
8. Matchings and Factors

Consider the formation of an executive council by the parliament committee. Each commit-
tee needs to designate one of its members as an official representative to sit on the council,
and council policy states that no senator can be the official representative for more than
one committee. For example, let there be five committees 1, 2, 3, 4 and 5. Let A, C, D, E

be members of committee 1; B, C, D be members of committee 2; A, B, E, F be members
of committee 3; and A, F be members of committee 5. Here the executive council can be
formed by members A, C, B, F and E, representing committees 1, 2, 3, 4 and 5 respec-
tively. The problem of formation of the executive council and many related problems can
be solved using the concept of matchings in graphs.

8.1 Matchings

Definition: A matching in a graph is a set of independent edges. That is, a subset M
of the edge set E of a graph G(V, E) is a matching if no two edges of M have a common
vertex. A matching M is said to be maximal if there is no matching M′ strictly containing
M, that is, M is maximal if it cannot be enlarged. A matching M is said to be maximum if it
has the largest possible cardinality. That is, M is maximum if there is no matching M′ such
that |M′|> |M|.

Consider the graph G shown in Figure 8.1. The examples of matchings in G are M1 =
{v1v5, v2v6, v3v4, v7v8}, M2 = {v1v5, v2v6, v3v4, v7v9}, M3 = {v1v5, v2v6, v3v4, v7v10}, M4 =
{v1v5, v2v6, v3v4} and M5 = {v4v7, v1v6, v2v3}. Clearly, M1 is a maximum matching, whereas
M5 is maximal but not maximum.

Fig. 8.1
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The cardinality of a maximum matching is denoted by α1(G) and is called the matching
number of G (or the edge-independence number of G).

Definition: Let M be a matching in a graph G. A vertex v in G is said to be M-saturated
(or saturated by M) if there is an edge e ∈ M incident with v. A vertex which is not incident
with any edge of M is said to be M-unsaturated. In other words, given a matching M in
a graph G, the vertices belonging to the edges of M are M-saturated and the vertices not
belonging to the edges of M are M-unsaturated. Consider the graph shown in Figure 8.2.
Clearly, M = {v1v2, v3v7, v4v5} is a matching and the vertices v1, v2, v3, v4, v5, v7 are M-
saturated but v6 is M-unsaturated.

Fig. 8.2

Definition: A matching M in a graph G is said to be a perfect matching if M saturates
every vertex of G. In Figure 8.3(a), G1 has a perfect matching M = {v1v2, v3v6, v4v5}, but
G2 has no perfect matching.

Fig. 8.3(a)

Definition: If G is a bipartite graph with bipartition V = V1 ∪V2 and |V1| = n1, |V2| = n2,
then a matching M of G saturating all the vertices in V1 is called a complete matching
(or V1 matched into V2).

Definition: Let H be a subgraph of a graph G. An H-alternating path (cycle) in G is a
path (cycle) whose edges are alternately in E(G)−E(H) and E(H).

If M is matching in a graph G, then an M-alternating path (cycle) in G is a path (cycle)
whose edges are alternately in E(G)−M and M. That is, in an M-alternating path, the edges
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alternate between M-edges and non-M-edges. An M-alternating path whose end vertices
are M-unsaturated is said to be an M-augmenting path.

Fig. 8.3(b)

Consider the graph G shown in Figure 8.3(b). An example of a matching in G is M =
{v2v10, v3v9, v4v8, v5v7}. Clearly v10, v2, v3, v9, v8, v4 is an M-alternating path and v1, v10, v2, v9, v3, v11

is an M-augmenting path.

The following result due to Berge [21] characterises a maximum matching in a graph.
This forms the foundation of an efficient algorithm for obtaining a maximum matching.

Theorem 8.1 (Berge) A matching M of a graph G is maximum if and only if G contains
no M-augmenting paths.

Proof Let M be a maximum matching in a graph G. Assume P = v1v2 . . .vk is an M-
augmenting path in G. Due to the alternating nature of M-augmenting path, we observe that
k is even and the edges v2v3, v4v5, . . ., vk−2vk−1 belong to M. Also the edges v1v2, v3v4, . . .,
vk−1vk do not belong to M (Figure 8.4).

Fig. 8.4

Now, let M1 be the set of edges given by

M1 = [M−{v2v3, . . . , vk−2vk−1}]∪{v1v2, . . ., vk−1vk}.

Then M1 is a matching and clearly M1 contains one more edge than M. This contradicts
the assumption that M is maximum. Thus G contains no M-augmenting paths.

Conversely, assume that G has no M-augmenting paths. Let M′ be a matching such that
|M′| > |M|. Let H be a subgraph of G with V(H) = V (G) and E(H) be the set of edges of G

that appear in exactly one of M and M′. Since every vertex of G lies on at most one edge
from M and at most one edge from M′, therefore degree (in H) of each vertex of H is at most
2. This implies that each connected component of H is either a single vertex, or a path, or
a cycle (Fig. 8.5). If a component is a cycle, then it is an even cycle, because the edges
alternate between M-edges and M′-edges. Since |M′| > |M|, there is at least one component
in H that is a path which begins and ends with edges from M′. Clearly, this path is an M-
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augmenting path, contradicting the assumption. Thus no such matching M′ can exist and
hence M is maximum. q

Fig. 8.5

Definition: The neighbourhood of a set of vertices S, denoted by N(S), is the union of
the neighbourhood of the vertices of S.

The following classic result due to P. Hall [101] characterises a complete matching in a
bipartite graph.

Theorem 8.2 (Hall) If G(V1, V2, E) is a bipartite graph with |V1| ≤ |V2|, then G has a
matching saturating every vertex of V1, if and only if |N(S)| ≥ |S|, for every subset S ⊆V1.

Proof Let G have a complete matching M that saturates all the vertices of V1 and let S be
any subset of V1. Then every vertex in S is matched by M into a different vertex in N(S), so
that |S| ≤ |N(S)| (Fig. 8.6 (a)).

Fig. 8.6
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Conversely, let |N(S)| ≥ |S| for all subsets S of V1 and let M be a maximum matching.
Assume G has no complete matching. Then there exists a vertex, say v ∈ V1, which is
M-unsaturated (Fig. 8.6(b)). Let Z be the set of vertices of G that can be joined to v by
M-alternating paths.

Fig. 8.7

Since M is a maximum matching, by Theorem 8.1, G has no M-augmenting path. This
implies that v is the only vertex of Z that is M-unsaturated. Let S = Z∩V1 and T = Z∩V2 (Fig.
8.7). Then every vertex of T is matched under M to some vertex of S−{v} and conversely
and N(S) = T . Since |T | = |S| − 1, therefore |N(S)| = |T | = |S| − 1 < |S|, contradicting the
given assumption. Hence G has a complete matching. q

The aim of the above theorem was basically to obtain the conditions for the existence of
a system of distinct representatives (SDR) for a collection of subsets of a given set. Before
giving such conditions, we have the following definition.

Definition: If A = {Ai : i∈ N} is a family of sets, then a system of distinct representatives
(SDR) of A is a set of elements {ai : i ∈ N} such that ai ∈Ai for every i∈ N and ai 6= a j when-
ever i 6= j. For example, if A1 = {2, 8}, A2 = {8}, A3 = {5, 7}, A4 = {2, 4, 8} and A5 = {2, 4},
then the family {A1, A2, A3, A4} has an SDR {2, 8, 7, 4}, but the family {A1, A2, A4, A5} has
no SDR.

Theorem 8.3 (Hall’s SDR Theorem) A family of finite nonempty sets A = {Ai : 1 ≤ i≤
r} has an SDR if and only if for every k, 1 ≤ k ≤ r, the union of any k of these sets contains
at least k elements.

Proof Clearly
r
∪

i=1

Ai is finite, since each of the sets A1, A2, . . ., Ar is finite. Let
r
∪

i=1

Ai =

{a1, a2, . . . , an}.
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Construct a bipartite graph G with partite sets X = {A1, . . . , Ar} and Y = {a1, . . . , an}, as
shown in Figure 8.8. We take an edge between Ai and a j if and only if a j ∈ Ai.

Fig. 8.8

Clearly, A has an SDR if and only if G has a matching that saturates all the vertices of
X . Now, Theorem 8.2 implies that G has such a matching if and only if |S| ≤ |N(S)| for all
subsets S of X , that is, if and only if |S| ≤ | ∪

ai∈S
Ai| proving the result. q

Remarks

1. Hall’s theorem is often referred to as Hall’s marriage theorem.

2. Since Hall’s theorem, there has been remarkable progress in the theory of SDR, and
besides other references the reader can refer to the book of Mirsky [161].

The following result due to M. Hall [100] counts the number of complete matchings.

Theorem 8.4 If G(V1, V2, E) is a bipartite graph with |V1| = n1 ≤ n2 = |V2| and satisfying
Hall’s condition |S| ≤ |N(S)| for all S ⊆V1, then G has at least

r(δ , n1) = ∏
1≤i≤min(δ , n1)

(δ +1− i)

complete matchings, where δ = min{d(u) : u ∈V1}.

Proof Induct on n1. The result is trivial for n1 = 1. Assume the result to be true for all
values of n1 ≤ m − 1 and let G be a bipartite graph satisfying the given conditions and
|V1|= m.

