2IkkiWkdGJUkkbGduR0YlSSZhbHBoYUdGJTYkSSJpR0YlSSViZXRhR0YlRiVGJUMlPkYrIiIiPyhGKkYuRi4sJikiIiNGJ0YuRi4hIiJJJXRydWVHJSpwcm90ZWN0ZWRHQyQ+RistSSdtb2Rwb2xHRiU2JiomRitGLkYoRi5GJEYmRjJAJC9GK0YuT0YqSSVGQUlMR0Y1RiVGJUYl IiRiIw== m:=16; g:=mul((z-alpha^i),i=1..m); IiM7 KkIsKEkiekc2IiIiIkkiWkdGJSEiIkYmRihGJiwmRiRGJiokKSwmRidGJkYmRiYiIiNGJkYoRiYsJkYkRiYqJClGLCIiJEYmRihGJiwmRiRGJiokKUYsIiIlRiZGKEYmLCZGJEYmKiQpRiwiIiZGJkYoRiYsJkYkRiYqJClGLCIiJ0YmRihGJiwmRiRGJiokKUYsIiIoRiZGKEYmLCZGJEYmKiQpRiwiIilGJkYoRiYsJkYkRiYqJClGLCIiKkYmRihGJiwmRiRGJiokKUYsIiM1RiZGKEYmLCZGJEYmKiQpRiwiIzZGJkYoRiYsJkYkRiYqJClGLCIjN0YmRihGJiwmRiRGJiokKUYsIiM4RiZGKEYmLCZGJEYmKiQpRiwiIzlGJkYoRiYsJkYkRiYqJClGLCIjOkYmRihGJiwmRiRGJiokKUYsIiM7RiZGKEYm normalizepolyzZ:=proc(p,M) local i; CoefficientList(expand(p) mod 2,z); map(x->modpol(x,M,Z,2),%); add(%[i]*z^(i-1),i=1..nops(%)); sort(%); end; Zio2JEkicEc2IkkiTUdGJTYjSSJpR0YlRiVGJUMmLV9JMFBvbHlub21pYWxUb29sc0c2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJUkwQ29lZmZpY2llbnRMaXN0R0YlNiQtSSRtb2RHRiU2JC1JJ2V4cGFuZEdGLjYjRiQiIiNJInpHRiUtSSRtYXBHRi42JGYqNiNJInhHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJS1JJ21vZHBvbEdGLTYmRj9GJkkiWkdGJUY4RiVGJTYkRiY5JUkiJUdGJS1JJGFkZEdGLjYkKiYmRklGJyIiIilGOSwmRihGT0ZPISIiRk8vRig7Rk8tSSVub3BzR0YuNiNGSS1JJXNvcnRHRi5GV0YlRiVGJQ== g:=normalizepolyzZ(g,M); LEwqJClJInpHNiIiIzsiIiJGKComLCoqJClJIlpHRiYiIidGKEYoKiQpRi0iIiZGKEYoKiQpRi0iIiVGKEYoRihGKEYoKUYlIiM6RihGKComLCpGL0YoKiQpRi0iIiNGKEYoRi1GKEYoRihGKClGJSIjOUYoRigqJiwoRitGKEYvRihGKEYoRigpRiUiIzhGKEYoKiYsKEYyRigqJClGLSIiJEYoRihGKEYoRigpRiUiIzdGKEYoKiYsKkYrRihGL0YoRkRGKEYoRihGKClGJSIjNkYoRigqJilGJSIiKEYoRjNGKEYoKiYsLkYrRihGL0YoRjJGKEZERihGOUYoRi1GKEYoKUYlIiM1RihGKComLCgqJClGLUZPRihGKEYrRihGMkYoRigpRiUiIipGKEYoKiYsKkZWRihGMkYoRjlGKEYtRihGKClGJSIiKUYoRigqJiwqRi9GKEZERihGOUYoRihGKEYoKUYlRi5GKEYoRitGKComLCxGVkYoRitGKEYyRihGREYoRi1GKEYoKUYlRjFGKEYoKiYsKEYvRihGLUYoRihGKEYoKUYlRjRGKEYoRjJGKComLCpGK0YoRi9GKEYtRihGKEYoRigpRiVGRkYoRihGREYoKiYsKEYrRihGOUYoRihGKEYoKUYlRjtGKEYoRjlGKComLCpGL0YoRjJGKEZERihGKEYoRihGJUYoRihGKEYo rnd:=rand(2^lgn): k:=n-m; mv:=Vector(k); for i to k do mv[i]:=rnd(i) od: mv[1]; mv:=map(x->convert(x,base,2),mv): mv[1]; i:='i': mv:=map(x->sum(x[i]*Z^(i-1),i=1..nops(x)),mv): mv[1]; IiRSIw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjbXZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSVmb3JtR1EmaW5maXhGJy8lJ2xzcGFjZUdRL3RoaWNrbWF0aHNwYWNlRicvJSdyc3BhY2VHRk8vJShtaW5zaXplR1EiMUYnLyUobWF4c2l6ZUdRKWluZmluaXR5RictSShtYWN0aW9uR0YkNiQtSShtZmVuY2VkR0YkNiUtSSdtdGFibGVHRiQ2Ji1JJG10ckdGJDYjLUkkbXRkR0YkNiMtRiM2JC1GLDYlUSt+MX4uLn4yMzl+RidGL0YyLUklbXN1YkdGJDYlLUYsNiVRJ1ZlY3RvckYnRi9GMi1GIzYjLUYsNiVRJ2NvbHVtbkYnRi9GMi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZcbzYjLUZfbzYjLUYjNiQtRiw2JVEsRGF0YX5UeXBlOn5GJ0YvRjItRiw2JVEpYW55dGhpbmdGJ0YvRjItRlxvNiMtRl9vNiMtRiM2JC1GLDYlUSpTdG9yYWdlOn5GJ0YvRjItRiw2JVEscmVjdGFuZ3VsYXJGJ0YvRjItRlxvNiMtRl9vNiMtRiM2JC1GLDYlUShPcmRlcjp+RidGL0YyLUYsNiVRLkZvcnRyYW5fb3JkZXJGJ0YvRjIvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvJSthY3Rpb250eXBlR1EtYnJvd3NlcnRhYmxlRic= IiREIw== NyoiIiIiIiFGJEYkRiRGI0YjRiM= LCoiIiJGIyokKUkiWkc2IiIiJkYjRiMqJClGJiIiJ0YjRiMqJClGJiIiKEYjRiM= c:=add(mv[i]*z^(i-1),i=1..k)*g; KiYsYGlsIiIiRiQqJiwoKiQpSSJaRzYiIiIjRiRGJCokKUYpIiImRiRGJCokKUYpIiIoRiRGJEYkKUkiekdGKiIkJz1GJEYkKiYsLEYkRiRGKUYkRidGJCokKUYpIiIlRiRGJCokKUYpIiInRiRGJEYkKUYzIiQoPUYkRiQqJiwqRjdGJEYsRiRGOkYkRi9GJEYkKUYzIiQpPUYkRiQqJiwqRiRGJEY3RiRGLEYkRi9GJEYkKUYzIiQqPUYkRiQqJiwoKiQpRikiIiRGJEYkRixGJEY6RiRGJClGMyIkIT5GJEYkKiYsJkYnRiRGLEYkRiQpRjMiJCI+RiRGJComLCxGL0YkRjpGJEZJRiRGKUYkRiRGJEYkKUYzIiQjPkYkRiQqJiwsRjpGJEY3RiRGSUYkRidGJEYpRiRGJClGMyIkJD5GJEYkKiYsKkYkRiRGKUYkRidGJEYvRiRGJClGMyIkJT5GJEYkKiYsLEYkRiRGKUYkRklGJEY3RiRGOkYkRiQpRjMiJCY+RiRGJComLC5GJ0YkRklGJEY3RiRGLEYkRjpGJEYvRiRGJClGMyIkJz5GJEYkKiYsLkYkRiRGL0YkRjpGJEY3RiRGSUYkRilGJEYkKUYzIiQoPkYkRiQqJiwmRiRGJEYvRiRGJClGMyIkKT5GJEYkKiYsLEYvRiRGLEYkRjdGJEYpRiRGJEYkRiQpRjMiIyUqRiRGJComLCpGLEYkRjdGJEZJRiRGJEYkRiQpRjMiIycqRiRGJComLCZGKUYkRjpGJEYkKUYzIiMoKkYkRiQqJiwsRiRGJEY3RiRGLEYkRjpGJEYvRiRGJClGMyIjKSpGJEYkKiYsKkZJRiRGN0YkRixGJEY6RiRGJClGMyIjKipGJEYkKiYsKEYvRiRGOkYkRjdGJEYkKUYzIiQrIkYkRiQqJkY7RiQpRjMiJCwiRiRGJComLChGJ0YkRjpGJEYvRiRGJClGMyIkLSJGJEYkKiZGZW9GJClGMyIkLiJGJEYkKiYsKEYsRiRGKUYkRiRGJEYkKUYzIiQvIkYkRiQqJiwsRidGJEZJRiRGN0YkRixGJEYvRiRGJClGMyIkMCJGJEYkKiYsKkYkRiRGKUYkRjdGJEY6RiRGJClGMyIkMSJGJEYkKiYsMEYkRiRGKUYkRidGJEZJRiRGN0YkRjpGJEYvRiRGJClGMyIkMiJGJEYkKiYsMEYkRiRGOkYkRixGJEY3RiRGSUYkRidGJEYpRiRGJClGMyIjJipGJEYkKiZGJkYkKUYzIiNyRiRGJComLC5GJEYkRilGJEYnRiRGSUYkRixGJEY6RiRGJClGMyIjc0YkRiQqJiwoRilGJEZJRiRGOkYkRiQpRjMiI3RGJEYkKiYsJkYpRiRGJEYkRiQpRjMiI3VGJEYkKiYsLEYvRiRGOkYkRjdGJEZJRiRGKUYkRiQpRjMiI3ZGJEYkKiYsKkYkRiRGL0YkRjdGJEYnRiRGJClGMyIjd0YkRiQqJiwqRixGJEYnRiRGKUYkRiRGJEYkKUYzIiN4RiRGJComRl1wRiQpRjMiI3lGJEYkKiYsLEYnRiRGSUYkRjdGJEY6RiRGL0YkRiQpRjMiI3pGJEYkKiYsKkYkRiRGLEYkRjpGJEYvRiRGJClGMyIjISlGJEYkKiYsKkYpRiRGSUYkRixGJEY6RiRGJClGMyIjIilGJEYkKiYsJkYpRiRGSUYkRiQpRjMiIyMpRiRGJComLCpGN0YkRklGJEYnRiRGJEYkRiQpRjMiIyQpRiRGJComLChGJEYkRidGJEYvRiRGJClGMyIjJSlGJEYkKiYsLEYkRiRGKUYkRidGJEZJRiRGN0YkRiQpRjMiIyYpRiRGJComRmZ0RiQpRjMiIycpRiRGJComLCxGJEYkRjpGJEYsRiRGN0YkRilGJEYkKUYzIiMoKUYkRiQqJiwsRiRGJEYvRiRGN0YkRidGJEYpRiRGJClGMyIjKSlGJEYkKiYsLEYkRiRGKUYkRidGJEZJRiRGOkYkRiQpRjMiIyopRiRGJComLC5GJEYkRjpGJEY3RiRGSUYkRidGJEYpRiRGJClGMyIjISpGJEYkKiZGaXVGJClGMyIjIipGJEYkKiYsKEYpRiRGJ0YkRjdGJEYkKUYzIiMjKkYkRiQqJiwoRklGJEYsRiRGL0YkRiQpRjMiIyQqRiRGJComLCZGLEYkRjpGJEYkKUYzIiQqPkYkRiQqJiwqRiRGJEYpRiRGSUYkRixGJEYkKUYzIiQrI0YkRiQqJkZKRiQpRjMiJCwjRiRGJComRl12RiQpRjMiJC0jRiRGJComLCpGL0YkRklGJEYnRiRGJEYkRiQpRjMiJC4jRiRGJComLCpGOkYkRixGJEZJRiRGJ0YkRiQpRjMiJC8jRiRGJComLCpGKUYkRidGJEZJRiRGOkYkRiQpRjMiJDAjRiRGJComLC5GKUYkRidGJEY3RiRGLEYkRjpGJEYvRiRGJClGMyIkMSNGJEYkKiZGQEYkKUYzIiQyI0YkRiQqJiwmRklGJEY6RiRGJClGMyIkMyNGJEYkKiYsJkYnRiRGN0YkRiQpRjMiJDQjRiRGJComLCpGOkYkRklGJEYnRiRGJEYkRiQpRjMiJDUjRiRGJComLCZGN0YkRixGJEYkKUYzIiQ2I0YkRiQqJiwwRiRGJEYvRiRGOkYkRixGJEY3RiRGSUYkRilGJEYkKUYzIiQ3I0YkRiQqJkZddUYkKUYzIiQ4I0YkRiQqJkZcd0YkKUYzIiQ5I0YkRiQqJiwoRilGJEYnRiRGSUYkRiQpRjMiJDojRiRGJComLCxGJEYkRixGJEY3RiRGJ0YkRilGJEYkKUYzIiQ7I0YkRiQqJiwmRidGJEY6RiRGJClGMyIkPCNGJEYkKiYsJkY3RiRGL0YkRiQpRjMiJD0jRiRGJComLChGL0YkRjdGJEYnRiRGJClGMyIkPiNGJEYkKiYsKEYkRiRGSUYkRixGJEYkKUYzIiQ/I0YkRiQqJkZiXWxGJClGMyIkQCNGJEYkKiYsKEYnRiRGLEYkRjpGJEYkKUYzIiRBI0YkRiQqJiwsRiRGJEY3RiRGSUYkRidGJEY6RiRGJClGMyIkXSJGJEYkKiZGaW9GJClGMyIkXiJGJEYkKiYsKkYkRiRGKUYkRidGJEZJRiRGJClGMyIkXyJGJEYkKiYsKkYnRiRGSUYkRjdGJEYvRiRGJClGMyIkYCJGJEYkKiYsKEYpRiRGN0YkRixGJEYkKUYzIiRhIkYkRiQqJiwmRilGJEYvRiRGJClGMyIkYiJGJEYkKiYsKkYvRiRGOkYkRixGJEZJRiRGJClGMyIkYyJGJEYkKiYsKkYnRiRGSUYkRixGJEYvRiRGJClGMyIkZCJGJEYkKiYsKEYvRiRGOkYkRilGJEYkKUYzIiRlIkYkRiQqJiwsRiRGJEYpRiRGJ0YkRixGJEYvRiRGJClGMyIkZiJGJEYkKiYsKEYpRiRGJ0YkRjpGJEYkKUYzIiRnIkYkRiQqJkZIRiQpRjMiJGgiRiRGJComLChGJEYkRklGJEY6RiRGJClGMyIkaSJGJEYkKiZGZFtsRiQpRjMiJGoiRiRGJComLC5GJEYkRilGJEZJRiRGN0YkRixGJEYvRiRGJClGMyIkayJGJEYkKiZGZHFGJClGMyIkbCJGJEYkKiYsLEZJRiRGN0YkRixGJEY6RiRGL0YkRiQpRjMiJG0iRiRGJComRi1GJClGMyIkbiJGJEYkKiYsLEYkRiRGJ0YkRklGJEY3RiRGL0YkRiQpRjMiJG8iRiRGJComRjBGJClGMyIkcCJGJEYkKiYsKkYpRiRGN0YkRjpGJEYvRiRGJClGMyIkcSJGJEYkKiYsJkZJRiRGL0YkRiQpRjMiJHIiRiRGJComRkhGJClGMyIkcyJGJEYkKiYsLkYvRiRGOkYkRixGJEY3RiRGSUYkRilGJEYkKUYzIiR0IkYkRiQqJiwuRiRGJEYpRiRGJ0YkRklGJEY3RiRGLEYkRiQpRjMiJHUiRiRGJComLChGKUYkRklGJEYsRiRGJClGMyIkdiJGJEYkKiYsKkZJRiRGN0YkRixGJEYvRiRGJClGMyIkdyJGJEYkKiZGaW9GJClGMyIkeCJGJEYkKiYsLkYvRiRGLEYkRjdGJEZJRiRGJ0YkRiRGJEYkKUYzIiR5IkYkRiQqJiwsRiRGJEYnRiRGSUYkRixGJEYvRiRGJClGMyIkeiJGJEYkKiYsLkY6RiRGLEYkRjdGJEZJRiRGJ0YkRilGJEYkKUYzIiQhPUYkRiQqJkZpeUYkKUYzIiQiPUYkRiQqJkZTRiQpRjMiJCM9RiRGJComRkpGJClGMyIkJD1GJEYkKiZGZXBGJClGMyIkJT1GJEYkKiYsKkYnRiRGN0YkRixGJEYvRiRGJClGMyIkJj1GJEYkKiZGKEYkKUYzIiRCI0YkRiQqJiwsRiRGJEZJRiRGN0YkRixGJEYvRiRGJClGMyIkQyNGJEYkKiZGKUYkKUYzIiREI0YkRiQqJiwqRiRGJEYnRiRGN0YkRjpGJEYkKUYzIiRFI0YkRiQqJiwuRiRGJEYnRiRGN0YkRixGJEY6RiRGL0YkRiQpRjMiJEYjRiRGJComLCxGKUYkRidGJEY3RiRGLEYkRi9GJEYkKUYzIiRHI0YkRiQqJiwoRixGJEY6RiRGL0YkRiQpRjMiJEgjRiRGJComRmpzRiQpRjMiJEkjRiRGJComRmluRiQpRjMiJEojRiRGJComLCpGLEYkRklGJEYnRiRGJEYkRiQpRjMiJEsjRiRGJComRmVwRiQpRjMiJEwjRiRGJComLC5GJEYkRilGJEYnRiRGN0YkRjpGJEYvRiRGJClGMyIkTSNGJEYkKiYsKEYkRiRGLEYkRi9GJEYkKUYzIiROI0YkRiQqJkZlcEYkKUYzIiRPI0YkRiQqJiwqRiRGJEYvRiRGOkYkRilGJEYkKUYzIiRQI0YkRiQqJkZkW2xGJClGMyIkUSNGJEYkRixGJComLC5GJEYkRidGJEZJRiRGN0YkRjpGJEYvRiRGJClGMyIkMyJGJEYkRjpGJComLCxGKUYkRidGJEZJRiRGN0YkRi9GJEYkKUYzIiQ0IkYkRiQqJkZdcUYkKUYzIiQ1IkYkRiQqJiwqRilGJEYnRiRGSUYkRjdGJEYkKUYzIiQ2IkYkRiQqJiwqRiRGJEYnRiRGN0YkRixGJEYkKUYzIiQ3IkYkRiQqJkZhcEYkKUYzIiQ4IkYkRiQqJkZARiQpRjMiJDkiRiRGJComLCxGKUYkRklGJEY3RiRGLEYkRi9GJEYkKUYzIiQ6IkYkRiQqJiwsRilGJEYnRiRGLEYkRjpGJEYvRiRGJClGMyIkOyJGJEYkKiYsJkYkRiRGOkYkRiQpRjMiJDwiRiRGJComLCpGJEYkRilGJEZJRiRGL0YkRiQpRjMiJD0iRiRGJComLChGN0YkRixGJEYvRiRGJClGMyIkPiJGJEYkKiZGXV5sRiQpRjMiJD8iRiRGJComLCpGJEYkRklGJEY3RiRGOkYkRiQpRjMiJEAiRiRGJComLCZGKUYkRixGJEYkKUYzIiRBIkYkRiQqJkZiXGxGJClGMyIkQiJGJEYkKiYsKkYkRiRGSUYkRjdGJEYvRiRGJClGMyIkQyJGJEYkKiYsKkY6RiRGLEYkRilGJEYkRiRGJClGMyIkRCJGJEYkKiYsLEYkRiRGJ0YkRjdGJEYsRiRGOkYkRiQpRjMiJEUiRiRGJComRmB3RiQpRjMiJEYiRiRGJComRmVuRiQpRjMiJEciRiRGJComLC5GKUYkRidGJEZJRiRGN0YkRixGJEYvRiRGJClGMyIkSCJGJEYkKiZGYFtsRiQpRjMiJEkiRiRGJComLCpGL0YkRjdGJEYnRiRGKUYkRiQpRjMiJEoiRiRGJComRmh6RiQpRjMiJEwiRiRGJComRmJ0RiQpRjMiJE0iRiRGJComLC5GJEYkRidGJEZJRiRGLEYkRjpGJEYvRiRGJClGMyIkSyJGJEYkKiYsKkYkRiRGKUYkRidGJEY6RiRGJEYzRiRGJComRlx3RiQpRjNGK0YkRiQqJiwuRilGJEYnRiRGSUYkRixGJEY6RiRGL0YkRiQpRjNGS0YkRiQqJkZlb0YkKUYzRjlGJEYkKiZGaHpGJClGM0YuRiRGJComLChGJ0YkRjdGJEY6RiRGJClGM0Y8RiRGJComLCZGSUYkRixGJEYkKUYzRjFGJEYkKiZGW1xtRiQpRjMiIilGJEYkKiZGanNGJClGMyIiKkYkRiQqJiwsRiRGJEYpRiRGSUYkRixGJEYvRiRGJClGMyIjNUYkRiQqJkZARiQpRjMiJE4iRiRGJComRmF1RiQpRjMiJFAiRiRGJComRkpGJClGMyIkUSJGJEYkKiYsKEYnRiRGN0YkRixGJEYkKUYzIiRSIkYkRiQqJkYpRiQpRjMiJFMiRiRGJComLChGOkYkRixGJEYkRiRGJClGMyIkVCJGJEYkKiZGalxsRiQpRjMiJFUiRiRGJComLCxGJ0YkRklGJEY3RiRGLEYkRjpGJEYkKUYzIiRWIkYkRiQqJkZkX2xGJClGMyIkVyJGJEYkKiZGXGlsRiQpRjMiJFkiRiRGJComRiZGJClGMyIkWiJGJEYkKiZGZmFsRiQpRjMiJFsiRiRGJComLCxGJEYkRjpGJEYsRiRGSUYkRidGJEYkKUYzIiRcIkYkRiQqJiwuRiRGJEYpRiRGJ0YkRklGJEY3RiRGL0YkRiQpRjMiJE8iRiRGJComLCZGJ0YkRklGJEYkKUYzIiM2RiRGJComLChGKUYkRjdGJEYvRiRGJClGMyIjN0YkRiQqJiwmRiRGJEZJRiRGJClGMyIjOEYkRiQqJiwqRilGJEYnRiRGSUYkRi9GJEYkKUYzIiM5RiRGJComLDBGJEYkRilGJEYnRiRGSUYkRjdGJEYsRiRGL0YkRiQpRjMiIzpGJEYkKiZGSkYkKUYzIiM7RiRGJComLC5GJEYkRklGJEY3RiRGLEYkRjpGJEYvRiRGJClGMyIjPEYkRiQqJiwoRiRGJEYpRiRGSUYkRiQpRjMiIz1GJEYkKiZGXW9GJClGMyIjPkYkRiQqJiwsRilGJEZJRiRGLEYkRjpGJEYvRiRGJClGMyIjP0YkRiQqJiwqRiRGJEYpRiRGN0YkRixGJEYkKUYzIiNARiRGJComLDJGJEYkRilGJEYnRiRGSUYkRjdGJEYsRiRGOkYkRi9GJEYkKUYzIiNBRiRGJComLChGSUYkRjdGJEYvRiRGJClGMyIjQkYkRiQqJkZhekYkKUYzIiNDRiRGJComRkhGJClGMyIjRUYkRiQqJiwoRjdGJEYsRiRGOkYkRiQpRjMiI0ZGJEYkKiZGXl1tRiQpRjMiI0dGJEYkKiYsJkYkRiRGN0YkRiQpRjMiI0hGJEYkKiYsKkYpRiRGSUYkRixGJEYvRiRGJClGMyIjSUYkRiQqJkZcd0YkKUYzIiNKRiRGJComRmdnbEYkKUYzIiNLRiRGJComRml5RiQpRjMiI0xGJEYkKiZGZnRGJClGMyIjTUYkRiQqJkY4RiQpRjMiI05GJEYkKiYsKkYkRiRGJ0YkRjpGJEYvRiRGJClGMyIjT0YkRiQqJkZgZ21GJClGMyIjUEYkRiQqJiwmRjdGJEY6RiRGJClGMyIjUUYkRiQqJiwsRilGJEYnRiRGN0YkRjpGJEYvRiRGJClGMyIjUkYkRiQqJkZgaWxGJClGMyIjU0YkRiQqJkZdYmxGJClGMyIjVEYkRiQqJiwqRidGJEY3RiRGOkYkRi9GJEYkKUYzIiNVRiRGJComRl9jbEYkKUYzIiNWRiRGJComRkhGJClGMyIjV0YkRiQqJkZnaWxGJClGMyIjWEYkRiQqJiwoRilGJEY3RiRGOkYkRiQpRjMiI1lGJEYkKiZGYmNtRiQpRjMiI1pGJEYkKiZGYGBtRiQpRjMiI0RGJEYkKiZGaHpGJClGMyIkWCJGJEYkRi9GJComRltfbUYkKUYzIiNbRiRGJComRmBqbUYkKUYzIiNdRiRGJComRltyRiQpRjMiI15GJEYkKiYsKkYkRiRGKUYkRixGJEYvRiRGJClGMyIjX0YkRiQqJkZiZW1GJClGMyIjYEYkRiQqJkZmdEYkKUYzIiNhRiRGJComRl9cbUYkKUYzIiNiRiRGJComLCpGKUYkRidGJEY3RiRGOkYkRiQpRjMiI2NGJEYkKiYsLEYkRiRGKUYkRidGJEZJRiRGL0YkRiQpRjMiI2RGJEYkKiZGW2NtRiQpRjMiI2VGJEYkKiZGXWltRiQpRjMiI2ZGJEYkKiZGZGJtRiQpRjMiI2dGJEYkKiYsKkYnRiRGSUYkRjdGJEYsRiRGJClGMyIjaEYkRiQqJiwqRilGJEYnRiRGSUYkRixGJEYkKUYzIiNpRiRGJComLCpGJEYkRilGJEZJRiRGN0YkRiQpRjMiI2pGJEYkKiYsKkYpRiRGSUYkRjpGJEYvRiRGJClGMyIja0YkRiQqJkYpRiQpRjMiI2xGJEYkKiYsJkYnRiRGL0YkRiQpRjMiI21GJEYkKiZGYmRtRiQpRjMiI25GJEYkKiZGW1xtRiQpRjMiI29GJEYkKiZGZXVGJClGMyIjcEYkRiQqJkZpdUYkKUYzIiNxRiRGJComRl1ebUYkKUYzIiNcRiRGJEYkLEwqJEZeZm1GJEYkKiYsKkY6RiRGLEYkRjdGJEYkRiRGJEZbZm1GJEYkKiZGZnRGJEZnZW1GJEYkKiZGW2NtRiRGY2VtRiRGJComLChGN0YkRklGJEYkRiRGJEZfZW1GJEYkKiYsKkY6RiRGLEYkRklGJEYkRiRGJEZbZW1GJEYkKiZGX2FtRiRGOEYkRiQqJkZhZWxGJEZoYW1GJEYkKiZGXXFGJEZkYW1GJEYkKiZGYl9tRiRGYWFtRiRGJComRmVobEYkRlxhbUYkRiRGOkYkKiZGXnRGJEZpYG1GJEYkKiZGW3JGJEZnYG1GJEYkRjdGJComRl1ebUYkRmVgbUYkRiRGSUYkKiYsKEY6RiRGJ0YkRiRGJEYkRmJgbUYkRiRGJ0YkKiZGXXBGJEYzRiRGJEYkRiRGJA== c:=normalizepolyzZ(c,M); LF5bbSomLCYqJClJIlpHNiIiIiYiIiJGKiokKUYnIiIlRipGKkYqKUkiekdGKCIkYSNGKkYqKiZGJEYqKUYvIiRgI0YqRioqJiwoKiQpRiciIidGKkYqKiQpRiciIiRGKkYqRipGKkYqKUYvIiRfI0YqRioqJiwoRjZGKkYlRipGK0YqRiopRi8iJF4jRipGKiomLCZGJUYqRidGKkYqKUYvIiRdI0YqRioqJiwmRjlGKkYnRipGKilGLyIkXCNGKkYqKiYsKiokKUYnIiIoRipGKkYrRioqJClGJyIiI0YqRipGJ0YqRiopRi8iJFsjRipGKiomLC5GTEYqRitGKkY5RipGT0YqRidGKkYqRipGKilGLyIkWiNGKkYqKiYsKEZMRipGK0YqRjlGKkYqKUYvIiRZI0YqRioqJiwwRkxGKkY2RipGJUYqRitGKkY5RipGT0YqRipGKkYqKUYvIiRYI0YqRioqJiwsRjZGKkYlRipGT0YqRidGKkYqRipGKilGLyIkVyNGKkYqKiYsJkY5RipGKkYqRiopRi8iJFYjRipGKiomLChGOUYqRk9GKkYnRipGKilGLyIkVSNGKkYqKiYpRi8iJE8jRipGN0YqRioqJiwmRjZGKkYrRipGKilGLyIkVCNGKkYqKiYsJkYlRipGKkYqRiopRi8iJFMjRipGKiomLCpGNkYqRiVGKkY5RipGKkYqRiopRi8iJFIjRipGKiomLCxGTEYqRiVGKkY5RipGT0YqRidGKkYqKUYvIiRRI0YqRioqJkZicEYqKUYvIiRQI0YqRioqJkZHRiopRi8iJE4jRipGKiomLCpGNkYqRiVGKkZPRipGJ0YqRiopRi8iJE0jRipGKiomLCZGJ0YqRipGKkYqKUYvIiRMI0YqRioqJilGLyIkSyNGKkYnRipGKiomLCpGJUYqRjlGKkYnRipGKkYqRiopRi8iJEojRipGKiomLChGJUYqRidGKkYqRipGKilGLyIkSSNGKkYqKiYpRi8iJEgjRipGJ0YqRioqJiwoRkxGKkY2RipGJUYqRiopRi8iJEcjRipGKiomLCxGTEYqRjZGKkYrRipGOUYqRk9GKkYqKUYvIiRGI0YqRioqJiwoRjlGKkZPRipGKkYqRiopRi8iJEUjRipGKiomLC5GNkYqRiVGKkYrRipGT0YqRidGKkYqRipGKilGLyIkRCNGKkYqKiYsKkY2RipGK0YqRjlGKkYnRipGKilGLyIkQyNGKkYqKiYsJkZPRipGKkYqRiopRi8iJEIjRipGKiomLCZGNkYqRipGKkYqKUYvIiRBI0YqRioqJiwoRkxGKkY5RipGKkYqRiopRi8iJEAjRipGKiomLChGJUYqRitGKkY5RipGKilGLyIkPyNGKkYqKiYsKkYlRipGK0YqRjlGKkZPRipGKilGLyIkPiNGKkYqKiYsKkY2RipGK0YqRk9GKkYqRipGKilGLyIkPSNGKkYqKiYsLEZMRipGNkYqRitGKkY5RipGKkYqRiopRi8iJDwjRipGKiomLCxGNkYqRiVGKkY5RipGJ0YqRipGKkYqKUYvIiQ7I0YqRioqJkY/RiopRi8iJDojRipGKiomLChGTEYqRjZGKkYrRipGKilGLyIkOSNGKkYqKiYsKkZMRipGJUYqRjlGKkZPRipGKilGLyIkOCNGKkYqKiZGYnVGKilGLyIkNyNGKkYqKiYsJkZMRipGKkYqRiopRi8iJDYjRipGKiomLChGJUYqRitGKkYnRipGKilGLyIkNSNGKkYqKiYsLkZMRipGJUYqRjlGKkZPRipGJ0YqRipGKkYqKUYvIiQ0I0YqRioqJkZcd0YqKUYvIiQzI0YqRioqJiwoRiVGKkY5RipGKkYqRiopRi8iJDIjRipGKiomLChGTEYqRitGKkYqRipGKilGLyIkMSNGKkYqKiYsLEZMRipGNkYqRjlGKkZPRipGKkYqRiopRi8iJDAjRipGKiomLDBGTEYqRjZGKkYlRipGK0YqRjlGKkYnRipGKkYqRiopRi8iJC8jRipGKiomLCxGTEYqRiVGKkY5RipGJ0YqRipGKkYqKUYvIiQuI0YqRioqJiwoRkxGKkZPRipGJ0YqRiopRi8iJCwjRipGKiomRl9vRiopRi8iJCsjRipGKiomLChGTEYqRjlGKkYnRipGKilGLyIkKj5GKkYqKiYsKkY2RipGOUYqRk9GKkYqRipGKilGLyIkKT5GKkYqKiYsLEZMRipGNkYqRjlGKkZPRipGJ0YqRiopRi8iJCg+RipGKiomLCpGJUYqRitGKkY5RipGKkYqRiopRi8iJCc+RipGKiomLCxGTEYqRjZGKkYrRipGT0YqRipGKkYqKUYvIiQmPkYqRioqJkZieUYqKUYvIiQlPkYqRioqJiwmRitGKkYqRipGKilGLyIkJD5GKkYqKiZGXnVGKilGLyIkIz5GKkYqKiYsKEZMRipGK0YqRk9GKkYqKUYvIiQiPkYqRioqJiwsRjZGKkYlRipGK0YqRjlGKkZPRipGKilGLyIkIT5GKkYqKiYsLkZMRipGJUYqRitGKkY5RipGJ0YqRipGKkYqKUYvIiQqPUYqRioqJkZeekYqKUYvIiQpPUYqRioqJiwsRjZGKkYlRipGK0YqRjlGKkYqRipGKilGLyIkKD1GKkYqKiZGZnRGKilGLyIkJz1GKkYqKiYsKkZMRipGNkYqRiVGKkYqRipGKilGLyIkJj1GKkYqKiZGX3JGKilGLyIkJT1GKkYqKiYsLkZMRipGNkYqRitGKkY5RipGT0YqRipGKkYqKUYvIiQkPUYqRioqJiwsRkxGKkY2RipGJUYqRjlGKkYqRipGKilGLyIkIz1GKkYqKiZGZHFGKilGLyIkIj1GKkYqKiYsKkYrRipGT0YqRidGKkYqRipGKilGLyIkIT1GKkYqKiZGW3lGKilGLyIkeiJGKkYqKiYsLkZMRipGNkYqRjlGKkZPRipGJ0YqRipGKkYqKUYvIiR5IkYqRioqJiwsRjZGKkYrRipGOUYqRk9GKkYnRipGKilGLyIkeCJGKkYqKiYsKkZMRipGK0YqRjlGKkZPRipGKilGLyIkdyJGKkYqKiYsKEY2RipGJUYqRidGKkYqKUYvIiR2IkYqRioqJkZidEYqKUYvIiR1IkYqRioqJkZbb0YqKUYvIiR0IkYqRioqJiwqRkxGKkY2RipGJUYqRk9GKkYqKUYvIiRzIkYqRioqJiwoRjZGKkYrRipGOUYqRiopRi8iJHIiRipGKiomRiRGKilGLyIkcSJGKkYqKiYsKkZMRipGNkYqRiVGKkY5RipGKilGLyIkcCJGKkYqKiZGaHZGKilGLyIkbyJGKkYqKiYsKkZMRipGJUYqRjlGKkYnRipGKilGLyIkbiJGKkYqKiYsJkY5RipGT0YqRiopRi8iJG0iRipGKiomRmJ0RiopRi8iJGwiRipGKiomRltvRiopRi8iJGsiRipGKiomLCZGTEYqRjlGKkYqKUYvIiRqIkYqRioqJiwqRkxGKkYlRipGK0YqRk9GKkYqKUYvIiRpIkYqRioqJiwsRkxGKkYrRipGOUYqRk9GKkYnRipGKilGLyIkaCJGKkYqKiZGXnpGKilGLyIkZyJGKkYqKiZGY15sRiopRi8iJGYiRipGKiomLCZGTEYqRitGKkYqKUYvIiRlIkYqRioqJkZhdkYqKUYvIiRkIkYqRioqJiwuRkxGKkY2RipGK0YqRjlGKkYnRipGKkYqRiopRi8iJGMiRipGKiomLCpGK0YqRjlGKkYnRipGKkYqRiopRi8iJGIiRipGKiomLChGTEYqRiVGKkY5RipGKilGLyIkYSJGKkYqKiYsKkY2RipGJUYqRjlGKkZPRipGKilGLyIkYCJGKkYqKiYsKkZMRipGNkYqRitGKkYnRipGKilGLyIkXyJGKkYqKiZGWUYqKUYvIiReIkYqRioqJiwsRjZGKkYlRipGK0YqRidGKkYqRipGKilGLyIkXSJGKkYqKiZGW2FsRiopRi8iJFwiRipGKiomLC5GTEYqRjZGKkYlRipGOUYqRidGKkYqRipGKilGLyIkWyJGKkYqKiYsKEY2RipGJUYqRipGKkYqKUYvIiRaIkYqRioqJkZmckYqKUYvIiRZIkYqRioqJiwqRjZGKkYlRipGK0YqRk9GKkYqKUYvIiRYIkYqRioqJkZicEYqKUYvIiRXIkYqRioqJiwuRkxGKkY2RipGJUYqRitGKkZPRipGJ0YqRiopRi8iJFYiRipGKiomRktGKilGLyIkVSJGKkYqKiYsKEYrRipGT0YqRidGKkYqKUYvIiRUIkYqRioqJiwqRjlGKkZPRipGJ0YqRipGKkYqKUYvIiRTIkYqRioqJiwqRiVGKkYrRipGT0YqRipGKkYqKUYvIiRSIkYqRioqJiwqRjZGKkYlRipGK0YqRipGKkYqKUYvIiRRIkYqRioqJiwmRk9GKkYnRipGKilGLyIkUCJGKkYqKiZGZlxsRiopRi8iJE8iRipGKiomLCpGK0YqRjlGKkZPRipGKkYqRiopRi8iJE4iRipGKiomRmF2RiopRi8iJE0iRipGKiomRlt5RiopRi8iJEwiRipGKiomLChGTEYqRiVGKkYqRipGKilGLyIkSyJGKkYqKiZGZ25GKilGLyIkSiJGKkYqKiZGaFtsRiopRi8iJEkiRipGKiomRmJwRiopRi8iJEgiRipGKiomLCpGJUYqRk9GKkYnRipGKkYqRiopRi8iJEciRipGKiomRl9vRiopRi8iJEYiRipGKiomLCxGNkYqRiVGKkYrRipGOUYqRidGKkYqKUYvIiRFIkYqRioqJiwuRjZGKkYlRipGOUYqRk9GKkYnRipGKkYqRiopRi8iJEQiRipGKiomRmp0RiopRi8iJEMiRipGKiomRmB3RiopRi8iJEIiRipGKiomRmhbbEYqKUYvIiRBIkYqRioqJkZfeEYqKUYvIiRAIkYqRioqJkZcaGxGKilGLyIkPyJGKkYqKiZGZmhsRiopRi8iJD4iRipGKiomLCxGTEYqRiVGKkY5RipGT0YqRipGKkYqKUYvIiQ9IkYqRioqJiwqRkxGKkY2RipGK0YqRk9GKkYqKUYvIiQ8IkYqRioqJkZmXGxGKilGLyIkOyJGKkYqKiYsKEYrRipGJ0YqRipGKkYqKUYvIiQ6IkYqRioqJiwqRkxGKkYrRipGOUYqRipGKkYqKUYvIiQ5IkYqRioqJiwmRitGKkZPRipGKilGLyIkOCJGKkYqKiZGaF1sRiopRi8iJDciRipGKiomRmhbbEYqKUYvIiQ2IkYqRioqJkZqb0YqKUYvIiQ1IkYqRioqJkZpekYqKUYvIiQ0IkYqRioqJiwuRjZGKkYlRipGK0YqRjlGKkZPRipGJ0YqRiopRi8iJDMiRipGKiomLCZGK0YqRjlGKkYqKUYvIiQyIkYqRioqJiwqRjZGKkYlRipGK0YqRjlGKkYqKUYvIiQxIkYqRioqJiwmRkxGKkYlRipGKilGLyIkMCJGKkYqKiZGXmNsRiopRi8iJC8iRipGKiomRmd3RiopRi8iJC4iRipGKiomLCpGJUYqRitGKkYnRipGKkYqRiopRi8iJC0iRipGKiomKUYvIiMpKkYqRixGKkYqKiZGYnVGKilGLyIkLCJGKkYqKiYsLkZMRipGJUYqRitGKkY5RipGT0YqRidGKkYqKUYvIiQrIkYqRioqJiwsRkxGKkYlRipGK0YqRjlGKkZPRipGKilGLyIjKipGKkYqKiYpRi8iIyQqRipGN0YqRioqJiwsRjZGKkYlRipGK0YqRk9GKkYqRipGKilGLyIjKCpGKkYqKiYsKEYrRipGOUYqRk9GKkYqKUYvIiMnKkYqRioqJiwoRjZGKkYlRipGOUYqRiopRi8iIyYqRipGKiomLDBGTEYqRjZGKkYlRipGK0YqRk9GKkYnRipGKkYqRiopRi8iIyUqRipGKiomLChGNkYqRiVGKkZPRipGKilGLyIjIypGKkYqKiYsLkY2RipGK0YqRjlGKkZPRipGJ0YqRipGKkYqKUYvIiMiKkYqRioqJkZfXGxGKilGLyIjISpGKkYqKiZGW3JGKilGLyIjKilGKkYqKiYsKEZMRipGNkYqRipGKkYqKUYvIiMpKUYqRioqJkZiYW1GKilGLyIjKClGKkYqKiZGW2BtRiopRi8iIycpRipGKiomLC5GTEYqRiVGKkYrRipGOUYqRk9GKkYqRipGKilGLyIjJilGKkYqKiYsLkZMRipGNkYqRiVGKkZPRipGJ0YqRipGKkYqKUYvIiMlKUYqRioqJiwqRiVGKkY5RipGT0YqRipGKkYqKUYvIiMkKUYqRioqJkZeY21GKilGLyIjIylGKkYqKiYsKkY2RipGK0YqRidGKkYqRipGKilGLyIjIilGKkYqKiYpRi8iI3pGKkZQRipGKiomRmN4RiopRi8iIyEpRipGKiomRl5wRiopRi8iI3lGKkYqKiZGXV1sRiopRi8iI3hGKkYqKiYsLkZMRipGNkYqRiVGKkYrRipGT0YqRipGKkYqKUYvIiN3RipGKiomLCxGTEYqRjZGKkZPRipGJ0YqRipGKkYqKUYvIiN2RipGKiomKUYvIiNxRipGJkYqRioqJiwsRkxGKkYlRipGK0YqRjlGKkYnRipGKilGLyIjdEYqRioqJkZpZG1GKilGLyIjc0YqRioqJiwmRjZGKkZPRipGKilGLyIjckYqRioqJkZeamxGKilGLyIjcEYqRioqJiwqRitGKkY5RipGT0YqRidGKkYqKUYvIiNvRipGKiomLDBGTEYqRjZGKkYlRipGK0YqRjlGKkZPRipGJ0YqRiopRi8iI25GKkYqKiYsKEYlRipGK0YqRk9GKkYqKUYvIiNtRipGKiomLCpGTEYqRjlGKkZPRipGJ0YqRiopRi8iI2xGKkYqKiZGZ15sRiopRi8iI2tGKkYqKiZGZmhsRiopRi8iI2pGKkYqKiYsLEY2RipGJUYqRitGKkZPRipGJ0YqRiopRi8iI2lGKkYqKiZGX1xsRiopRi8iI2hGKkYqKiZGYmBtRiopRi8iI2dGKkYqKiQpRi8iI2ZGKkYqKiYsLEZMRipGNkYqRitGKkY5RipGJ0YqRiopRi8iI2VGKkYqKiZGY2lsRiopRi8iI2RGKkYqKiZGanNGKilGLyIjY0YqRioqJiwuRiVGKkYrRipGOUYqRk9GKkYnRipGKkYqRiopRi8iI2JGKkYqKiYpRi8iI19GKkZQRipGKiomLChGJUYqRitGKkYqRipGKilGLyIjYEYqRioqJkZqdEYqKUYvIiNeRipGKiomLC5GTEYqRjZGKkYlRipGOUYqRk9GKkYqRipGKilGLyIjXUYqRioqJiwwRkxGKkYlRipGK0YqRjlGKkZPRipGJ0YqRipGKkYqKUYvIiNcRipGKiomRmp0RiopRi8iI1tGKkYqKiZGXmdtRiopRi8iI1pGKkYqKiZGZ2JsRiopRi8iI1lGKkYqKiYsLkY2RipGJUYqRitGKkY5RipGJ0YqRipGKkYqKUYvIiNYRipGKiomLCxGJUYqRitGKkY5RipGT0YqRidGKkYqKUYvIiNXRipGKiomRmpzRiopRi8iI1ZGKkYqKiZGYFtsRiopRi8iI1VGKkYqKiZGYFtsRiopRi8iI1RGKkYqKiYsKkY2RipGJUYqRidGKkYqRipGKilGLyIjU0YqRioqJiwqRkxGKkY2RipGOUYqRk9GKkYqKUYvIiNSRipGKiomLCZGNkYqRjlGKkYqKUYvIiNRRipGKiomLC5GNkYqRiVGKkYrRipGOUYqRk9GKkYqRipGKilGLyIjUEYqRioqJiwsRjZGKkYrRipGOUYqRidGKkYqRipGKilGLyIjT0YqRioqJkZgZWxGKilGLyIjTkYqRioqJiwsRkxGKkY2RipGK0YqRk9GKkYnRipGKilGLyIjTUYqRioqJiwqRjZGKkYlRipGK0YqRidGKkYqKUYvIiNMRipGKiomLCpGJUYqRjlGKkZPRipGJ0YqRiopRi8iI0tGKkYqKiYpRi8iI0hGKkY6RipGKiomRl1ibEYqKUYvIiNKRipGKiomLCpGTEYqRitGKkY5RipGJ0YqRiopRi8iI0lGKkYqKiYsKEZMRipGJUYqRitGKkYqKUYvIiNHRipGKiomRmpdbkYqKUYvIiNGRipGKiomLCpGTEYqRiVGKkYrRipGKkYqRiopRi8iI0VGKkYqKiZGQ0YqKUYvIiNERipGKiomRmNcbUYqKUYvIiNDRipGKiomLChGT0YqRidGKkYqRipGKilGLyIjQkYqRioqJkZVRiopRi8iI0FGKkYqKiYsLEZMRipGJUYqRitGKkYnRipGKkYqRiopRi8iI0BGKkYqKiYsKkZMRipGNkYqRitGKkYqRipGKilGLyIjP0YqRioqJiwsRjZGKkYlRipGOUYqRk9GKkYnRipGKilGLyIjPkYqRioqJkZkcUYqKUYvIiM9RipGKiomLChGTEYqRjZGKkY5RipGKilGLyIjPEYqRioqJiwqRkxGKkY2RipGJUYqRidGKkYqKUYvIiM7RipGKiomLCpGTEYqRjZGKkY5RipGJ0YqRiopRi8iIzpGKkYqKiYsLEZMRipGK0YqRjlGKkZPRipGKkYqRiopRi8iIzlGKkYqKiYsKkY2RipGK0YqRjlGKkZPRipGKilGLyIjOEYqRioqJiwoRiVGKkZPRipGKkYqRiopRi8iIzdGKkYqKiZGW15tRiopRi8iIzZGKkYqKiYsLEZMRipGNkYqRiVGKkZPRipGJ0YqRiopRi8iIzVGKkYqKiYsKEY2RipGT0YqRidGKkYqKUYvIiIqRipGKiomLChGNkYqRjlGKkYnRipGKilGLyIiKUYqRioqJkZjX25GKilGL0ZORipGKkZMRioqJkZeZmxGKilGL0Y4RipGKkY2RioqJiwsRkxGKkY2RipGJUYqRidGKkYqRipGKilGL0YpRipGKkYlRioqJkZLRiopRi9GLUYqRioqJiwsRkxGKkYlRipGT0YqRidGKkYqRipGKilGL0Y7RipGKkY5RioqJkZlX2xGKilGL0ZRRipGKkZPRioqJkZjaWxGKkYvRipGKkYqRio= cv:=CoefficientVector(c,z); cv[1]; cvb:=map(x->CoefficientList(x,Z),cv): cvb[1]; cvd:=map(x->add(x[i]*2^(i-1),i=1..nops(x)),cvb): cvd[1]; LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjY3ZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSVmb3JtR1EmaW5maXhGJy8lJ2xzcGFjZUdRL3RoaWNrbWF0aHNwYWNlRicvJSdyc3BhY2VHRk8vJShtaW5zaXplR1EiMUYnLyUobWF4c2l6ZUdRKWluZmluaXR5RictSShtYWN0aW9uR0YkNiQtSShtZmVuY2VkR0YkNiUtSSdtdGFibGVHRiQ2Ji1JJG10ckdGJDYjLUkkbXRkR0YkNiMtRiM2JC1GLDYlUSt+MX4uLn4yNTV+RidGL0YyLUklbXN1YkdGJDYlLUYsNiVRJ1ZlY3RvckYnRi9GMi1GIzYjLUYsNiVRJ2NvbHVtbkYnRi9GMi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZcbzYjLUZfbzYjLUYjNiQtRiw2JVEsRGF0YX5UeXBlOn5GJ0YvRjItRiw2JVEpYW55dGhpbmdGJ0YvRjItRlxvNiMtRl9vNiMtRiM2JC1GLDYlUSpTdG9yYWdlOn5GJ0YvRjItRiw2JVEscmVjdGFuZ3VsYXJGJ0YvRjItRlxvNiMtRl9vNiMtRiM2JC1GLDYlUShPcmRlcjp+RidGL0YyLUYsNiVRLkZvcnRyYW5fb3JkZXJGJ0YvRjIvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvJSthY3Rpb250eXBlR1EtYnJvd3NlcnRhYmxlRic= LC4qJClJIlpHNiIiIigiIiJGKCokKUYlIiInRihGKCokKUYlIiImRihGKCokKUYlIiIkRihGKCokKUYlIiIjRihGKEYoRig= NyoiIiIiIiFGI0YjRiRGI0YjRiM= IiRQIw== vvd:=cvd; vvd[2]; vvd[5]; vvd[2]:=cvd[2]+7 mod 2^lgn; vvd[5]:=cvd[5]+13 mod 2^lgn; LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEkdnZkRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2MFEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUlZm9ybUdRJmluZml4RicvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYnLyUncnNwYWNlR0ZPLyUobWluc2l6ZUdRIjFGJy8lKG1heHNpemVHUSlpbmZpbml0eUYnLUkobWFjdGlvbkdGJDYkLUkobWZlbmNlZEdGJDYlLUknbXRhYmxlR0YkNiYtSSRtdHJHRiQ2Iy1JJG10ZEdGJDYjLUYjNiQtRiw2JVErfjF+Li5+MjU1fkYnRi9GMi1JJW1zdWJHRiQ2JS1GLDYlUSdWZWN0b3JGJ0YvRjItRiM2Iy1GLDYlUSdjb2x1bW5GJ0YvRjIvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GXG82Iy1GX282Iy1GIzYkLUYsNiVRLERhdGF+VHlwZTp+RidGL0YyLUYsNiVRKWFueXRoaW5nRidGL0YyLUZcbzYjLUZfbzYjLUYjNiQtRiw2JVEqU3RvcmFnZTp+RidGL0YyLUYsNiVRLHJlY3Rhbmd1bGFyRidGL0YyLUZcbzYjLUZfbzYjLUYjNiQtRiw2JVEoT3JkZXI6fkYnRi9GMi1GLDYlUS5Gb3J0cmFuX29yZGVyRidGL0YyLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLyUrYWN0aW9udHlwZUdRLWJyb3dzZXJ0YWJsZUYn IiNS IiRdIg== IiNZ IiRqIg== vvb:=map(x->convert(x,base,2),vvd): vvb[2]; vvb[5]; vv:=map(x->add(x[i]*Z^(i-1),i=1..nops(x)),vvb): vv[2]; vv[5]; NygiIiEiIiJGJEYkRiNGJA== NyoiIiJGIyIiIUYkRiRGI0YkRiM= LCoqJClJIlpHNiIiIiYiIiJGKCokKUYlIiIkRihGKCokKUYlIiIjRihGKEYlRig= LCoiIiJGI0kiWkc2IkYjKiQpRiQiIiZGI0YjKiQpRiQiIihGI0Yj v:=add(vv[i]*z^(i-1),i=1..n): c:=add(cv[i]*z^(i-1),i=1..n): e:=v-c: e:=normalizepolyzZ(e,M); ev:=Vector(255); ev:=CoefficientVector(e,z); LCYqJiwqKiQpSSJaRzYiIiImIiIiRioqJClGJyIiJUYqRioqJClGJyIiI0YqRipGKkYqRiopSSJ6R0YoRi1GKkYqKiYsJiokKUYnIiIkRipGKkYqRipGKkYyRipGKg== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjZXZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSVmb3JtR1EmaW5maXhGJy8lJ2xzcGFjZUdRL3RoaWNrbWF0aHNwYWNlRicvJSdyc3BhY2VHRk8vJShtaW5zaXplR1EiMUYnLyUobWF4c2l6ZUdRKWluZmluaXR5RictSShtYWN0aW9uR0YkNiQtSShtZmVuY2VkR0YkNiUtSSdtdGFibGVHRiQ2Ji1JJG10ckdGJDYjLUkkbXRkR0YkNiMtRiM2JC1GLDYlUSt+MX4uLn4yNTV+RidGL0YyLUklbXN1YkdGJDYlLUYsNiVRJ1ZlY3RvckYnRi9GMi1GIzYjLUYsNiVRJ2NvbHVtbkYnRi9GMi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUZcbzYjLUZfbzYjLUYjNiQtRiw2JVEsRGF0YX5UeXBlOn5GJ0YvRjItRiw2JVEpYW55dGhpbmdGJ0YvRjItRlxvNiMtRl9vNiMtRiM2JC1GLDYlUSpTdG9yYWdlOn5GJ0YvRjItRiw2JVEscmVjdGFuZ3VsYXJGJ0YvRjItRlxvNiMtRl9vNiMtRiM2JC1GLDYlUShPcmRlcjp+RidGL0YyLUYsNiVRLkZvcnRyYW5fb3JkZXJGJ0YvRjIvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvJSthY3Rpb250eXBlR1EtYnJvd3NlcnRhYmxlRic= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjZXZGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSVmb3JtR1EmaW5maXhGJy8lJ2xzcGFjZUdRL3RoaWNrbWF0aHNwYWNlRicvJSdyc3BhY2VHRk8vJShtaW5zaXplR1EiMUYnLyUobWF4c2l6ZUdRKWluZmluaXR5RictSShtZmVuY2VkR0YkNiYtRiM2Iy1JJ210YWJsZUdGJDYnLUkkbXRyR0YkNiMtSSRtdGRHRiQ2Iy1JI21uR0YkNiRRIjBGJ0Y5LUZbbzYjLUZebzYjLUYjNiUtRiM2Iy1JJW1zdXBHRiQ2JS1GLDYlUSJaRidGL0YyLUZhbzYkUSIzRidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRictRjY2MFEiK0YnRjlGO0Y+RkBGQkZERkZGSEZKL0ZOUTBtZWRpdW1tYXRoc3BhY2VGJy9GUUZccUZSRlUtRmFvNiRGVEY5RmpuRmpuLUZbbzYjLUZebzYjLUYjNiktRiM2Iy1GXXA2JUZfcC1GYW82JFEiNUYnRjlGZXBGaHAtRiM2Iy1GXXA2JUZfcC1GYW82JFEiNEYnRjlGZXBGaHAtRiM2Iy1GXXA2JUZfcC1GYW82JFEiMkYnRjlGZXBGaHBGXnEvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRicvSSttc2VtYW50aWNzR0YkUSpDb2xWZWN0b3JGJw== sindrome:=proc(m,n,alpha,M,Z,sv,vv) local i,j,s,beta,gamma; beta:=1; for i to m do beta:=modpol(beta*alpha,M,Z,2); gamma:=1; s:=0; for j from 0 to n-1 do s:=modpol(s+vv[j+1]*gamma,M,Z,2); gamma:=modpol(gamma*beta,M,Z,2); od; sv[i]:=s; od; end; Zio2KUkibUc2IkkibkdGJUkmYWxwaGFHRiVJIk1HRiVJIlpHRiVJI3N2R0YlSSN2dkdGJTYnSSJpR0YlSSJqR0YlSSJzR0YlSSViZXRhR0YlSSZnYW1tYUclKnByb3RlY3RlZEdGJUYlQyQ+RjAiIiI/KEYtRjVGNUYkSSV0cnVlR0YyQyc+RjAtSSdtb2Rwb2xHNiRGMkkoX3N5c2xpYkdGJTYmKiZGMEY1RidGNUYoRikiIiM+RjFGNT5GLyIiIT8oRi5GQ0Y1LCZGJkY1RjUhIiJGN0MkPkYvLUY7NiYsJkYvRjUqJiZGKzYjLCZGLkY1RjVGNUY1RjFGNUY1RihGKUZAPkYxLUY7NiYqJkYxRjVGMEY1RihGKUZAPiZGKjYjRi1GL0YlRiVGJQ== sv:=Vector(m): sindrome(m,n,alpha,M,Z,sv,vv): s:=add(sv[i]*z^(i-1),i=1..m); LEgqJClJIlpHNiIiIiciIiJGKCokKUYlIiIlRihGKEYlRihGKEYoKiYsKCokKUYlIiIoRihGKCokKUYlIiIkRihGKEYoRihGKEkiekdGJkYoRigqJiwuRiNGKCokKUYlIiImRihGKEYpRihGMUYoKiQpRiUiIiNGKEYoRihGKEYoKUY0RjxGKEYoKiYsKkY3RihGKUYoRiVGKEYoRihGKClGNEYzRihGKComLChGOkYoRilGKEYjRihGKClGNEYrRihGKComLC5GLkYoRiNGKEY3RihGMUYoRjpGKEYoRihGKClGNEY5RihGKComLCpGN0YoRilGKEY6RihGJUYoRigpRjRGJ0YoRigqJiwwRi5GKEYjRihGN0YoRilGKEYxRihGJUYoRihGKEYoKUY0RjBGKEYoKiYsKEYjRihGMUYoRihGKEYoKUY0IiIpRihGKComLCZGJUYoRihGKEYoKUY0IiIqRihGKComLCxGLkYoRiNGKEY3RihGKUYoRiVGKEYoKUY0IiM1RihGKComLChGKUYoRiVGKEYoRihGKClGNCIjNkYoRigqJiwoRi5GKEYjRihGKUYoRigpRjQiIzdGKEYoKiYsKkYjRihGKUYoRjFGKEY6RihGKClGNCIjOEYoRigqJiwqRi5GKEYxRihGOkYoRiVGKEYoKUY0IiM5RihGKComLChGKUYoRjFGKEYoRihGKClGNCIjOkYoRig= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.26. Reed-Solomon-k\303\263d dek\303\263dol\303\241sa.</Font></Text-field> L:=(1-alpha^1*z)*(1-alpha^4*z); L:=normalizepolyzZ(L,M); KiYsJiIiIkYkKiYsJkkiWkc2IkYkRiRGJEYkSSJ6R0YoRiQhIiJGJCwmRiRGJComKUYmIiIlRiRGKUYkRipGJA== LCgqJiwqKiQpSSJaRzYiIiImIiIiRioqJClGJyIiJUYqRipGJ0YqRipGKkYqKUkiekdGKCIiI0YqRioqJiwmRitGKkYnRipGKkYvRipGKkYqRio= beta:=1: for j from 0 to n-1 do subs(z=beta,L); beta:=modpol(beta/alpha,M,Z,2); if modpol(%%,M,Z,2)=0 then print(j) fi od: IiIi IiIl L1:=(1-alpha^4*z); L4:=(1-alpha^1*z); LCYiIiJGIyomKSwmSSJaRzYiRiNGI0YjIiIlRiNJInpHRihGIyEiIg== LCYiIiJGIyomLCZJIlpHNiJGI0YjRiNGI0kiekdGJ0YjISIi E:=alpha^1*ev[2]*L1+alpha^4*ev[5]*L4; E:=normalizepolyzZ(E,M); LCYqKCwmSSJaRzYiIiIiRidGJ0YnLCYqJClGJSIiJEYnRidGJ0YnRicsJkYnRicqJilGJCIiJUYnSSJ6R0YmRichIiJGJ0YnKihGLkYnLCoqJClGJSIiJkYnRicqJClGJUYvRidGJyokKUYlIiIjRidGJ0YnRidGJywmRidGJyomRiRGJ0YwRidGMUYnRic= LCwqJClJIlpHNiIiIiciIiJGKCokKUYlIiIlRihGKComLChGI0YoKiQpRiUiIiZGKEYoKiQpRiUiIiRGKEYoRihJInpHRiZGKEYoRiVGKEYoRig= modpol(subs(z=alpha^(-1),E)/alpha^1/subs(z=alpha^(-1),L1),M,Z,2); LCYqJClJIlpHNiIiIiQiIiJGKEYoRig= modpol(subs(z=alpha^(-4),E)/alpha^4/subs(z=alpha^(-4),L4),M,Z,2); LCoqJClJIlpHNiIiIiYiIiJGKCokKUYlIiIlRihGKCokKUYlIiIjRihGKEYoRig= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">9.3.27. T\303\251tel.