
4. Trees

One of the important classes of graphs is the trees. The importance of trees is evident from
their applications in various areas, especially theoretical computer science and molecular
evolution.

4.1 Basics

Definition: A graph having no cycles is said to be acyclic. A forest is an acyclic graph.

Definition: A tree is a connected graph without any cycles, or a tree is a connected
acyclic graph. The edges of a tree are called branches. It follows immediately from the
definition that a tree has to be a simple graph (because self-loops and parallel edges both
form cycles). Figure 4.1(a) displays all trees with fewer than six vertices.

Fig. 4.1(a)

The following result characterises trees.

Theorem 4.1 A graph is a tree if and only if there is exactly one path between every pair
of its vertices.
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Proof Let G be a graph and let there be exactly one path between every pair of vertices
in G. So G is connected. Now G has no cycles, because if G contains a cycle, say between
vertices u and v, then there are two distinct paths between u and v, which is a contradiction.
Thus G is connected and is without cycles, therefore it is a tree.

Conversely, let G be a tree. Since G is connected, there is at least one path between
every pair of vertices in G. Let there be two distinct paths between two vertices u and v of
G. The union of these two paths contains a cycle which contradicts the fact that G is a tree.
Hence there is exactly one path between every pair of vertices of a tree. q

The next two results give alternative methods for defining trees.

Theorem 4.2 A tree with n vertices has n−1 edges.

Proof We prove the result by using induction on n, the number of vertices. The result
is obviously true for n = 1, 2 and 3. Let the result be true for all trees with fewer than n

vertices. Let T be a tree with n vertices and let e be an edge with end vertices u and v. So
the only path between u and v is e. Therefore deletion of e from T disconnects T . Now,
T − e consists of exactly two components T1 and T2 say, and as there were no cycles to
begin with, each component is a tree. Let n1 and n2 be the number of vertices in T1 and T2

respectively, so that n1 + n2 = n. Also, n1 < n and n2 < n. Thus, by induction hypothesis,
number of edges in T1 and T2 are respectively n1−1 and n2−1. Hence the number of edges
in T = n1−1 +n2−1 +1 = n1 +n2−1 = n−1. q

Theorem 4.3 Any connected graph with n vertices and n−1 edges is a tree.

Proof Let G be a connected graph with n vertices and n− 1 edges. We show that G

contains no cycles. Assume to the contrary that G contains cycles.

Remove an edge from a cycle so that the resulting graph is again connected. Continue
this process of removing one edge from one cycle at a time till the resulting graph H is a
tree. As H has n vertices, so number of edges in H is n−1. Now, the number of edges in G

is greater than the number of edges in H. So n−1 > n−1, which is not possible. Hence, G

has no cycles and therefore is a tree. q

Definition: A graph is said to be minimally connected if removal of any one edge from it
disconnects the graph. Clearly, a minimally connected graph has no cycles.

Here is the next characterisation of trees.

Theorem 4.4 A graph is a tree if and only if it is minimally connected.

Proof Let the graph G be minimally connected. Then G has no cycles and therefore is a
tree.

Conversely, let G be a tree. Then G contains no cycles and deletion of any edge from G

disconnects the graph. Hence G is minimally connected. q
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The following results give some more properties of trees.

Theorem 4.5 A graph G with n vertices, n−1 edges and no cycles is connected.

Proof Let G be a graph without cycles with n vertices and n−1 edges. We have to prove
that G is connected. Assume that G is disconnected. So G consists of two or more compo-
nents and each component is also without cycles. We assume without loss of generality that
G has two components, say G1 and G2 (Fig. 4.1(b)). Add an edge e between a vertex u in
G1 and a vertex v in G2. Since there is no path between u and v in G, adding e did not create
a cycle. Thus G∪ e is a connected graph (tree) of n vertices, having n edges and no cycles.
This contradicts the fact that a tree with n vertices has n−1 edges. Hence G is connected.

Fig. 4.1(b)

Theorem 4.6 Any tree with at least two vertices has at least two pendant vertices.

Proof Let the number of vertices in a given tree T be n(n > 1). So the number of edges in
T is n−1. Therefore the degree sum of the tree is 2(n−1). This degree sum is to be divided
among the n vertices. Since a tree is connected it cannot have a vertex of 0 degree. Each
vertex contributes at least 1 to the above sum. Thus there must be at least two vertices of
degree exactly 1.

Second proof We use induction on n. The result is obviously true for all trees having
fewer than n vertices. We know that T has n−1 edges, and if every edge of T is incident
with a pendant vertex, then T has at least two pendant vertices, and the proof is complete.
So let there be some edge of T that is not incident with a pendant vertex and let this edge
be e = uv (Fig. 4.2). Removing the edge e, we see that the graph T − e consists of a pair
of trees say T1 and T2 with each having fewer than n-vertices. Let u ∈V(T1), v ∈V (T2), and
|V(T1)|= n1, |V(T2)|= n2. Applying induction hypothesis on both T1 and T2, we observe that
each of T1 and T2 has two pendant vertices. This shows that each of T1 and T2 has at least
one pendant vertex that is not incident with the edge e. Thus the graph T − e+ e = T has at
least two pendant vertices.