Case 1 For each nonempty proper subset S of V1, |S| < |N(S)|. Now, for a given u ∈ V1,
choose ν ∈ N(u). This v can be chosen in at least δ ways, since δ = min{d(u) : u ∈V1}. Obvi-
ously, G−{u, v} is a bipartite graph with |V1|= m−1, and min{d(x) : x ∈V1} ≥ δ −1. There-
fore by induction hypothesis, G−{u, v} has at least r(δ −1, m−1) = ∏

1≤i≤min(δ−1,m−1)
(δ − i)

complete matchings. These together with uv, give at least

δ [r(δ −1, m−1)] =
δ

Λ ∏
1≤i≤min(δ−1, m−1)

(δ − i) = ∏
1≤i≤min(δ , m)

(δ +1− i) = r(δ , m)

complete matchings in G.
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Case 2 There is a non empty proper subset S of V1 with |S| = |N(S)|. Let |S| = s, and
G1 =< S∪N(S) > and G2 = G− < S∪N(S) >. Then the values of n1 and δ in G1 are s and δ ,
and in G2 are m− s and δ2 = max{δ − s, 1}. Therefore G1 and G2 are disjoint graphs with at
least r(δ , s) and r(δ2, m− s) complete matchings, by induction hypothesis. Thus G has at
least r(δ , s) r(δ2, m− s) = r(δ , m) complete matchings. q

The following result is due to Ore [175].

Theorem 8.5 If a bipartite graph G(V1, V2, E) satisfies |S| ≤ d + |N(S)| for all S ⊆ V1,
where d is a given positive integer, then G contains a matching M with at most d vertices
of V1 being M-unsaturated.

Proof Let H(V1, U2, E ′) be the bipartite graph with U2 = V2 ∪W2, |W2| = d and E ′ = E ∪
[V1, W2]. Then the given condition of G implies Hall’s condition for H and so H has a
complete matching M. Obviously, at most d of the edges of M can be in E ′−E, proving the
result. q

The following observation is an immediate consequence of Theorem 8.5.

Corollary 8.1 For a bipartite graph G(V1, V2, E), with |V1| = n1, α1(G) = n1 −max{|S|−
|N(S)| : S ⊆V1} = min{|V1 −S|+ |N(S)| : S ⊆V1}.

The following result is a consequence of Hall’s theorem.

Theorem 8.6 A k(≥ 1) regular bipartite graph has a perfect matching.

Proof Let G be a k regular bipartite graph with partite sets V1 and V2. Then E(G) is
equal to the set of edges incident to the vertices of V1 and also E(G) is equal to the set of
edges incident to the vertices of V2. Therefore, k|V1| = k|V2| = E(G) and thus |V1| = | V2|. If
S⊆ V1, then N(S) ⊆ V2 and thus N(N(S)) contains S. Let E1 and E2 be the sets of edges of
G incident respectively to S and N(S). Then E1 ⊆ E2, |E1| = k|S| and |E2| ≥ k|N(S)|. Since
|E2| ≥ |E1|,|N(S)|≥ |S|. Thus by Theorem 8.2, G has a matching that saturates all the vertices
of V1, that is G has a complete matching M. Now deleting the edges of M from G gives
a (k− 1)-regular bipartite graph G′, with V (G) = V (G′). By the same argument, G′ has a
complete matching M′. Deletion of the edges of M′ from G′ results in a (k − 2)-regular
bipartite graph. Repeating this process k−1 times, we arrive at a 1-regular bipartite graph
G∗ such that |V(G∗)| = |V(G)|. Clearly G∗ has a perfect matching. q

Definition: A set C of vertices in a graph G is said to cover the edges of G if every
edge of G is incident with at least one vertex of C. Such a set C is called a covering of G.
Consider the graphs G1 and G2 shown in Figure 8.9. Clearly, {v1, v2, v4, v5} and {v1, v5, v6}
are coverings of G1. Also, we observe that there is no covering of G1 with fewer than three
vertices. In G2, each of {v1, v2, v6} and {v1, v2, v3, v4, v5, v6} is a covering.
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Fig. 8.9

The number of vertices in a minimum covering of G is called the covering number of G

and is denoted by β (G).

Definition: An edge covering of a graph G is a subset L of E such that every vertex of
G is incident to some edge of L. Clearly, an edge covering of G exists if and only if δ > 0.
The cardinality of a minimum edge covering of G is denoted by β1(G). For example, in the
wheel W5 of Figure 8.10, the set {v1v5, v2v3, v4v6} is a minimum edge covering.

Fig. 8.10

The following results are immediate.

Lemma 8.1 A subset S of V is independent if and only if V −S is a covering of G.

Proof Clearly, S is independent if and only if no two vertices in S are adjacent in G.
Thus every edge of G is incident to a vertex of V −S. This is possible if and only if V −S is
a covering of G. q

Lemma 8.2 For any graph G, α +β = n.

Proof If S is a maximum independent set of G, then by Lemma 8.1, V −S is a covering
of G. Therefore, |V −S| = n−α ≥ β . Similarly, if C is a minimum covering of G, then V −C
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is independent and therefore, |V −S|= n−β ≤α. Combining the two inequalities, we obtain
α +β = n. q

Remark Consider the graph of Figure. 8.11. Clearly the set E1 = {e3, e4} is independent
and E −E1 = {e1, e2, e5} is not an edge covering of G. Also, E2 = {e1, e3, e4} is an edge
covering of G and E −E2 is not independent in G. These observations imply that the edge
analogue of Lemma 8.1 is not true in general.

Fig. 8.11

The following result gives the relation between α1 and β1 of a graph G.

Theorem 8.7(a) In a graph G with n vertices and δ > 0, α1 +β1 = n.

Proof Let M be a maximum matching in G, so that |M| = α1. Let X be the set of M-
unsaturated vertices in G. Since M is maximum, X is an independent set of vertices with
|X | = n− 2α1. As δ > 0, choose one edge for each vertex in X incident with it and let F

be the set of these edges chosen. Then M ∪F is an edge covering of G. Thus, |M ∪F| =
|M|+ |F| = α1 +n−2 α1 ≥ β1, and so

n ≥ α1 +β1. (8.7.1)

Now assume that L is a minimum edge covering of G, so that |L|= β1. Let H = G(L), the
edge subgraph of G defined by L and let MH be a maximum matching in H. Let the set of
MH-unsaturated vertices in H be denoted by X . Since L is an edge covering of G, therefore,
H is a spanning subgraph of G. Thus, |L|− |MH| = |L−MH| ≥ |X |= n−2|MH|, and therefore
|L|+ |MH| ≥ n. Since MH is a matching in G, so |MH| ≤ α1, and hence

n ≤ β1 +α1. (8.7.2)

Combining (8.7.1) and (8.7.2), we obtain α1 +β1 = n. q

Let M be any matching of a graph G and C be any vertex covering of G. Then in order
to cover each edge of M, at least one vertex of C is to be chosen. Thus, |M| ≤ |C|. In case,
M′ is a maximum matching and C′ is a minimum covering of G, then |M′| ≤ |C′|.

We have the following obvious result.
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Lemma 8.3 If C is any covering and M any matching of a graph G with |C|= |M|, then C

is a minimum covering and M is a maximum matching.

Proof Let M′ be a maximum matching and C′ be a minimum covering of G. Then |M| ≤
|M′| and |C| ≥ |C′|. Therefore, |M| ≤ |M′| ≤ |C′| ≤ |C|. As |M| = |C| we have |M| = |M′| =
|C′| = |C|, and the proof is complete. q

The next result is due to Konig [135].

Theorem 8.7(b) (Konig) In a loopless bipartite graph G, the maximum number of
edges in a matching of G is equal to the minimum number of vertices in an edge cover
of G, that is, α1 = β .

Proof Let G be a bipartite graph with partite sets V1 and V2 and let M be a matching of
G. Let X be the set of all M-unsaturated vertices of V1, so that |M|= |V1|− |X | (Fig. 8.12).

Fig. 8.12

Let A be the set of those vertices of G which are connected to some vertex of X by an
M-alternating path. Further, let S = A∩V1 and T = A∩V2. Obviously, N(S) = T and S−X is
matched to T so that |X | = |S|− |T |. Clearly, C = (V1 −S)∪ T is a covering of G, because if
there is an edge e not incident to any vertex in C, then one of the end vertices of e is in S

and the other in V2 −T , which contradicts the fact that N(S) = T . Now, |C|= |V1|−|S|+ |T|=
|V1| − |X | = |M|. Then by Lemma 8.3, M is a maximum matching and C is a minimum
covering of G. q

The following is a new proof of Konig’s theorem due to Rizzi [224].

Second proof of Theorem 8.7 (Rizzi [224]) Let G be a minimal counter-example.
Then G is connected but is not a cycle, nor is a path. Therefore G has a vertex of degree
at least three. Let u be such a vertex and v one of its neighbours. If α1(G− v) < α1(G),
then by minimality, G− v has a cover W ′ with |W ′| < α1(G). Thus W ′ ∪{v} is a cover of G

with cardinality at most α1(G). Therefore assume there exists a maximum matching M of
G having no edge incident at v. Let f be an edge of G−M incident at u but not at v. Let W ′
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be a cover of G− f with |W ′|= α1(G). Since no edge of M is incident at v, it follows that W ′

does not contain v. Therefore W ′ contains u and is a cover of G. q

8.2 Factors

We start this section with the following definitions.

Definition: A factor F of a graph G is a spanning subgraph of G. A factor F is said
to be an F−factor if the components of F are some graphs in a given collection F =
{H1, H2, . . ., Hk} of subgraphs of G. If F contains a single graph H, then F is called an
H-factor. Consider the graph G shown in Figure 8.13. Clearly G1 is a spanning subgraph
whose components belong to the set F = {H1, H2, H3} and therefore is an F-factor. Each of
the components of the spanning subgraph G2 is a graph K3 and so G2 is a K3-factor.

Fig. 8.13

We observe that a perfect matching is a K2-factor, since each of the components in a
perfect matching is a graph K2.

A vertex function of a graph G(V, E) is a function f : V → No (No being the set of non-
negative integers).