</Font></Text-field> reedsolomondecodezZ:=proc(m::posint,s::polynom,M::polynom) local x0,x1,x2,y0,y1,y2,r0,r1,r2,q,i,L,E; x0:=1; y0:=0; r0:=z^m; x1:=0; y1:=1; r1:=collect(normalizepolyzZ(s,M),z); do if degree(r1,z)<m/2 then L:=CoefficientList(y1,z); E:=CoefficientList(r1,z); E:=map(x->modpol(x/L[1],M,Z,2),E); E:=add(E[i]*z^(i-1),i=1..nops(E)); L:=map(x->modpol(x/L[1],M,Z,2),L); L:=add(L[i]*z^(i-1),i=1..nops(L)); return [L,E] fi; r2:=r0; x2:=x0; y2:=y0; while degree(r2,z)>=degree(r1,z) do q:=modpol(lcoeff(r2,z)/lcoeff(r1,z),M,Z,2); q:=q*z^(degree(r2,z)-degree(r1,z)); r2:=normalizepolyzZ(r2-q*r1,M); r2:=collect(r2,z); x2:=normalizepolyzZ(x2-q*x1,M); y2:=normalizepolyzZ(y2-q*y1,M); od; r0:=r1; x0:=x1; y0:=y1; r1:=r2; x1:=x2; y1:=y2; od; end; Zio2JSdJIm1HNiJJJ3Bvc2ludEclKnByb3RlY3RlZEcnSSJzR0YmSShwb2x5bm9tR0YoJ0kiTUdGJkYrNi9JI3gwR0YmSSN4MUdGJkkjeDJHRiZJI3kwR0YmSSN5MUdGJkkjeTJHRiZJI3IwR0YmSSNyMUdGJkkjcjJHRiZJInFHRiZJImlHRiZJIkxHRiZJIkVHRiZGJkYmQyk+Ri8iIiI+RjIiIiE+RjUpSSJ6R0YmRiU+RjBGQD5GM0Y+PkY2LUkoY29sbGVjdEc2JEYoSShfc3lzbGliR0YmNiQtSTBub3JtYWxpemVwb2x5elpHRiY2JEYqRi1GQz8oRiZGPkY+RiZJJXRydWVHRihDLUAkMi1JJ2RlZ3JlZUdGKDYkRjZGQywkKiYjRj4iIiNGPkYlRj5GPkMpPkY6LV9JMFBvbHlub21pYWxUb29sc0dGSUkwQ29lZmZpY2llbnRMaXN0R0YmNiRGM0ZDPkY7LUZobkZWPkY7LUkkbWFwR0YoNiRmKjYjSSJ4R0YmRiY2JEkpb3BlcmF0b3JHRiZJJmFycm93R0YmRiYtSSdtb2Rwb2xHRkk2JiomRmRvRj4mRjo2I0Y+ISIiRi1JIlpHRiZGWkYmRiY2JkY6OC9GLTkmRjs+RjstSSRhZGRHRig2JComJkY7NiNGOUY+KUZDLCZGOUY+Rj5GXnBGPi9GOTtGPi1JJW5vcHNHRig2I0Y7PkY6LUZgbzYkRmJvRjo+RjotRmVwNiQqJiZGOkZpcEY+RmpwRj4vRjk7Rj4tRl9xNiNGOk83JEY6Rjs+RjdGNT5GMUYvPkY0RjI/KEYmRj5GPkYmMUZULUZVNiRGN0ZDQyg+RjgtRmlvNiYqJi1JJ2xjb2VmZkdGKEZlckY+LUZcc0ZWRl5wRi1GX3BGWj5GOComRjhGPilGQywmRmRyRj5GVEZecEY+PkY3LUZNNiQsJkY3Rj4qJkY4Rj5GNkY+Rl5wRi0+RjctRkhGZXI+RjEtRk02JCwmRjFGPiomRjhGPkYwRj5GXnBGLT5GNC1GTTYkLCZGNEY+KiZGOEY+RjNGPkZecEYtPkY1RjY+Ri9GMD5GMkYzPkY2Rjc+RjBGMT5GM0Y0RiZGJkYm reedsolomondecodezZ(m,s,M); NyQsKComLCoqJClJIlpHNiIiIiYiIiJGKyokKUYoIiIlRitGK0YoRitGK0YrRispSSJ6R0YpIiIjRitGKyomLCZGLEYrRihGK0YrRjBGK0YrRitGKywsKiQpRigiIidGK0YrRixGKyomLChGNUYrRiZGKyokKUYoIiIkRitGK0YrRjBGK0YrRihGK0YrRis= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.3.28. P\303\251lda.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.3.29. K\303\263dr\303\266vid\303\255t\303\251s.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.3.30. K\303\263dok direkt szorzata.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.3.31. Kaszk\303\241d k\303\263dok.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3"><Font encoding="UTF-8">*9.3.32. Adat\303\241tsz\303\266v\303\251s.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.33. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.3.34. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.3.35. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.36. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.37. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.38. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.39. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.40. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.41. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.42. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.43. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.44. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.45. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">->9.3.46. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.3.47. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">*9.3.48. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.3.49. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.3.50. Feladat.</Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.3.51. Tov<Font encoding="UTF-8">\303\241</Font>bbi feladatok megold<Font encoding="UTF-8">\303\241sokkal.</Font></Text-field>
<Text-field style="Heading 3" layout="Heading 3">9.3.52. Tov<Font encoding="UTF-8">\303\241</Font>bbi feladatok.</Text-field>
LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
<Text-field style="Heading 1" layout="Heading 1">10. Algoritmusok</Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn
LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2JVEhRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0Yn