Fig. 4.2
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Third proof Let T be a tree with n(n > 1) vertices. The number of edges in T is n−1 and
the sum of degrees in T is 2(n−1), that is, ∑ di = 2(n−1). Assume T has exactly one vertex
v1 of degree one, while all the other n−1 vertices have degree ≥ 2. Then sum of degrees
is d(v1)+ d(v2)+ . . .+ d(vn) ≥ 1 + 2 + 2 + . . .+ 2 = 1 + 2(n− 1). So, 2(n− 1) ≥ 1 + 2(n− 1),
implying 0≥ 1, which is absurd. Hence T has at least two vertices of degree one. q

The following result characterises tree degree sequences.

Theorem 4.7 The sequence [di]
n
1

of positive integers is a degree sequence of a tree if and
only if

(i) di ≥ 1 for all i, 1≤ i≤ n and (ii)
n

∑
i=1

di = 2n−2.

Proof

Necessity Since a tree has no isolated vertex, therefore di ≥ 1 for all i. Also,
n

∑
i=1

di =

2(n−1), as a tree with n vertices has n−1 edges.

Sufficiency We use induction on n. For n = 2, the sequence is [1, 1] and is obviously the
degree sequence of K2. Suppose the claim is true for all positive sequences of length less
than n.

Let [di]
n
1

be the non-decreasing positive sequence of n terms, satisfying conditions (i)
and (ii). Then d1 = 1 and dn > 1 (by Theorem 4.5).

Now, consider the sequence D′ = [d2, d3, . . . , dn−1,dn−1], which is a sequence of length
n− 1. Obviously in D′, di ≥ 1 and ∑di = d2 + d3 + . . .+ dn−1 + dn− 1 = d1 + d2 + d3 + . . .+
dn−1 +dn−1−1 = 2n−2−2 = 2(n−1)−2 (because d1 = 1). So D′ satisfies conditions (i)
and (ii), and by induction hypothesis there is a tree T ′ realising D′. In T ′, add a new vertex
and join it to the vertex having degree dn−1 to get a tree T . Therefore the degree sequence
of T is [d1, d2, . . . , dn].

Theorem 4.8 A forest of k trees which have a total of n vertices has n− k edges.

Proof Let G be a forest and T1, T2, . . ., Tk be the k trees of G. Let G have n vertices and
T1, T2, . . ., Tk have respectively n1, n2, . . . , nk vertices. Then n1 +n2 + . . .+nk = n. Also, the
number of edges in T1, T2, . . . , Tk are respectively n1−1, n2−1, . . ., nk−1. Thus number of
edges in G = n1−1 +n2−1 + . . .+nk−1 = n1 +n2 + . . .+nk− k = n− k. q

The following result characterises trees as subgraphs of a graph.

Theorem 4.9 Let T be a tree with k edges. If G is a graph whose minimum degree
satisfies δ (G)≥ k, then G contains T as a subgraph. Alternatively, G contains every tree of
order atmost δ (G)+1 as a subgraph.

Proof We use induction on k. If k = 0, then T = K1 and it is clear that K1 is a subgraph of
any graph. Further, if k = 1, then T = K2 and K2 is a subgraph of any graph whose minimum
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degree is one. Assume the result is true for all trees with k−1 edges (k ≥ 2) and consider
a tree T with exactly k edges. We know that T contains at least two pendant vertices. Let
v be one of them and let w be the vertex that is adjacent to v. Consider the graph T − v.
Since T − v has k−1 edges, the induction hypothesis applies, so T − v is a subgraph of G.
We can think of T − v as actually sitting inside G (meaning w is a vertex of G, too). Since
G contains at least k+1 vertices, and T −v contains k vertices, there exist vertices of G that
are not a part of the subgraph T − v. Further, since the degree of w in G is at least k, there
must be a vertex u not in T − v that is adjacent to w. The subgraph T − v together with u

forms the tree T as a subgraph of G (Fig. 4.3). q

Fig. 4.3

4.2 Rooted and Binary Trees

A tree in which one vertex (called the root) is distinguished from all the others is called a
rooted tree.

A binary tree is defined as a tree in which there is exactly one vertex of degree two and
each of the remaining vertices is of degree one or three. Obviously, a binary tree has three
or more vertices. Since the vertex of degree two is distinct from all other vertices, it serves
as a root, and so every binary tree is a rooted tree. q

Below are given some properties of binary trees.

Theorem 4.10 Every binary tree has an odd number of vertices.

Proof Apart from the root, every vertex in a binary tree is of odd degree. We know that
there are even number of such odd vertices. Therefore when the root (which is of even
degree) is added to this number, the total number of vertices is odd.

Corollary 4.1 There are 1

2
(n +1) pendant vertices in any binary tree with n vertices.

Proof Let T be a binary tree with n vertices. Let q be the number of pendant vertices in
T . Therefore there are n−q internal vertices in T and so n−q−1 vertices of degree 3. Thus
the number of edges in T = 1

2
[3(n−q−1)+2 +q]. But the number of edges in T is n−1.



84 Trees

Hence, 1

2
[3(n−q−1)+2 +q]= n−1, so that q = 1

2
(n +1). q

The following result is due to Jordan [122].

Theorem 4.11 (Jordan) Every tree has either one or two centers.

Proof The maximum distance, max d(v, vi) from a given vertex v to any other vertex
occurs only when vi is a pendant vertex. With this observation, let T be a tree having
more than two vertices. Tree T has two or more pendant vertices. Deleting all the pendant
vertices from T , the resulting graph T ′ is again a tree. The removal of all pendant vertices
from T uniformly reduces the eccentricities of the remaining vertices (vertices in T ′) by
one. Therefore the centers of T are also the centers of T ′. From T ′ we remove all pendant
vertices and get another tree T ′′. Continuing this process, we either get a vertex, which is a
center of T , or an edge whose end vertices are the two centers of T .