Definition: A spanning subgraph F of a graph G(V, E) is called an f-factor of G if for a
vertex function f on V, d(v|F) = f (v) for all v∈V . For example, consider the graph G shown
in Figure 8.14. Define f : V → N0 by f (vi) = 1 or 2, for all v ∈V in G. Then the f -factor of
G is given by graph H.
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Figure 8.14

Further, F is said to be a partial f−factor (or f -matching) if d(v|F) ≤ f (v), for all v ∈ V

and F is said to be a covering f -factor of G if d(v|F) ≥ f (v), for all v ∈ V . Some of the
details of this can be seen in Graver and Jurkat [88]. We note that an f -factor exists only if

∑
v∈V

f (v) is even.

Definition: A k-factor of a graph G is a factor of G that is k-regular. Clearly, a 1-factor is
a perfect matching and exists only for graphs with an even number of vertices. A 2-factor
of G is a factor of G that is a disjoint union of cycles of G and connected 2-factor is a
Hamiltonian cycle.

Definition: If the edge set of a graph G is partitioned by the edge sets of a set of factors
F1, F2, . . ., Fq of G, then these factors are said to constitute a factorisation or decomposition
of G and we write G = F1 ∪F2 ∪ . . .∪Fq. If each factor Fi in the factorisation is isomor-
phic to the same spanning subgraph F of G, then the factorisation is called an isomorphic
factorisation or an F-decomposition of G.

The factorisation is called an f-factorisation or k-factorisation according as each factor
fi of a factorisation is an f -factor or k-factor. A graph G is f -factorable or k-factorable if G

has respectively f -factorisation or k-factorisation.

Example In Figure 8.15, the three distinct 1-factors of G1 are < e1, e6 >, < e2, e4 > and
< e3, e5 >. The two distinct 2-factors of G2 are < e1, e2, e3, e4, e5 > and < e6, e7, e8, e9, e10 >.

Fig. 8.15
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Definition: A component of a graph is odd or even according to whether it has an odd or
even number of vertices. The number of odd components of a graph G is denoted by k0(G).

The following result of Tutte [249] characterises the graphs with a 1-factor. Several proofs
of this result exist in the literature and the proof given here is due to Lovasz [150].

Theorem 8.8 (Tutte) A graph G has a 1-factor if and only if

k0(G−S) ≤ |S|, for all S ⊆V . (8.8.1)

Proof Let G be a graph having 1-factor M. Let S be an arbitrary subset of V and let O1,
O2, . . . ,Ok be the odd components of G− S. For each i, the vertices in Oi can be adjacent
only to other vertices in Oi and to vertices in S. Since G has a 1-factor (perfect matching), at
least one vertex from each Oi is to be matched with a different vertex in S. Thus the number
of vertices in S is at least k, the number of odd components. Hence |S| ≥ k, so that k0(G−S)
≤ |S| (Fig. 8.16).

Fig. 8.16

Conversely, assume that the condition (8.8.1) holds. Let G have no 1-factor. Join pairs of
non-adjacent vertices of G and continue this process till we get a maximal super graph G∗

of G having no 1-factor. Since joining two odd components by an edge results in an even
component, therefore

k0(G
∗−S) ≤ k0(G−S). (8.8.2)

Thus for G∗ also, we have k0(G
∗−S) ≤ |S|.

When S = φ in (8.8.1), we observe that k0(G) = 0 so that k0(G
∗) = 0. Therefore, |V(G∗)|=

|V(G)| = n is even. Also, for every pair of non-adjacent vertices u and v of G∗, G∗ +uv has
a 1-factor and any such 1-factor definitely contains the edge uv.

Now, let K be the set of those vertices of G∗ which are having degree n− 1. Clearly,
K 6= V , since otherwise G∗ = Kn has a perfect matching.

Claim that each component of G∗ −K is complete. Assume, on the contrary, that in
G∗−K, there exists a component G1 which is not complete. Then in G1, there are vertices
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x, y and z such that xy, yz ∈ E(G∗) and xy /∈ E(G∗). Also, y ∈ V (G1) so that d(y|G∗) < n− 1

and thus there exists a vertex w of G∗ with yw /∈ E(G∗). Evidently, w /∈ K (Fig. 8.17).

Fig. 8.17

Now, by the choice of G∗, both G∗ + xz and G∗ + yw have 1-factors, say M1 and M2

respectively. Clearly, xz ∈ M1 and yw ∈ M2. Let H be the subgraph of G∗ +{xz,yw} induced
by the edges that are in M1 and M2 but not in both (that is, in the symmetric difference of
M1 and M2). Since M1 and M2 are 1-factors, each vertex of G∗ is saturated by both M1 and
M2, and H is a disjoint union of even cycles in which the edges alternate between M1 and
M2. We have two cases to consider.

Case 1 Let xz and yw belong to different components of H, as shown in Figure 8.18 (a).
If yw belongs to the cycle C, then the edge of M1 in C together with the edges of M2 not
belonging to C form a 1-factor of G∗, contradicting the choice of G∗.

Fig. 8.18

Case 2 Let xz and yw belong to the same component C of H. Since each component of
H is a cycle, C is a cycle (Fig. 8.18 (b)). By symmetry of x and z, it can be assumed that
the vertices x, y, w and z appear in that order on C. Then the edges of M1 belonging to the
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yw . . .z section of C, together with the edge yz, and the edges of M2 not in the yw . . . z section
of C form a 1-factor of G∗, again contradicting the choice of G∗.

Thus each component of G∗−K is complete.
By conditions (8.8.2), k0(G

∗−K) ≤ |K|. Therefore one vertex of each of the odd compo-
nents of G∗−K is matched to a vertex of K. This is because each vertex of K is adjacent to
every other vertex of G∗. Also the remaining vertices in each of the odd and even compo-
nents of G∗−K can be matched among themselves (Fig. 8.19). The total number of vertices
thus matched is even. As |V(G∗)| is even, the remaining vertices of K can be matched among
themselves, thus giving a 1-factor of G∗, which is a contradiction. q

Fig. 8.19

Remark Among the various proofs of Theorem 8.8, one proof due to Anderson [4] uses
Hall’s theorem.

Tutte’s characterisation of graphs admitting 1-factors has been used to obtain several
results including those for regular graphs and many of these are reported in the review
article by Akiyama and Kano [1]. We present some of these results. The first is due to
Peterson [181].

Theorem 8.9 (Peterson) Every cubic graph without cut edges has a 1-factor.

Proof Let G be a cubic graph without cut edges and let S ⊆ V . Let O1, O2, . . ., Ok be the
odd components of G−S and let mi be the number of edges of G having one end in V (Oi)
and the other end in S. As G is cubic,

therefore, ∑
v∈V (Oi)

d(v) = 3 |V (Oi) | (8.9.1)

and ∑
v∈S

d(v) = 3 |S |. (8.9.2)

Now, E(Oi) = [V(Oi), V(Oi)∪S]− [V(Oi), S], where [A, B] denotes the set of edges having
one end in A and the other end in B, A ⊆ V, B ⊆ V . Thus, mi = | [V(Oi), S] | = ∑

v∈V (Oi)
d(v)−

2 |E(Oi)|. Since d(v) = 3 for each v and V (Oi) is odd component, mi is odd for each i. Also,
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since G has no cut edges, mi ≥ 3. Therefore, k0(G−S) = k ≤ 1

3
∑

v∈S

d(v) < 1

3
3 |S |= |S |. Hence

by Theorem 8.8, G has a 1-factor. q

Remark A cubic graph with cut edges may not have a 1-factor. To see this, consider the
graph G1 of Figure 8.20 (a). If we take S = {v}, then k0(G−S) = 3 > 1 = |S| and hence G1

has no 1-factor.
Also, a cubic graph with a 1-factor may have cut edges. Consider the graph G2 of Figure

8.20 (b). Clearly, < e1, e2, e3, e4, e5 > is a 1-factor and e3 is a cut edge of G2.

Fig. 8.20

The next result is due to Cunningham [62].

Corollary 8.2 The edge set of a simple 2-edge-connected cubic graph G can be parti-
tioned into paths of length three.

Proof By Theorem 8.9, G is a union of a 1-factor and 2-factor. Orient the edges of each
cycle of the 2-factor in any manner so that each cycle becomes a directed cycle. Then, if
e is any edge of the 1-factor and f1, f2 are the two arcs of G having their tails at the end
vertices of e, then {e, f1, f2} form typical 3-path of the edge partition of G (Fig. 8.21). q

Fig. 8.21
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Berge [23] obtained the following estimate for α1(G) of a graph G, the proof of which is
given by Bollobas [29].

Theorem 8.10 For any simple graph G, α1(G) = (n−d)/2, where d = max{k0(G−S)−|S| :

S ⊆V}.

Proof Clearly at most n−d vertices can be saturated in any matching of G. In order to
show that this bound is attained, we use the following construction. Let H = GVKd . Then
H satisfies Tutte’s condition. For if S′ is any subset of V (H), then k0(H − S′) = 0 or 1 if
S′ 6⊇ V(Kd). Also, if S′ ⊇ V (Kd), then k0(H − S′) = k0(G− S), where S = S′

⋂

V (G), so that
k0(H −S′)−|S′| = k0(G−S) −|S|−d = 0, by definition of d. Therefore, by Tutte’s theorem,
H has a 1-factor M. The restriction of M of G is a matching in G which does not cover at
most d vertices of G. q

Remark Berge actually used the theory of alternating paths to prove Theorem 8.10 and
then deduced the Tutte’s theorem.

The restatement of Theorem 8.10 is as follows.

Corollary 8.3 If G is a graph with n vertices and α1(G) = a, then there is a set S of s

vertices such that k0(G−S) = n + s−2a.

The following result is due to Babler [10].

Theorem 8.11 Every k-regular, (k− 1)-edge-connected graph with even order has a 1-
factor.

Proof Let G be a k-regular, (k− 1)-edge-connected graph with even order and let S be
any subset of V . Let O1, O2, . . ., Or be the odd components of G−S with order ni and size
mi, and let ki edges join Oi to S, for 1 ≤ i ≤ r. Then ki ≥ k−1, (8.11.1)

∑
v∈V (Oi)

d(v) = kni = 2mi + ki (8.11.2)

and ∑
v∈S

d(v) = k|S| ≥
r

∑
1

ki +2|E(S)|. (8.11.3)

Now, (8.11.2) gives ki = kni −2mi, so that if k is even, so is ki, and thus ki > k−1 implies
ki ≥ k. Similarly, if k is odd, so is ki, and again ki > k−1 implies ki ≥ k. Summing this over
r odd components, we obtain by using (8.11.3)

rk ≤
r

∑
i=1

ki ≤
r

∑
i=1

ki +2|E(S)| ≤ k|S| .

Therefore, k0(G−S) = r ≤ |S| and by Tutte’s theorem, G has a 1-factor. q
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8.3 Antifactor Sets

Definition: A subset S ⊆ V of a graph G(V, E) such that k0(G− S) > |S| is called an
antifactor set. An antifactor set S such that no proper subset of S is an antifactor set is
called a minimal antifactor set. For example, in the graph of Figure 8.20(a), {v} is an
antifactor set.

Definition: A vertex v ∈ V is a claw centre if and only if at least three vertices of G

adjacent to v form an independent set. Clearly, vertex v is a claw centre in the graph of
Figure 8.20(a).

Now assume that G is a graph of even order n and let S be an antifactor set of G. Let
k0(G−S) = k and O1, O2, . . . , Ok be the odd components of G−S. Since n is even, |S| and k

have the same parity. Choose a vertex ui ∈V(Oi), 1≤ i≤ k. Then |S∪{u1, u2, . . . , uk}| is even,
that is, k + |S| ≡ 0 (mod 2). This implies that k ≡ |S| (mod 2) and therefore k0(G− S) ≡ |S|
(mod 2). Thus we have the following result.

Lemma 8.4 If S is an antifactor set of a graph G of even order, then k0(G−S) ≥ |S|+2.

Tutte’s theorem implies that a graph G has either a 1-factor or an antifactor set. It is
necessary to mention here that the computational complexity is high in the verification of
Tutte’s condition for every subset S of V . In order to reduce the computations, the antifactor
sets are of great significance. The following result on antifactors is due to Sumner [236].

Lemma 8.5 If S is a minimal antifactor set of a connected graph G of even order and
having no 1-factor, and if k0(G−S) = r and |S|= s, then

i. r ≥ s+2,

ii. each vertex of S is adjacent to vertices in at least r− s+1 distinct odd components of
G−S,

iii. every vertex of S is a claw centre.

Proof

i. Already established (Lemma 8.4).

ii. If v ∈ S is adjacent to h distinct odd components say O1, O2, . . ., Oh with h ≤ r − s,
then G−{S−{v}} has the odd components Oh+1, Oh+2, . . ., Or. Then, if h is odd,
k0(G−S′) = r−h ≥ s > s−1 = |S′|, and if h is even, then {O1 ∪O2 ∪ . . .∪Oh}∪{v} is
also an odd component of G− S′ so that k0(G− S′) = r − h + 1 ≥ s + 1 > s− 1 = |S′|,
where S′ = S−{v}. That is, S′ is an antifactor set, contradicting the minimality of S.
Thus, h ≥ r− s+1.

iii. Since any v ∈ S is adjacent to at least r− s+1 ≥ 3 (by (i)) distinct odd components, v

is a claw centre, by definition. q
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Remark The above observations imply that Tutte’s theorem is equivalent to the follow-
ing.

A graph G has a 1-factor if and only if G does not have a set S of claw centres such that
k0(G−S) > |S|. Obviously, this form of Tutte’s theorem decreases the number of subsets S

of V to be verified in Tutte’s condition.

An improvement of Theorem 8.11 is due to Plesnik [209].

Theorem 8.12 If G is a k-regular, (k−1)-edge-connected graph of even order and G1 is
obtained from G by removing any k−1 edges, then G1 has a 1-factor.

Proof Assume G1 has no 1-factor. Then G1 has an antifactor set S with k0(G1 −S) > |S|.
Therefore by Lemma 8.4,

k0(G1 −S) ≥ |S|+2. (8.12.1)

Let O1, O2, . . ., Or be the odd components and Or+1, Or+2, . . . , Or+s be the even com-
ponents of G1 − S. For a component Oi, let ai and mi be the number of edges respectively
of E(G)−E(G1) and E(G1) joining it to S and bi be the number of edges of E(G)−E(G1)
joining it to the other O j’s. Then the total number of edges going out of Oi is ai +bi +mi.
Since G is (k− 1)-edge-connected, ai + bi + mi ≥ k− 1. By the argument used in Theorem
8.11, this implies that ai +bi +mi ≥ k, for an odd component Oi. Summing over the r odd
components, we obtain

r

∑
i=1

ai +
r

∑
i=1

bi +
r

∑
i=1

mi ≥ rk. (8.12.2)

The number of edges between the Oi’s, and between Oi’s and S, removed from G is
t

∑
i=1

ai +
(

1

2

)
t

∑
i=1

bi, where t = r + s. As this is at most k−1, we have

2
t

∑
i=1

ai +
t

∑
i=1

bi ≤ 2(k−1). (8.12.3)

Also,
t

∑
i=1

ai +
t

∑
i=1

mi ≤ ∑
v∈S

d(v) = k|S|. (8.12.4)

Adding (8.12.3) and (8.12.4), we get

3
t

∑
i=1

ai +
t

∑
i=1

bi +
t

∑
i=1

mi ≤ k(|S|+2)−2. (8.12.5)

As the sum on the left of (8.12.2) is less than the sum on the left of (8.12.5), we have

rk ≤ k(|S|+2)−2 < k(|S|+2), giving r < |S| + 2, which contradicts (8.12.1). q
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We now have the following observation.

Corollary 8.4 A (k−1)-regular simple graph on 2k vertices has a 1-factor.

Proof Assume G is a (k− 1)-regular simple graph with 2k vertices having no 1-factor.
Then G has an antifactor set S and by Lemma 8.4, k0(G−S) ≥ |S|+2. Therefore, |S|+(|S|+
2) ≤ 2k and so |S| ≤ k− 1 . Let |S| = k− r. Then r 6= 1. For if r = 1, then |S| = k − 1 and
therefore k0(G−S) = k +1. Thus each odd component of G−S is a singleton and therefore
each such vertex is adjacent to all the k−1 vertices of S, as G is (k−1) regular. This implies
that every vertex of S is of degree at least k + 1, a contradiction. Thus, |S| = k− r, 2 ≤ r ≤
k− 1. If G1 is any component of G− S and v ∈ V (G1), then v can be adjacent to at most
|S| vertices of S. Since G is (k− 1)-regular, v is adjacent to at least (k− 1)− (k− r) = r − 1

vertices of G1. So, |V(G1)| ≥ r. Counting the vertices of S, we obtain (|S|+2)r + |S|= 2k, or
(k− r +2)r +(k− r) ≤ 2k. This gives (r−1)(r− k) ≥ 0, violating the condition on r. q

The next result is due to Sumner [236].

Theorem 8.13 If G is a connected graph of even order n and claw-free (that is, contains
no K1, 3 as an induced subgraph), then G has a 1-factor.

Proof If G has no 1-factor, then G contains a minimal antifactor set S of G. Also, there
is an edge between S and each odd component of G−S. If v ∈ S and vx, vy and vz are edges
of G with x, y and z belonging to distinct odd components of G−S, then a K1, 3 is induced
in G. This is not possible, by hypothesis.

Since k0(G − S) > |S|, there exists a vertex v of S and edges vu and vw of G, with u

and w in distinct odd components of G−S. Assume Ou and Ow to be the odd components
containing u and w respectively. Then < Ou ∪Ow ∪ {v} > is an odd component of G− S1,
where S1 = S−{v}. Also, k0(G− S1) = k0(G− S)− 1 > |S| − 1 = |S1| and therefore S1 is an
antifactor set of G with |S1|= |S|−1, a contradiction to the choice of S. So G has a 1-factor.
(Clearly, by Lemma 8.4, the case |S|= 1 and k0(G−S) = 2 does not exist). q

The following results are immediate, as each type of graph in these cases does not con-
tain K1, 3 as an induced subgraph.

Corollary 8.5 Every connected even order edge graph has a 1-factor.

Corollary 8.6 If G is a connected graph of even order, then G2 has a 1-factor.

Corollary 8.7 Every connected total graph of even order has a 1-factor.

Corollary 8.8 Every connected cubic graph in which every vertex lies on a triangle has
a 1-factor.

Corollary 8.9 If a connected even order graph G has less than κ(G) claw centres, then
G has a 1-factor.
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The following result is the generalisation of Theorem 8.13.

Theorem 8.14 If G is n-connected even order graph with no induced K1, n+1, then G has
a 1-factor.

Proof Assume G has no 1-factor. Then G has a minimal antifactor set S. Let |S| = s and
let the odd components of G− S be O1, O2, . . ., Ok. If S′i = {v ∈ S : v is adjacent to some
vertex to Oi}, then S′i is a vertex cut of G and therefore |S′i| ≥ n. Thus there are at least n

edges from Oi incident with n distinct vertices of S. The number of such edges as i ranges
from 1 to k is at least nk and this is greater or equal to n(s+2), by Lemma 8.4. Thus at least
one vertex v of S is incident with at least n+1 of these edges. But then, v is the centre of an
induced K1, n+1, contradicting the assumption. q

It can be observed that a graph can have more than one 1-factors and different 1-factors
can either have no edge in common or have some edges in common. Depending on the
nature of edges, we have the following definition.