Definition: Trees with center K1 are called unicentral and trees with center K2 are called
bicentral trees.

Spanning trees

A tree is said to be a spanning tree of a connected graph G, if T is a subgraph of G and T

contains all vertices of G.

Example Consider the graph of Fig. 4.4, where the bold lines represent a spanning tree.

Fig. 4.4

q

The following result shows the existence of spanning trees in connected graphs.

Theorem 4.12 Every connected graph has at least one spanning tree.

Proof Let G be a connected graph. If G has no cycles, then it is its own spanning tree.
If G has cycles, then on deleting one edge from each of the cycles, the graph remains
connected and cycle free containing all the vertices of G.

Definition: An edge in a spanning tree T is called a branch of T . An edge of G that is
not in a given spanning tree T is called a chord. It may be noted that branches and chords
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are defined only with respect to a given spanning tree. An edge that is a branch of one
spanning tree T1 (in a graph G) may be a chord with respect to another spanning tree T2. In
Figure 4.5, u1u2u3u4u5u6 is a spanning tree, u2u4 and u4u6 are chords.

Fig. 4.5

A connected graph G can be considered as a union of two subgraphs T and T , that is
G = T ∪T , where T is a spanning tree, T is the complement of T in G. T being the set of
chords is called the co tree, or chord set.

The following result provides the number of chords in any graph with a spanning tree.

Theorem 4.13 With respect to any of its spanning trees, a connected graph of n vertices
and m edges has n−1 tree branches and m−n +1 chords.

Proof Let G be a connected graph with n vertices and m edges. Let T be the spanning
tree. Since T contains all n vertices of G, T has n−1 edges and thus the number of chords
in G is equal to m− (n−1) = m−n +1. q

Definition: Let G be a graph with n vertices, m edges and k components. The rank r and
nullity µ of G are defined as r = n− k and µ = m−n + k.

Clearly, the rank of a connected graph is n−1 and the nullity is m−n +1.
It can be seen that rank of G = number of branches in any spanning tree (or forest) of G.

Also, nullity of G = number of chords in G. So, rank + nullity = number of edges in G.
The nullity of a graph is also called its cyclomatic number, or first Betti number.

Theorem 4.14 If T is a tree with 2k≥ 0 vertices of odd degree, then E(T ) is the union of
k pair-wise edge-disjoint paths.

Proof We prove the result for every forest G, using induction on k. If k = 0, then G has
no pendant vertex and therefore no edge. Let k > 0 and let each forest with 2k−2 vertices
of odd degree has decomposition into k−1 paths. Since k > 0, some component of G is a
tree with at least two vertices. This component has at least two pendant vertices. Let P be
the path connecting two pendant vertices. Deleting E(P) changes the parity of the vertex
degree only for the end vertices of P and it makes them even. Thus G−E(P) is a forest
with 2k−2 vertices of odd degree. So by the induction hypothesis, G−E(P) is the union of
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k−1 pair wise edge-disjoint paths. These k−1 edge-disjoint paths together with P partition
E(G) into k pair wise edge-disjoint paths (Fig. 4.6).

Fig. 4.6

Theorem 4.15 Let T be a non-trivial tree with the vertex set S and |S|= 2k, k≥ 1. Then
there exists a set of k pairwise edge-disjoint paths whose end vertices are all the vertices
of S.

Proof Obviously, there exists a set of k paths in T whose end vertices are all the vertices
of S. Let P = {P1, P2, . . ., Pk} be such a set of k paths and let the sum of their lengths be the
minimum.

We show that the paths of P are pairwise edge-disjoint. Assume to the contrary, and let
Pi and Pj, i 6= j, be paths having an edge in common. Then Pi and Pj have path Pi j of length
≥ 1 in common. Therefore, Pi∆Pj the symmetric difference of Pi and Pj is a disjoint union of
two paths, say Qi and Q j, with their end vertices being disjoint pairs of vertices belonging
to S (Fig. 4.7).

If Pi and Pj are replaced by Qi and Q j in P, then the resulting set of paths has the property
that their end vertices are all the vertices of S and that the sum of their lengths is less than
the sum of the lengths of the paths in P. This is a contradiction to the choice of P.

Fig. 4.7
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Theorem 4.16 If u is a vertex of an n-vertex tree T , then ∑ d(u, v) ≤
(n

2

)

.
v∈V (T )

Proof Let T (V, E) be a tree with |V |= n. Let u be any vertex of T . We use induction on
n. If n = 2, the result is trivial. Let n > 2. The graph T −u is a forest and let the components
of T −u be T1, T2, . . . , Tk, where k ≥ 1. Since T is connected, u has a neighbour in each Ti.
Also, since T has no cycles, u has exactly one neighbour vi in each Ti. For any v∈V (Ti), the
unique u− v path in T passes through vi and we have dT (u, v) = 1 +dTi

(vi, v). Let ni = n(Ti)
(Fig. 4.8). Then we have

∑ dT (u, v) = ni + ∑ dTi
(vi, v). (4.16.1)

v∈V (Ti) v∈V (Ti)

Fig. 4.8

By the induction hypothesis, we have

∑ dTi
(vi, v)≤

(ni

2

)

.
v∈V (Ti)

We now sum the formula (4.16.1) for distances from u over all the components of T −u

and we get

∑ dT (u, v) ≤ (n−1)+∑
i

(ni

2

)

.

v∈V (Ti)

Now, we have ∑
i

ni = n− 1. Clearly, ∑
i

(

ni
2

)

≤
(

∑ni
2

)

, because the right side counts the

edges in K∑ni
or Kn−1, and the left side counts the edges in a subgraph of K∑ni

, the subgraph
being union of disjoint cliques Kn1

, Kn1
, . . ., Knk

.

Thus, ∑ dT (u, v) ≤ (n−1)+

(

n−1

2

)

=
(n

2

)

.
v∈V (T )



88 Trees

Corollary 4.2 The sum of the distances from a pendant vertex of the path Pn to all other

vertices is
n−1

∑
i=0

i =
(n

2

)

.

Corollary 4.3 If H is a subgraph of a graph G, then dG(u, v) ≤ dH(u, v).

Proof Every u−v path in H appears also in G, and G may have additional u−v paths that
are shorter than any u− v path in H.

Corollary 4.4 If u is a vertex of a connected graph G, then

∑ d(u, v)≤

(

n(G)

2

)

.
v∈V (G)

Proof Let T be a spanning tree of G. Then dG(u, v) ≤ dT (u, v), so that

∑ dG(u, v)≤ ∑ dT (u, v) ≤

(

n(G)

2

)

. q

vεV (G) vεV (G)

The sum of the distances over all pairs of distinct vertices in a graph G is the Wiener
index W (G) = ∑

u, vεV (G)
d(u, v). On assigning vertices for the atoms and edges for the atomic

bonds, we can use graphs to study molecules. Wiener [268] originally used this to study
the boiling point of paraffin.

Theorem 4.17 Let v be any vertex of a connected graph G. Then G has a spanning tree
preserving the distances from v.

Proof Let G be a connected graph. We find a spanning tree T of G such that for each
u ∈V = V(G) = V (T ), dG(v, u) = dT (v, u).

Consider the neighbourhoods of v,
Ni(v) = {u ∈V : dG(v, u) = i}, 1≤ i≤ e, where e = e(v).

Let H be the graph obtained from G by removing all edges in each < Ni(v) >. Clearly, H

is connected. Let < Bi(v) >H denote the induced subgraph of H, induced by the ball Bi(v).
Clearly, < B1(v) >H does not contain any cycle. If < B2(v) >H contains cycles, remove
edges from [N1(v), N2(v) ] sequentially, one edge from each cycle, till it becomes acyclic.
Proceeding successively by removing edges from [Ni(v), Ni+1(v) ] to make < Bi+1(v) >H

acyclic for 1≤ i≤ e−1, we get a spanning tree of H and hence of G.
Since in this procedure one distance path from v to each of the other vertices remains

intact, we have dG(v, u) = dT (v, u) for each u ∈V . q
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Remarks The above result implies that for any vertex v of a connected graph G, there
exists an image Φv(G) which is a spanning tree of G preserving distances from v. This is
called an isometric tree of G at v. If there is only one such tree (upto isomorphism) at v, we
say that G has a unique isometric tree at v. If G has the same unique isometric tree at each
vertex v, then G is said to have a unique isometric tree (or unique distance tree). K2, 2 and
the Peterson graph are examples of graphs having unique isometric trees, while K3, 3 does
not have a unique isometric tree at any vertex. Every tree has a unique isometric tree.

The next result due to Chartrand and Stewart [52] gives the necessary condition for a
graph to have a unique isometric tree.

Theorem 4.18 Let G be a connected graph with d = 2r, which has a unique isometric
tree. Then the end vertices of every diametral path of G has degree 1.

Proof Let G be a connected graph with d = 2r and let P be a diametral path with end
vertices u and v. If possible let d(u|G) > 1. Let Tu be the isometric tree at u. It is easy to see
that Tu can be chosen to contain P.

Since u has degree at least 2 in G, there is a vertex ui adjacent to u and not lying in P.
Clearly, dTu(ui, v) = 1 +d.

Let c be a central vertex of G. Then for any two vertices w1 and w2 of G, we have

dG(w1, c)≤ r = 1

2
d and dG(w2, c) ≤ r = 1

2
d.

Therefore, dG(w1, w2)≤ d(w1, c)+d(c, w2) ≤ d.
Since Tc is isometric with G at c, we also have dT c(w1, w2)≤ d.
Thus no path Tc has length greater than d, whereas there is a path in Tu of length 1 +

d. Therefore Tc 6= Tu and G does not have a unique isometric tree. This contradicts the
hypothesis. Hence the result follows. q

Remark The above condition is necessary but not sufficient. To see this, consider the
graph given in Figure 4.9.

Fig. 4.9 Graph without a unique isometric tree

Chartrand and Schuster [54], and Kundu [142] have given some more results on the graphs
with unique isometric trees.

Definition: The complexity τ(G) of a graph G is the number of different spanning trees
of G.
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The following result gives a recursive formula for τ(G).

Theorem 4.19 For any cyclic edge e of a graph G, τ(G) = τ(G− e)+ τ(G|pe).

Proof Let S be the set of spanning trees of G and let S be partitioned as S1∪ S2, where S1

is the set of spanning trees of G not containing e and S2 is the set of the spanning trees of G

containing e.
Since e is a cyclic edge, G− e is connected and there is a one-one correspondence be-

tween the elements of S1 and the spanning trees of G− e. Also, there is a one-one corre-
spondence between the spanning trees of G|þe and the elements of S2.