Definition: In a given graph, two 1-factors are said to be disjoint if they have no edge in
common and two 1-factors are said to be distinct if they have at least one different edge. For
example, in the graph of Figure 8.22, the 1-factors {e1, e2, e3} and {e4, e5, e6} are disjoint,
while as the 1-factors {e1, e2, e3} and {e1, e7, e5} are distinct.

Fig. 8.22

Consider maximal sets S which satisfy Tutte’s condition in graphs admitting a 1-factor.
If such a graph is connected, then definitely there exist subsets S such that k0(G−S) = |S|.
For such a graph will have a vertex v which is not a cut vertex, and G− v being connected
and of odd order, k0(G−v) = 1 = |v|. The maximal subsets S for which k0(G−S) = |S| holds
is called a maximal factor set.

A result on counting distinct 1-factors for bipartite graphs is given by Theorem 8.4. The
next result as reported in Bollobas [29] gives the bounds for distinct 1-factors in a graph..

Theorem 8.15 Let G be a graph admitting a 1-factor and let S0 be a maximal factor set
of G with |S0|= m and O1, O2, . . ., Om be the odd components of G−S0. Further, let d = min

{|N(Oi)∩So| : 1 ≤ i ≤m} and d′ be the minimum number of edges joining Oi to S0, 1 ≤ i ≤m.
Then the number F(G) of 1-factors of G satisfies
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i. F(G) ≥ r(d,m) =
min(d,m)

∏
i=1

(d +1− i) and

ii. F(G) ≥ r̃ (d′,m), where r̃ (d′,m) is the minimum number of 1-factors in a bipartite
multigraph with m vertices in each class, in which d′ is the minimum degree in the
first vertex class.

Proof Let S0 be a maximal factor set of G so that k0(G−S0) = |S0|.
Using Hall’s theorem for a complete matching in a bipartite graph, we can show that |S0|

odd components of G−S0 can be paired with the vertices of S0. The sufficient condition is
that any k such odd components should be joined in G to at least k vertices in S0. Clearly,
this is satisfied here. For if some set of k odd components are joined in G only to a subset
T of S0 with h vertices, h < k, then k0(G−T ) ≥ k > h = |T |, contradicting the hypothesis.
Therefore one vertex each of |S0| odd components can be matched to one vertex of S0. Let
O be an odd component of which a vertex a has been matched with a corresponding vertex
s of S0. Clearly, O′ = O−a is a graph on an even number of vertices. Now we verify Tutte’s
condition on O′. If there is a T ⊆ V ′ = V(O′) such that k0(O

′ −T ) > |T |, then k0(O
′ − T )

> |T |+ 2. Let S = S0 ∪ T ∪ {a}. Then k0(G− S) = k0(O
′ −T )+ k0(G− S0)− 1 = k0(O

′−T )+
|S0|−1 > |T |+ |S0|+1 = |S|, contradicting the choice of S0. Thus Tutte’s condition is satisfied
for O′ and O′ has a 1-factor.

If G− S0 has an even component C and a ∈ V (C), then G − (S0 ∪ {a}) has at least one
more odd component than G− S0, contradicting the choice of S0 or the Tutte condition.
Thus G−S0 has no even components.

Therefore we have seen that for each oi ∈ Oi such that there is an si ∈ S0 with oisi ∈ E,
each Oi −oi has a 1-factor forming part of a 1-factor of G. The number of such choices of
m independent edges oisi equals the number of 1-factors in a bipartite graph H(V1 ∪V2, E),
where V1 has m vertices, one corresponding to each odd component Oi of G− S0 and V2

has the m vertices of S0. If we take the edge set E to be such that whenever s j ∈ N(Oi)∩ S0,
we take exactly one oisi ∈ E, then we get an ordinary bipartite graph for H in which the
minimum degree in V1 is d = min{|N(Oi)∩ S0|} and then (i) follows from Theorem 8.4.
However, if we take E to be such that for each edge joining Oi to s j we take an edge ois j,
then we get a bipartite multigraph for H in which the least degree of a vertex in Vi is d′ as
defined and then (ii) follows. q

The following observations can be seen immediately.

Corollary 8.10 For a k-edge-connected graph with a unique 1-factor, F(G) ≥ k.

Corollary 8.11 If G is a connected graph with a unique 1-factor, then G has a cut edge
which belongs to a 1-factor.

The details of the following results can be found in Bollobas [29].

Theorem 8.16 If δ (n) is the minimum degree of a graph of order 2n with exactly one
1-factor, then δ (n)≤ [log2(n +1)].
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Theorem 8.17 If e(n) is the maximum size of a graph of order 2n with exactly one
1-factor, then e(n) = n2.

8.4 The f-factor Theorem

The f -factor Theorem gives a set of necessary and sufficient conditions for the existence
of an f-factor in a general graph. This result was proved by Tutte [250] for loopless graphs,
using the theory of alternating paths, and later again by Tutte [251], using the 1-factor
Theorem.

First of all, we have the following definitions.

Definition: A vertex function for a general graph G(V, E) is a function f : V → N0 such
that 0 ≤ f (v) ≤ d(v), for every v ∈V .

For any function f : V → N0 and for any U ⊆ V , we set f (U) = ∑
v∈U

f (v).

Definition: Three pair-wise disjoint (possibly empty) subsets S, T and U of the vertex
set V of a general graph G, such that V = S∪T ∪U , is called a decomposition D = (S, T, U)
of G. The components, say C1, C2, . . ., Ck, of the vertex-induced subgraph < U > of G are
called the components of U . For each Ci, let hi = f (Ci)+qG[T, Ci], where f is a given vertex
function of G, and qG[T, Ci] denotes the number of edges of G, whose one end is in T and
the other end is in Ci. Then Ci is said to be an odd or even component of U , depending upon
hi being odd or even, and the number of odd components of U is denoted by k′

0
(D, f ).

The f-deficiency of D for the given G is defined as

δ (D, f ) = k′
0
(D, f )− f (S)+ f (T )−d(T )+q[S, T ].

The decomposition D is defined to be an f-barrier of G if δ (D, f ) > 0.
The term decomposition is used by Graver and Jurkat [88], and Tutte calls it a G-triple.

These decompositions play the same role as the antifactor sets in the theory of 1-factors.

Before going into the details, we first state the f -factor Theorem.

Theorem 8.18 If f is a vertex function for a graph G, then either G has an f -factor or an
f -barrier but not both.

It can be seen that both the statement and the proof of the f -factor Theorem as in Tutte
[253] definitely have similarities to those of the 1-factor Theorem. Since there are few
complications in the constructions involved which make the proof given by Tutte [253]
some what lengthy, we follow here the earlier proof by Tutte [251].

Tutte [250] defines an ordinary graph G′ corresponding to a given graph G such that G

has an f -factor if and only if G′ has a 1-factor and shows that the 1-factor condition cor-
responds to the f -factor condition, and derives the f -factor Theorem as a consequence of
the 1-factor Theorem. Berge [23] uses the same graph construction to derive the maximum
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f -matching Theorem. Since we have general graphs under consideration, we construct G′

with suitable changes as reported by Parthasarthy [180], and then find that the proof still
holds.

Let G be a general graph with the vertex function f . This defines for each vertex vi, its
degree di = d(vi|G), fi = f (vi) and ki = di − fi. For each vertex vi of G, take two subsets Xi

and Yi of vertices of G′, where |Xi| = di and |Yi| = ki. Let the vertices of Yi be labelled yi
j,

1 ≤ j ≤ ki , arbitrarily.Now, label the vertices of Xi in the following manner.
Label the edges of G arbitrarily as 1, 2, . . ., m. Since |Xi| = number of link edges li

incident with vi plus twice the number of loops `0

i incident with vi, a vertex xi
j ∈ Xi is

taken corresponding to each link edge j incident with vi and two vertices xi
h, xi

h′
are taken

corresponding to each loop h incident at vi. As for edges, if link j joins vi and vk, then xi
jx

k
j is

made an edge. Corresponding to loop h incident with xi
h the edge xi

h xi
h′

is taken. In addition,
all the edges of the complete bipartite subgraph with vertex partition {Xi, Yi} are taken for
each i. These constitute the graph G′. The induced subgraph < Xi ∪ Yi > of G is called the
star graph at i and is denoted by St(i). For multi graph G, it is a complete bipartite graph,
but for general graphs it will contain edges in < Xi > which we call loop edges. The other
edges of St(i) are called star edges and the remaining edges of G′ are called as link edges.

This construction is illustrated in Figure 8.23. In the general graph G, d(v1)= 5, d(v2) = 3

and d(v3) = 2. Let f = (3, 2, 1) be the vertex function, so that f (v1) = 3, f (v2) = 2 and
f (v3) = 1. Therefore, k1 = 2, k2 = 1 and k3 = 1. Here |X1| = 5, |X2| = 3 and |X3| = 2, and
|Y1| = 2, |Y2| = 1 and |Y3|= 1.

Fig. 8.23
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Label the edges of G as 1, 2, 3, 4 and 5 as shown. Then Y1 = {y1

1
, y1

2
}, Y2 = {y2

1
} and Y3 = {y3

1
},

and we have X1 = {x1

1
, x1

1′
, x1

2
, x1

3
, x1

4
}, X2 = {x2

2
, x2

3
, x2

5
} and X3 = {x3

4
, x3

5
}. The vertex set of

G′ is Xi ∪ Yi, 1 ≤ i ≤ 3. The edges of G′ are x1

1
x1

1′
, x1

2
x2

2
, x1

3
x2

3
, x1

4
x3

4
, x2

5
x3

5
(shown by dotted

lines) and the star edges (shown by bold lines). The dotted lines in G form an f -factor with
f = (3, 2, 1).

The following result gives a relation between f -factors of G and the 1-factors of G′.

Theorem 8.18 A general graph G has an f -factor if and only if G′ has a 1-factor.

Proof First, assume G has an f -factor F with link edges L and loop edges L0. Let F have
gi link edges and f o

i loop edges at the vertex vi. Then fi = gi + 2 f 0

i |Xi| = di = li + 2l0

i and
|Yi|= ki = di− fi = (li +2l0

i )−(gi +2 f 0

i ) = (li−gi)+2(2l0

i − f 0

i ), where li is the number of link
edges incident with vi and l0

i is the number of loops incident with vi. Let L′ and (L0 )′ be
the set of corresponding set of link and loop edges in G′. The matching consisting of these
edges, keeps unsaturated all the vertices of Yi and a set of li −gi +2(lo

i − f o
i ) = ki vertices of

Xi, for 1 ≤ i ≤ n. Now match the vertices of Yi with these unsaturated vertices of Xi using
the star edges St(i) and let S′ be this set of edges. Clearly L′U(L0)′∪ S′ is a 1-factor in G′.

Conversely, assume G′ has a 1-factor H. As the vertices in Yi are matched only to vertices
in Xi, there are exactly di − (di − fi) = fi = gi +2 f 0

i vertices of Xi which are not matched by
H to vertices in Yi. Clearly, 2 f 0

i vertices from these unmatched vertices of Xi correspond to
loop edges of < Xi > and thus are matched in pairs amongst themselves. The remaining
gi vertices are matched by the link edges of H to X j vertices of other star graphs St(i) of
G′. If F is the set of edges of G corresponding to the loop edges and link edges, then d

(vi|< F >) = gi +2 f 0

i . Thus f is an f -factor of G. q

The following definition will be required for the graph G′ constructed as above.

Definition: A subset W of the vertex set V ′ of the graph G′ is said to be simple if the
following conditions get satisfied.

i. (Xi ∩W) 6= ϕ implies Xi ⊆W ,

ii. (Yi ∩W) 6= ϕ implies Xi ⊆W and

iii. At most one of Xi and Yi is a subset of W , implies that if Yi = ϕ, then Yi ⊆W , that is
Xi ∩W = ϕ.

Now assume W be a simple set of V ′, S be the set of vertices vi of G, for each Xi ⊆
W and T be the set of vertices v j of G for each Y j ⊆ W . We observe that S ∩T = ϕ, and
S∪T ∪ (V −S−T ) is a decomposition D of V .

Denoting by d(G, S) = k0(G− S)− |S|, for any subset S of the vertex set V of a graph,
Theorem 8.8 can be restated in the following form.

Theorem 8.19 A simple graph G has a 1-factor if and only if it has no subset S ⊆V with
d(G, S) > 0.
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Theorem 8.20 If W is a simple subset of V ′ and D is the corresponding decomposition
of V , then d(G′, W) = δ (D, f ).

Proof Since W is a simple subset of V ′ and D is the corresponding decomposition of V ,

|W | = ∑
v j∈S

|X j|+ ∑
v j∈T

|Y j|= ∑
v j∈S

d j + ∑
v j∈T

(d j − f j) = d(S)+d(T )− f (T ). (8.20.1)

Thus, d(G′, W ) = k0(G
′−W )−d(S)−d(T )+ f (T ).

We proceed to find k0(G
′−W ) and in doing so we consider the components K of G′−W .

We have the following possibilities.

i. The component K contains a single vertex of the form xi
r. This is possible when Yi

⊆W and the edge r is a link edge whose other end is in Y j ⊆W . Thus, in this case, K

is an odd component, and the number of such odd components is equal to the number
of such link edges and equals q[S, T ].

ii. The component K contains a single vertex of the form yi
α , and this is possible when

Xi ⊆W . This again is an odd component and the number of such odd components is
equal to

∑
i∈S

|Yi| = ∑
i∈S

(di − fi) = d(S)− f (S).

iii. K contains a single edge of the form xi
α xα corresponding to a loop of G at α. This is

possible when Yi ⊆W . Clearly, this is an even component of G′−W .

iv. K contains a single edge of the form xi
rx

j
r , where r is the link edge of G joining ver-

tices vi and v j. Clearly, this happens when Yi ⊆ W and Y j ⊆ W . This also is an even
component.

v. K contains more than one edge and we call such components large components.
Clearly, they have one star graph St(i) as a subgraph. If K contains more than one
such star graph as a proper subgraph, it will also contain all edges of G′ between

such star graphs. The other edges of K are of the form xi
rx

j
r , where r is an edge of G

joining vi and v j , and St(i) ⊆ K and Y j ⊆ T . Let vi1 , vi2 , . . . , vik be the vertices of G

corresponding to the star graphs St(i j), 1 ≤ j ≤ k, which are subgraphs of K. Let C be
the induced subgraph < vi1 , vi2 ,. . . , vik > of G. Then C is a component of G−S−T and
therefore the number of vertices of the large component K is given by

n(K) = |V(K)| = ∑
vi∈C

|V(St(i))|+q[C, T ]

= ∑
vi∈C

(di +di − fi)+q[C, T ]
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= ∑
vi∈C

fi +q[C, T ] (mod 2)

= f (C)+q[C, T ] (mod 2).

Therefore K is an odd component of G′ −W if and only if C is an odd component of
G−S−T . So the number of large odd components of G′−W is k′

0
(D, f ).

Combining the above results, we observe that the number of odd components of G′−W

is given by

k0(G
′−W ) = q[S, T ]+d(S)− f (S)+ k′

0
(D, f ). (8.20.2)

Now, δ (D, f ) = k′
0
(D, f )− f (S)+ f (T )−d(T )+q[S, T ]

= k0(G
′−W)−d(S)+ f (T )−d(T ), (by using (8.20.2))

= d(G′, W ). (by using (8.20.1)) q

Now, we have the following main result.

Theorem 8.21 A general graph G has an f -factor if and only if it has no decomposition
D with δ (D, f ) > 0.

Proof

Necessity Assume there are decompositions D for which δ (D, f ) > 0 and choose one
such decomposition for which |S| is least. Claim that for each vi ∈ S, f (vi) < d(vi). If not,
there is a v ∈ S such that f (v) = d(v). Consider the decomposition D′ = (S′, T ′, U ′ ), where
S′ = S −{v}, T ′ = T ∪ {v} and U ′ = U . Then the components of < V − S′ − T ′ > are the
same as those of < V − S − T >. Also, for such a component C, f (C) is unchanged, but
q[C, T ′] = q[C, T ]+q[C, v]. Therefore at most q[v, U ] components can change from odd to
even. That is, k′

0
(G−S′−T ′) ≥ k′

0
(G−S−T )−q[v, U ].

Thus, δ (D′, f ) = k′
0
(G−S′−T ′)+ f (T ′)− f (S′)−d(T ′)+q[S′, T ′]

= k′
0
(G−S′−T ′)+ f (T )+ f (v)− f (S)+ f (v)−d(T )−d(v)+

q[S, T ]−q[v, T ]+q[v, S]

= k′
0
(G−S′−T ′)+ f (T )− f (S)−d(T )+q[S, T ]+2 f (v)−d(v)

−q[v, T ]+q[v, S]

≥ k′
0
(G−S−T )−q[v, U ]+ f (T)− f (S)−d(T )+q[S, T ]+d(v)
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−q[v, T ]+q[v, S] (as d(v) = f (v))

= δ (D, f )+d(v)−q[v, U ]−q[v, T ]+q[v, S]

= δ (D, f )+2q[v, S] > δ (D, f ) > 0.

This contradicts the choice of D and thus the claim is established.
Now, suppose W = {Xi : vi ∈ S}∪{Y j : v j ∈ T}.
Then W is simple, as S and T are disjoint. Therefore by Theorem 8.20, d (G′, W) =

δ (D, f ) > 0 and G′ has no 1-factor. Thus by Theorem 8.18, G has no f -factor.

Sufficiency Assume that G has no f -factor, so that G′ has no 1-factor. Therefore, by
Theorem 8.19, there is a subset W of V ′ with d(G′, W) > 0. We choose such a W with
least cardinality and prove that W is simple.

Claim 1 Y j ∩W 6= ϕ and Y j ⊆W .
If this is not true, then there is a Y j such that Y j ∩W 6= ϕ, and Y j ∩ (V ′−W ) 6= ϕ. Define

Q = W − (Y j ∩W) (Fig. 8.24).

Fig. 8.24

If X j 6⊂ W , then G′ −W and G′ −Q differ in one component only, the component star
edges.

If X j ⊆W , then each component of G′−W is also a component of G′−Q.
In either case, k0(G

′ −Q) ≥ k0(G
′ −W )− 1 and |Q| ≤ |W | − 1. Therefore, d(G′, Q) > 0,

contradicting the choice of W .

Claim 2 Xi ∩W 6= ϕ implies Yi ⊆W .
If this is not true, then there is an i such that Xi ∩W 6= ϕ and Yi ⊆W . Let a ∈ Xi ∩W and

define Q = W −{a}. Then G′−W can have at most one component with a vertex belonging
to Yi which is adjacent to a in G. Thus,

k0(G
′−W ) ≤ k0(G

′−Q)+1 and |Q| = |W |−1.