Thus, τ(G) =|S1|+|S2|= τ(G− e)+ τ(G|þe). q

Remarks

1. The above recurrence relation is valid even if e is a cut edge. This is because τ(G−
e) = 0 and every spanning tree of G contains every cut edge.

2. The recurrence relation is valid even if G is a general graph and e is a multiple edge,
but not when e is a loop.

3. The complexity of any graph G is computed by repeatedly applying the above recur-
rence. We observe that on applying the elementary contraction to a multiple edge,
the resulting graph can have a loop and by remark (2) the procedure can be still con-
tinued. At each stage of the algorithm, only an edge belonging to the proper cycle is
chosen. The algorithm starts with a given graph and produces two graphs (possibly
general) at the end of the first stage. At each subsequent stage one proper cyclic edge
from each graph is chosen (if it exists) for applying the recurrence. On termination
of the algorithm, we get a set of graphs (or general graphs) none of which have a
proper cycle. Then τ(G) is the sum of the number of these graphs. If H is any of
these graphs, then τ(H) is the product of its edges, ignoring the loops.

Example Consider the graph G given in Figure 4.10.

Fig. 4.10
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Label the edges of G arbitrarily. Choose e1 as the first cyclic edge. Then τ(G) is the sum
of the complexities of the graphs given in Figure 4.10(b) and (c). Now, choose e4 in both
G1 and G2 as the next cyclic edge. Then τ(G) is the sum of the complexities of the graphs
in Figure 4.10(d) and (e). Since there are no more cyclic edges, the algorithm terminates,
and we have τ(G) = 1 +2 +2 +3 = 8.

4.3 Number of Labelled Trees

Let us consider the problem of constructing all simple graphs with n vertices and m edges.
There are n(n− 1)/2 unordered pairs of vertices. If the vertices are distinguishable from
each other (i.e., labelled graphs), then the number of ways of selecting m edges to form the

graph is

(

n(n−1)
2

m

)

.

Thus the number of simple labelled graphs with n vertices and m edges is
(

n(n−1)
2

m

)

. (A)

Clearly, many of these graphs can be isomorphic (that is they are same except for the
labels of their vertices). Thus the number of simple, unlabelled graphs of n vertices and m

edges is much smaller than that given by (A) above.

Theorem 4.20 The number of simple, labelled graphs of n vertices is 2
n(n−1)

2 .

Proof The number of simple graphs of n vertices and 0, 1, 2, . . ., n(n− 1)/2 edges are
obtained by substituting 0, 1, 2, . . ., n(n−1)/2 for m in (A). The sum of all such numbers
is the number of all simple graphs with n vertices.

Therefore the total number of simple, labelled graphs of n vertices is

(

n(n−1)
2

0

)

+

(

n(n−1)
2

1

)

+

(

n(n−1)
2

2

)

+ . . .+

(

n(n−1)
2

n(n−1)
2

)

= 2
n(n−1)

2 ,

by using the identity

(

k

0

)

+

(

k

1

)

+

(

k

2

)

+ . . .+

(

k

k

)

= 2k.

The following result was proved independently by Tutte [252] and Nash-Williams [167].
We prove the necessity and for sufficiency the reader is referred to the original papers of
Tutte and Nash-Williams.

Theorem 4.21 A simple connected graph G contains k pairwise edge-disjoint spanning
trees if and only if, for each partition π of V (G) into p parts, the number m (π) of edges of
G joining distinct parts is at least k(p−1).
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Proof
Necessity Let G has k pairwise edge-disjoint spanning trees. If T is one of them, and if
π = {V1, V2, . . ., Vp} is a partition of V (G) into p parts, then identification of each part Vi

into a single vertex vi, 1 ≤ i ≤ p, results in a connected graph G0 (possibly with multiple
edges) on {V1, V2, . . . , Vp}. Clearly, G0 contains a spanning tree with p−1 edges, and each
such edge belongs to T , and joins distinct partite sets of π. Since this is true for each of the
k edge −disjoint spanning trees of G, the number of edges joining distinct parts of π is at
least k(p−1). q

Cayley [46] in 1889 discovered the formula τ(Kn) = nn−2. Clearly, the number of span-
ning trees of Kn is same as the number of non-label-isomorphic trees on n vertices. Several
proofs of this result have appeared since Cayley’s discovery. Moon [164] has outlined ten
such proofs, and a complete presentation of some of these can also be found in Lovasz
[152]. Here we give two proofs, and the first is due to Prufer [212].

Theorem 4.22 (Cayley) There are nn−2 labelled trees with n vertices, n≥ 2.

Proof Let T be a tree with n vertices and let the vertices be labelled 1, 2, . . ., n. Remove
the pendant vertex (and the edge incident to it) having the smallest label, say u1. Let v1 be
the vertex adjacent to u1. From the remaining n− 1 vertices, let u2 be the pendant vertex
with the smallest label and let v2 be the vertex adjacent to u2. We remove u2 and the edge
incident on it. We repeat this operation on the remaining n− 2 vertices, then on n− 3

vertices, and so on. This process completes after n− 2 steps, when only two vertices are
left.