Therefore, d(G′, Q) ≥ d(G′, W), contradicting the choice of W .
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Now claim (1) and claim (2) together imply that both Xi and Yi are not subsets of W .

Claim 3 Xi ∩W 6= ϕ implies Xi ⊆W .
If not, there is an i such that Xi ∩W 6= ϕ and Xi ∩ (V ′−W ) 6= ϕ. Let a ∈ Xi ∩W and define

Q = W −{a}. By claims (2) and (1), Yi ⊆ G′−W , so that all vertices of Yi belong to a single
component of G′ −W . Also there is at most one component of G′−Q which has a vertex
not belonging to Yi which is adjacent to an a in G′ (Fig. 8.25). Therefore G′−W and G′−Q

differ in at most two components.

Fig. 8.25

Thus, k0(G
′−Q) ≥ k0(G

′−W)−2

and d(G′, Q) ≥ d(G′, W )−1. (8.21.1)

But k0(G
′−W )+ |W | ≡ |V ′| and k0(G

′−Q)+ |Q| ≡ |V ′|.

So, k0(G
′−W)−|W | ≡ |V ′| ≡ k0(G

′−Q)−|Q| and d(G′, W ) ≡ d(G′, Q).

Therefore, (8.21.1) becomes d(G′, Q) ≥ d(G′, W) > 0, contradicting the choice of W .
Hence we have proved that W is a simple set and by Theorem 8.20, for the corresponding

decomposition D of G, δ (D, f ) > 0. q

Remark Theorem 8.21 shows that the 1-factor Theorem implies the f -factor Theorem.
The converse is also true as can be seen in Theorem 8.22. Before that we have the following
definition.

Definition: Suppose D = (S, T, U) is a decomposition of V and x ∈ S, y ∈ T . The decom-
position D1 = (S−{x}, T, U ∪ {x}) is said to be obtained by an x-transfer from S and the
decomposition D2 = (S, T −{y}, U ∪{y} is said to be obtained by y-transfer from T .

The following result is an immediate consequence of the above definition and can be
easily established.
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Lemma 8.6 An x-transfer from S does not reduce the deficiency of D if f (x) = d(x) or
d(x)−1 and a y-transfer does not reduce the deficiency of D if f (y) = 0 or 1.

Theorem 8.22 The f -factor Theorem implies the 1-factor Theorem.

Proof Clearly, by the f -factor Theorem with f (v) = 1, for all v ∈ V , G has a 1-factor if
and only if it has a 1-barrier D = (S, T, U). But by Lemma 8.6, D1 = (S, ϕ, V − S) has no
less deficiency than D (by y-transfer from T ). Therefore G has no 1-factor if and only if
there is a 1-barrier of the form D1. But δ (D1, f ) = k0(G−S)− f (S)−d(T ) + f (T )+q[S, T ] =
k0(G−S)−|S| and D1 is a 1-barrier if and only if δ (D1, f ) > 0, that is k0(G−S) > |S|. Hence
the 1-factor Theorem. q

Corollary 8.12 The Erdos-Gallai Theorem 2.4 on degree sequences follows from the
f -factor Theorem.

Proof Theorem 2.4 gives a necessary and sufficient condition for a non-increasing se-
quence d = [di ]

n
1

of non-negative integers to be the degree sequence of a simple graph. In
order to get this condition, we observe that d is graphic if and only if the complete graph

Kn has a d-factor, where d(vi) = di, given
n

∑
i=1

di = 2m.

By the f -factor Theorem, d fails to be graphic if and only if Kn has a d-barrier D =
(S, T, U). Since for Kn, U can have at most one component, k0(D, d) = 0 or 1, further
δ (D, d) > 0 is even, as d(Kn) = ∑di = 2m is even. Therefore the condition δ (D, d) > 0

becomes

q
kn

= [S, T ]−d(S)− (n−1) |T |+d(T ) > 0. (8.12.1)

Now transfer of elements t from T to U , or elements s from S to U does not decrease
the deficiency δ (D, d). So elements t ∈ T with d(t) < |T |+ |U | and elements s ∈ S with d(s)
> |T | in S can be transferred to U without decreasing the deficiency. Also it can be seen
that elements u ∈ U with d(u) ≥ |T |+ |U | can be transferred to S without decreasing the
deficiency. Therefore the f -barrier can be made such that d(t) > |T |+ |U | for all t ∈ T , |T |
< d(u) < |T |+ |U | for all u ∈ U and d(s) ≤ |T | for all s ∈ S, and d is non-graphical if and
only if Kn has such a d-barrier D. But for such a D, q[S, T ] = r(n− r −|U |), where |T | = r,

d(T ) =
r

∑
1

di, and thus condition (8.12.1) becomes

r(n− r−|U |)−d(S)− r(n−1)+d(T) > 0.

That is,
r

∑
1

di > r(n−1)+d(S)− r(n− r−|U |)

= r(r−1)+ r(n− r)+d(S)− r(n− r−|U |)

= r(r−1)+ r|U |+d(S)
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> r(r−1)+
n

∑
i=r+1

min{r, di},

which is the Erdos-Gallai condition. q

8.5 Degree Factors

Let d = [di]
n
1

and r = [di − ki]
n
1

be graphical sequences. The problem we consider here is
the existence of a graph G realising d with a spanning subgraph (factor) realising k = [ki]

n
1
.

This problem was asked by Rao and Rao [215] as k-factor conjecture, when k ≤ ki ≤ k +1

for each i, and solved by Kundu [143]. An improvement of this was due to Kleitman and
Wang [129] and further improvement by Kundu [141]. For ki = 1, 1≤ i≤ n, the problem was
earlier posed by Grunbaum [93] and proved by Lovasz [149], and this proof also applies
when ki = k, 1 ≤ i ≤ n.

Theorem 8.23 (k-factor Theorem) If [di]
n
1

is a graphical sequence such that [di − k]n
1

is
also graphical, then there is a realisation of [di]

n
1

with a k-factor.

Proof Let G1 and G2 be two graphs on V = {v1, v2, . . ., vn} such that d(vi|G1) = di and
d(vi|G2) = di − k. Assume that G1 and G2 are chosen such that G2 has maximum edges
common with G1. We show that all edges of G2 are in G1. Let E1 = E(G1) and E2 = E(G2).

Claim

If viv j ∈ E2 −E1 and vivk, v jvr ∈ E1 −E2 (i, j, k, r being distinct), then vkvr ∈ E1 −E2.

If vkvr ∈ E2, then an EDT in G2 switching the pair viv j , vkvr to the positions vivk, v jvr gives a
graph degree-equivalent to G2 with more edges common with G1, contradicting the choice
of G1 and G2. If vkvr /∈ E1, then an EDT in G1 switching the pair vivk, v jvr to the positions
viv j, vkvr gives a graph degree-equivalent to G1, such that G2 has more common edges with
this graph, again a contradiction. Thus, the claim is established.

Let G2 has some edges which are not in G1 and let v1 be a vertex with a maximum
number t of edges of E2 −E1 incident with it. By the degree stipulation on G1 and G2, there
are t + k vertices v2, v3, . . . , vt+k+1 which are adjacent to v1 in G1, but not in G2. Assume
v1vk ∈ E2 −E1 and vkv ∈ E1 −E2, and consider the following two cases.

Case 1 Let v 6= vi for i, 2 ≤ i ≤ t + k+1. Then by the above claim, vvi ∈ E1 −E2 for 2 ≤ i ≤
t +k+1, so that there are t +k+1 edges in E1 −E2 adjacent with v. By the degree-stipulation
on G1 and G2, there are t +1 edges in E2 −E1 incident with v, contradicting the choice of v.

Case 2 Let v = vi for some i, 2 ≤ i ≤ t + k +1, and without loss of generality, take v = v2.
Then again, by the above claim, vvi ∈ E1 −E2 for 3 ≤ i ≤ t + k +1. Also, vv1, vvk ∈ E1 −E2.
Therefore there are t + k+1 edges in E1 −E2 incident with v, again a contradiction.
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Hence G2 has no edges which are not in G1. But then < E(G1)−E(G2) > is a k-factor
of G1. q

Lemma 8.7 If [ki]
n
1

is a sequence of non-negative integers such that k ≤ ki ≤ k + 1 for

1 ≤ i ≤ n and for some k, 0 ≤ k ≤ n−2, and
n

∑
1

ki is even, then [ki]
n
1

is a graphical sequence.

Proof Induct on S =
n

∑
1

ki. Clearly, the result is trivial for S = 0. Assume it is true for all

values of
n

∑
1

ki < S−1 and let [ki]
n
1

be a sequence with
n

∑
1

ki = S (even). Then by Theorem 2.1,

[ki]
n
1

is graphical if and only if [k2 −1, k3 −1, . . . , kk1+1 −1, kk1+2, . . ., kn] is graphical, where
k1 ≥ k2 ≥ . . .≥ kn. But the sum of the terms in this sequence is S−2k1, which is even, and
by induction hypothesis is graphical. Hence by Theorem 2.1, [ki]

n
1

is graphical. q

The proof given here of the following k-factor Theorem of Kundu, is due to Chen [57].

Theorem 8.24 If [di]
n
1

and [di − ki]
n
1

are two graphical sequences satisfying k ≤ ki ≤ k+1,
for 1 ≤ i ≤ n and some k > 0, then there is a graph realising [di]

n
1

and having a k-factor
k = [ki]

n
1
.