Let the vertices after each removal have labels v1, v2, . . . , vn−2. Clearly, the tree T

uniquely defines the sequence

(v1, v2, . . ., vn−2). (4.22.1)

Conversely, given a sequence of n−2 labels, an n-vertex tree is constructed uniquely as
follows. Determine the first number in the sequence

1, 2, 3, . . . , n, (4.22.2)

that does not appear in (4.22.1). Let this number be u1. Thus the edge (u1, v1) is defined.
Remove v1 from sequence (4.22.1) and u1 from (4.22.2). In the remaining sequence of
(4.22.2), find the first number which does not appear in the remaining sequence of (4.22.1).
Let this be u2 and thus the edge (u2, v2) is defined. The construction is continued till the
sequence (4.22.1) has no element left. Finally, the last two vertices remaining in (4.22.2)
are joined.

For each of the n−2 elements in sequence (4.22.1), we choose any one of the n numbers,
thus forming nn−2 (n−2)-tuples, each defining a distinct labelled tree of n vertices. Since
each tree defines one of these sequences uniquely, there is a one−one correspondence
between the trees and the nn−2 sequences. q
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Example Consider the tree shown in Figure 4.11. Pendant vertex with smallest label is
u1. Remove u1. Let v1 be adjacent to u1 (label of v1 is 1). Pendant vertex with smallest label
is 4. Remove 4. Here 4 is adjacent to 1. Pendant vertex with smallest label is 1. Remove 1.
Here 1 is adjacent to 3. Remove 3. Then 3 is adjacent to 5. Remove 6. So 6 is adjacent to 5.
Remove 5. Remove 7. 7 is adjacent to 5. So 5 is adjacent to 9. Sequence (v1, v2, . . . , vn−2)
is (1, 1, 3, 5, 5, 5, 9).

Fig. 4.11

Theorem 4.23 If D = [di]
n
1

is the degree sequence of a tree, then the number of labelled
trees with this degree sequence is

(n−2)!

(d1−1)!(d2−1)! . . .(dn−1)!
.

Proof We first observe that, when asking for all possible trees with the vertex label set
V = {v1, v2, . . ., vn} with degree sequence D = [di]

n
1
, it is not necessary that di = d (vi) and it

is not necessary that the sequence be monotonic non-decreasing.
Therefore we assume that D = [di]

n
1

is an integer sequence satisfying the conditions ∑di =
2(n− 1) and di ≥ 1. We use induction on n. The result is obvious for n = 1, 2. For n = 2,
the sequence is [d1, d2] and the only degree sequence in this case is [1, 1 ]. Clearly, there is
only one labelled tree with this degree sequence.

Also,
(n−2)!

(d1−1)! . . .(dn−1)
=

(2−2)!

(1−1)!(1−1)!
= 1.

Now, assume that the result is true for all sequences of length n−1. Let D = [di]
n
1

be an n

length sequence. By assumption there is a di = 1 and let it be dn = 1. Let Tn be a tree realising
D = [di]

n
1
. Now, removing vn, we get a tree Tn−1 on the vertex set {v1, v2, . . . , vn−1} with

degrees d1, . . ., d j−1, d j−1, d j+1, . . ., dn−1, where v j is the vertex to which vn is adjacent in
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Tn. Clearly, the converse is also true. Therefore, by induction hypothesis, the number of
trees Tn−1 is

(n−3)!

(d1−1)!...(d j−1−1)!(d j−1−1)!(d j+1−1)!...(dn−1−1)!

=
(n−3)!(d j−1)

(d1−1)!...(d j−1−1)! [(d j−1) (d j−2)!] (d j+1−1)!...(dn−1−1)!

=
(n−3)!(d j−1)

(d1−1)!...(d j−1)!...(dn−1−1)!(dn−1)!

=
(n−3)!(d j−1)

n

∏
j=1

(d j−1)!
.

Since v j is any one of the vertices v1, . . ., vn−1, the number of trees Tn is

n−1

∑
j=1

(n−3)!(d j−1)
n

∏
j=1

(d j−1)!
= (n−3)!

n

∏
j=1

(d j−1)!

n

∑
j=1

(d j−1), as dn = 1 and dn−1 = 1−1 = 0

=
(n−3)!

n

∏
j=1

(d j−1)!
(n−2), since

n

∑
j=1

(d j−1) = 2(n−1)−n = n−2

=
(n−2)!

n

∏
j=1

(d j−1)!
. q

Now, we use Theorem 4.22 to obtain τ(Kn) = nn−2, which forms the second proof of
Cayley’s Theorem.

Second Proof of Theorem 4.22 We know the number of labelled trees with a given
degree sequence [di]

n
1

is

(n−2)!
n

∏
j=1

(d j−1)!
.

The total number of labelled trees with n vertices is obtained by adding the number of
labelled trees with all possible degree sequences.
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Therefore, τ(Kn) = ∑





(n−2)!
n

∏
j=1

(d j−1)!



.
di≥1

n
∑

i=1

di=2n−2

Let di−1 = ki. So di ≥ 1 gives di−1≥ 0, or ki ≥ 0.

Also,
n

∑
i=1

ki =
n

∑
i=1

(di−1) =
n

∑
i=1

di−n = 2n−2−n = n−2.

Thus, τ(Kn) = ∑
(n−2)!

k1!k2! . . .kn!
= ∑

(n−2)!

k1!k2!kn!
1k1

1k2 . . .1kn

ki≥0

n
∑
1

ki=n−2

ki≥0

n
∑
1

ki=n−2

= (1 +1 + . . .+1)n−2, by multinomial theorem.

Hence, τ(Kn) == nn−2. q

Note The multinomial distribution is given by

n!

x1!x2! . . .xk!
p

x1

1
p

x2

2
. . .p

xk

k = (p1 + p2 + . . .+ pk)
n, where

n

∑
i=1

xi = n.