Proof Since [di]
n
1

and [di − ki]
n
1

are both graphical, [ki]
n
1

is also graphical by Lemma 8.7.
Clearly, there exists a graph with degree sequence [di]

n
1

containing a k-factor k = [ki]
n
1

if and only if there exists a graph with degree sequence [n−1− ki]
n
1

containing a k′-factor
k′ = [n−1−di]

n
1
. This can be easily established by taking the complementary graphs. Thus,

the conditions can be shifted from ki’s to di’s, so that it is enough to prove that if [di]
n
1

and
[di−ki]

n
1

are graphical with k ≤ di ≤ k+1 for 1 ≤ i ≤ n and the ki’s unrestricted, then there is
a graph with degree sequence [di]

n
1

and a k-factor k = [ki]
n
1
.

Let G1 and G2 be graphs with degree sequences [ki]
n
1

and [di− ki]
n
1

respectively, such that
the multigraph G, obtained by superimposing G1 and G2 has a minimum number of multiple
edges. Obviously, in the superimposed graph, there are at most two edges between any pair
of vertices, one of G1 and one of G2. If there are no such multiple edges, then G1 is a
factor of G.

Assume there are multiple edges in G and let uv be one such multiple edge. Since
d(u|G)= d(u|G1)+d(u|G2) ≤ n−1 and uv is a multiple edge, there is a vertex w not adjacent
to u in G. Let V be the common vertex set of G1, G2 and G. If for every x ∈ V −u, q[v, x] ≥
q[w, x], then d(v|G)−2 ≥ d(w|G), contradicting the choice that each di is k or k+1. Therefore
there is a vertex x ∈V −u such that q[v, x] < q[w, x] (Fig. 8.26).

Fig. 8.26
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The following two cases arise:

1. q[v, x] = 1 and q[w, x] = 2 ,

2. q[v, x] = 0 and q[w, x] = 0.

In case 1, we have either 1(a) vx ∈ G1, or 1(b) vx ∈ G2, and in case 2, either 2(a) wx ∈ G1,
or 2(b) wx ∈ G2. For all these cases, make an EDT switching the pair of edges vu, wx to the
positions vx, uw. In 1(a) and 2(b), this is done in G2 to obtain a graph G′

2
degree-equivalent

to G2 and with less number of multiple edges in G1 ∪G′
2
. In 1(b) and 2(a), this is done in

G1 to get a graph G′
1

degree-equivalent to G1 and with less multiple edges in G′
1
∪G2. This

contradicts the choice of G1 and G2. q

Remark If di’s and ki’s being allowed to be arbitrary with [di]
n
1
, [di − ki]

n
1

are graphical,
and so [ki]

n
1

is graphical, then [di]
n
1

need not be realised with a k-factor. To see this, consider
the following example of Lovasz [149].

Let d = [8, 8, 3, 2, 2, 2, 2, 2, 3] and k = [4, 4, 0, 0, 0, 1, 2, 2, 3] so that d−k = [4, 4, 3, 2, 2, 1,
0, 0, 0]. Then d and d − k are graphical, realised by graphs G1 and G2 of Figure 8.27, and
evidently k is same as d − k with a different labeling. Now, it is easy to see that any reali-
sation of k = d − k needs an edge joining the two vertices of degree 4 in it. But if this uv is
an edge in G2, it will not be an edge in G1 −G2, so that there is no realisation of d with a
k-factor.

Fig. 8.27
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8.6 (g, f) and [a, b]-factors

In this section, we give a brief description of (g, f ) and [a, b] factors in a graph.

Definition: If f and g are two vertex functions of a graph G such that g(v) ≤ f (v) for all
v ∈V and F is a factor of G such that g(v) ≤ d(v|F)≤ f (v) for all v ∈V , then F is called a (g,
f)-factor of G.

If H is a (g, f )-factor of G, its f-deficiency is defined as ∆H(G, f ) = f (V )−d(H), where
d(H) = ∑

v∈V
d(v|H). Clearly, ∆H(G, f )≡ f (V)(mod2).

If D = (S, T, U) is a decomposition of G, then k′′(D, f , g) denotes the number of odd
components of U with respect to D and f for which f (c) = g(c), for every vertex c of the
component.

We now state the (g, f )-factor Theorem of Lovasz [148].

Theorem 8.25 If f and g are vertex functions of a graph G (V , E) such that 0 ≤ g(v) ≤
f (v)≤ d(v|G) for all v∈V , then either G has a (g, f )-factor or it has a decomposition D = (S,
T , U) satisfying k′′ (D, f , g) > f (S)+d(T )−g(T )−q[S, T ], but not both, where k′′(D, f , g)
is the number of odd components of < U >G with f (v) = g(v) for every vertex v of the
component.

Next, we state the (g, f )-factor Theorem due to Las Vergnas [255].

Theorem 8.26 Let g, f be vertex functions for a graph G(V, E) such that 0 ≤ g(v) ≤ 1 ≤
f (v) ≤ d(v|G) for all v ∈V . For S ⊆ V , let k′(G−S) be the number of odd components C of
G−S which are such that either C = {v} and g(v) = 1 or < V(C) > is odd and at least 3, with
g(v) = f (v) = 1 for all v ∈V(C). Then G has a (g, f )-factor if and only if f (S) ≥ k′(G−S) for
all S ⊆V .

The following variation of the (g, f )-factor Theorem is due to Kano and Saito [124].

Theorem 8.27 If g and f are vertex functions of a graph G(V, E) and θ a real number
such that 0 ≤ θ ≤ 1, and if g(v) < f (v), g(v) ≤ d(v|G) ≤ f (v) for all v ∈ V , then G has a (g,
f )-factor.

Definition: If a and b are non-negative integers with a ≤ b and F is a factor of G such
that a ≤ d(v|F) ≤ b for all v ∈ V , then F is called an [a, b]-factor of G. We note that an [a,
b]-factor is a (g, f )-factor for constant vertex functions g(v) = a for all v ∈ V and f (v) = b

for all v ∈V .
The following [a, b]-factor Theorem can easily be derived from the (g, f )-factor Theo-

rem.

Theorem 8.28 If G(V, E) is a graph, and a and b are distinct integers with a < b, then
either G has an [a, b]-factor H or a decomposition D = (S, T , U) such that q[S, T ]> d(T )+
b|S|−a|T|, but not both.
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The following result is due to Las Vergnas [255].

Theorem 8.29 If G is a graph and k(≥ 2) an integer, then G has a [1, k]-factor if and only
if k|N(S)| ≥ |S|, for all independent sets S of G.

The next result can be found in Kano and Saito [125].

Theorem 8.30 If k, r, s and t are integers such that 0 ≤ k ≤ r, 0 ≤ s, 1 ≤ t and ks ≤ rt , then
every [r, r + s]-graph has a [k, k+1]-factor.

The following result on the existence of [a, b]-factors is given by Kouider and Long
[139].

Theorem 8.31 Let b ≥ a +1 and let G be a graph with minimum degree 8.

If a(G) ≤















4b(δ −a +1)

(a +1)2
, for a odd

4b(δ −a +1)

a(a +2)
, for a odd

then G has an [a, b]-factor.

8.7 Exercises

1. Prove that a tree can have at most one perfect matching.

2. Give an example of a cubic graph having no 1-factor.

3. Show that Kn, n and K2n are 1-factorable, and further show that the number of

1-factors of Kn, n and K2n are respectively n! and
(2n)!

2nn!
.

4. Prove that the Peterson graph is not 1-factorable.

5. Let G = (V1, V2, E) be a bipartite graph with |V1| = n1 and |V2| = n2, and the vertices
xi ∈ V1 and y j ∈ V2 indexed such that d(x1) ≤ d(x2) ≤ . . .≤ d(xn) and d(y1) ≤ d(y2) ≤
. . .≤ d(yn). Then show that a sufficient condition for V1 to be matched into V2 is that

n1 ≤ n2, d(x1) > 0 and
k

∑
i=1

d(xi) >
k−1

∑
i=1

d(y j), 2 ≤ k ≤ n1.

6. Prove that a bipartite graph G = (V1, V2, E) has a matching saturating all the vertices
of maximum degree.

7. Show that the following statements are equivalent for a bipartite graph G = (V1, V2, E).

a. G is connected and each edge of G is contained in a 1-factor.

b. |V1| = |V2| and for each non-empty subset S of V1, |S| < |N(S)|.
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c. For each u ∈V1 and v ∈V2, G−u− v has a 1-factor.

8. Show that a tree T has a perfect matching if and only if k0(T −v) = 1 for every vertex
v of T .

9. If G is a cubic graph without cut edges or with all cut edges on a single suspended
path, then prove that G has a 1-factor.

10. Prove directly that if G is a connected graph with no induced subgraph isomorphic to
K1, 3, then G has an edge uv such that G−{u, v} is connected.

11. If M and N are matchings in a graph G and |M| > |N|, then prove that there exist
matchings M′ and N ′ in G such that |M′| = |M|−1, |N ′| = |N| +1 and M′ and N ′ have
the same union and intersection (as edge sets) as M and N.

12. Prove that deleting any perfect matching from the Peterson graph leaves the subgraph
C5 +C5.

13. Determine the minimum size of a maximal matching in the cycle Cn.

14. If G = (V1, V2, E) is a bipartite graph that has a matching of V1 into V2, then prove that

G has at most
(

|V1|
2

)

edges belonging to no matching of V1 into V2.

15. Describe complete tripartite graphs of the form Kn, n, n that have perfect matching.

16. For what values of n ≥ 4 does the wheel Wn have a perfect matching?

17. Prove that a graph has an f -factor if and only if it has an f ′-factor, where f ′(v) =
d(v)− f (v) for every v ∈V .

18. Show that a k-regular, (k−1)-edge connected graph of even order has a 1-factor.

19. If G is a connected graph of even order, then show that G2 has a 1-factor.

20. If G is a connected cubic graph without a 1-factor and S is a minimal antifactor set,
then prove that S is an independent set of claw centers and G− S has exactly |S|+ 2

odd components and no even components.