4.4 The Fundamental Cycles

Definition: Let T be a spanning tree of a connected graph G. Let T be the spanning
subgraph of G containing only the edges of G which are not in T (i.e., T is the relative
complement of T in G). Then T is called the co tree of T in G. The edges of T are called
branches and the edges of T are called chords of G relative to the spanning tree T .

Theorem 4.24 If T is a spanning tree of a connected graph G and f is a chord of G

relative to T , then T + f contains a unique cycle of G.

Proof Let f = uv. Then there is a unique u− v path P in T . Clearly, P + f is a cycle of
G, since T is acyclic, any cycle C of T + e should contain e, and C− e is a u− v path in T .
Since there is a unique path in T , T + e contains a unique cycle of G. q

Remarks

1. If f1 and f2 are two distinct chords of the connected graph G relative to a spanning tree
T , then there are two unique distinct cycles C1 and C2 of G containing respectively f1

and f2.

2. If e ∈ E(G) and T is a spanning tree of G, then T + e contains a unique cycle of Kn.
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Definition: Let G be a connected graph with n vertices and m edges. The number of
chords of G relative to a spanning tree T of G is m−n +1 = µ. The µ distinct cycles of a
connected graph G corresponding to the distinct chords of G relative to a spanning tree T

of G are said to form a set of fundamental cycles of G.
If G is a disconnected graph with k components G1, G2, . . . , Gk and Ti, 1≤ i≤ k, are a set

of k spanning trees of Gi, then the union of the set of fundamental cycles of Gi with respect
to Ti is a set of fundamental cycles for G. It is to be noted that different spanning trees give
different sets of fundamental cycles.

The following result characterises cycles in terms of the set of all spanning trees.

Theorem 4.25 Any cycle of a connected graph G contains at least one chord of every
spanning tree of G.

Proof Let C be a cycle and assume the result is not true. So there exists a spanning
tree T of G such that C is contained in the edge set E(G)−E(T ), where T is the cotree
of G corresponding to T . This means that the tree T contains the cycle C, which is a
contradiction. q

Theorem 4.26 A set of edges C of a connected graph G is a cycle of G if and only if it
is a minimal set of edges containing at least one chord of every spanning tree of G.

Proof Let C be a cycle of G. Then it contains at least one chord of every spanning tree
of G. If C′ is any proper subset of C, then C′ does not contain a cycle and is a forest.
A spanning tree T of G can therefore be constructed containing C′. Clearly, C′ does not
contain any chord of T . Thus no proper subset of C has the stated property, proving that C

is minimal with respect to the property.
To prove sufficiency, let C be minimal set with the stated property. Then C is not acyclic.

Therefore C contains at least a cycle C′. But by the necessary part, C′ is minimal with
respect to the property and hence C′ = C, that is, C is a cycle. q

4.5 Generation of Trees

Definition: Let T1 and T2 be two spanning trees of a connected graph G and let there
be edges e1 ∈ T1 and e2 ∈ T2 such that T1− e1 + e2 = T2 (and hence T2− e2 + e1 = T1). The
transformation T1↔ T2 is called an elementary tree transformation (ETT), or a fundamental
exchange. If e1 and e2 are adjacent in G, then the ETT is called a neighbour transformation
(NT). If e is a pendant edge of T1 (and hence e2 is a pendant edge of T2) the ETT is called
a pendant-edge transformation (PET) or an end-line transformation.

Definition: Let I be the collection of all spanning trees of a connected graph G. Let
Tr(G) be the graph whose vertices ti correspond to the elements Ti of I, and in which ti
and t j are adjacent if and only if there is an ETT between Ti and Tj, that is, if and only
if E(Ti)∆E(Tj) = {ei,e j}. Then Tr(G) is called the tree graph of G. The distance d(Ti, Tj)



Graph Theory 97

between the spanning trees Ti and Tj of G is defined to be the distance between ti and t j in
Tr(G).

Theorem 4.27 The tree graph Tr(G) of a connected graph is connected.

Proof Let G be a connected graph with n vertices and let Tr(G) be its tree graph. To
prove that Tr(G) is connected, it is enough to show that any two spanning trees of G can be
obtained from each other by a finite sequence of ETT’s.

Let T and T ′ be two distinct spanning trees of G. Then there is a set S = {e1, e2, . . ., ek}
of some k edges of T which are not in T ′. Since a spanning tree has n− 1 edges, there is
a corresponding set S′ = {e′

1
, e′

2
, . . ., e′k} of edges of T ′ which are not in T . Thus T + e′

1

contains a unique fundamental cycle T e′
1
. As T ′ is a tree, at least one edge of T e′

1
(which

is a branch of T ) will not be in T ′ and thus is a member of S. Without loss of generality,
let this edge be e1. Define T1 = T − e1 + e′

1
. Then T1 can be obtained from T by an ETT and

therefore T1 and T ′ have one more edge in common.
Repeating this process k− 1 more times, we get a sequence of spanning trees T0 =

T, T1, T2, . . ., Tk−1, Tk = T ′ such that there is an ETT Ti←→ Ti+1, 0≤ i≤ k−1. q

Theorem 4.28 An elementary tree transformation can be obtained by a sequence of
neighbour transformations.

Proof Let T and T ′ = T − x + y be spanning trees of the graph G, where x and y are
non-adjacent edges of G. Then we can choose a set of edges e1, e2, . . ., ek such that
x, e1, e2, . . . , ek, y is a path in T + y. Define T1 = T − x+ e1 and Ti = Ti−1 + ei−1 + ei, 2≤ i≤ k

and Tk+1 = Tk − ek + y. Then Tk+1 = T ′, and is obtained from T by a sequence of k + 1

neighbour transformations through the intermediate trees Ti, 1≤ i≤ k. q

Definition: A spanning tree of a graph G corresponding to a central vertex of the tree
Tr(G) is called a central tree.

The set of diameters of the spanning trees of a connected graph G is the tree diameter
set of G. A set of positive integers is a feasible tree diameter set if it is the tree diameter set
of some graph. For example, the graph in Figure 4.12 has one spanning tree of diameter
seven and all others of diameter five.

Fig. 4.12

The girth g(G) of a graph G is the length of a smallest cycle of G. A cycle of smallest
length is called a girdle of G. The circumference c(G) of a graph G is the length of the
longest cycle of G. A cycle of maximum length is called a hem of G.
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Let n (δ , g) denote the minimum order (minimum vertices) of a graph with minimum
degree at least δ (≥ 3) and girth at least g (≥ 2). Let n̄ (∆, g) denote the maximum order of
a graph with degree at most ∆ and girth at most g.

The following upper bound for n (δ , g) can be found in Bollobas [29].

Theorem 4.29 (Bollobas) n (δ , g) ≤ (2δ )g.

Proof Clearly, n (δ , g) denotes the minimum order of a graph with minimum degree at
least δ (≥ 3) and girth at least g (≥ 2). Therefore we construct a graph with atmost (2δ )g

vertices with these properties. Let n = (2δ )g.
Consider all graphs with vertex set V = {1, 2, . . ., n} and having exactly δ n edges.
Since there are

(

n
2

)

possible positions to accommodate these δ n edges, the number of
such graphs

=

(
(

n
2

)

δ n

)

.

Among the n available vertices, the number of ways an h-cycle can be formed is

=
1

2

(n

h

)

(h−1)!

Obviously,
1

2

(n

h

)

(h−1)! <
1

2h
nh.

The number of graphs in the set which contain a given h-cycle is

=

(
(

n
2

)

−h

δ n−h

)

.

Hence the average number of cycles of length at most g−1 in these graphs

<
g−1

∑
h=3

1

2h
nh

(
(

n
2

)

−h

δ n−h

)/(
(

n
2

)

δ n

)

<
g−1

∑
h=3

(2δ )h < (2δ )g = n.

Since the average is less than n, there is an element in the set with value less than or
equal to n− 1. Thus there is a graph G on n vertices with δ n edges and at most n− 1

cycles of length at most g− 1. Removing one edge from each of these cycles, we get
a graph G0 with girth at least g. The number of edges removed is atmost n− 1, so that
m(Go)≥ nδ − (n−1)≥ n (δ −1)+1 and n (G0) = n. Thus G0 ∈ Gδ−1, and hence G0 contains
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a subgraph H with δ (H) ≥ δ . By construction, g(H) ≥ g and n(H) ≤ n = (2δ )g. Thus we
have constructed a graph H with the desired properties. q

Note If G is a graph with at least n0 vertices and at least n0n(G)−

(

n0 +1

2

)

+1 edges,

then G contains a subgraph H with δ (H)≥ n0 +1.

We denote by Gno =

{

G : n(G) > n0, m(G)≥ n0.n(G)−

(

n0 +1

2

)

+1

}

.

The following lower bound for n (δ , g) is due to Tutte [248].

Theorem 4.30 (Tutte)

n
−
(δ , g)≥















δ (δ −1)
g−1

2 −2

δ −2
,

2(δ −1)
g
2 −1

δ −2
,

if g is odd,

if g is even.

Proof

i. Let g be odd, say g = 2d +1. Then clearly the diameter of G is at least d. Let v be a
vertex with eccentricity at least d. Consider the neighbourhoods

Ni = Ni(V ), 1≤ i≤ d = (g−1)/2.

Obviously, no vertex of Ni is adjacent to more than one vertex of Ni−1, because
otherwise, there will be a cycle of length 1 ≤ 2i < g. Similarly, there is no edge in
< Ni >.

Therefore, for every u ∈ Ni, we have

|N(u)
⋂

Ni−1|= 1, |N(u)
⋂

Ni+1|= d(u)−1 and

|Ni+1|= ∑
u∈Ni

{d(u)−1} ≥ (δ −1) |Ni| . (4.30.1)

As V ⊇ {v}
⋃

d
⋃

i=1

Ni(v), therefore

n≥ 1 +
d

∑
i=1

|Ni| ≥ 1 +δ +δ (δ −1)+ ...+δ (δ−1)d−1

= 1 +
δ

δ −2

{

(δ −1)d−1
}

=

{

δ (δ −1)
g−1

2 −2
}

δ −2
.
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ii. Let g be even, say g = 2d. Then again the diameter is at least d. Let xy be an edge of
G and let

Si = {v ∈V : d(x, v) = i, or d(y, v) = i}, for 1≤ i≤ d−1 and S0 = {x,y}.

The girth requirement forces that there are no edges in < Si >, for 1 ≤ i ≤ d− 2,
and that each vertex of Si be adjacent to at most one vertex of Si−1, for 1≤ i≤ d−1.

Thus, for each u ∈ Si, we have |N(u)∩ Si−1|= 1, |N(u)∩ Si+1|= d(u)−1 and

|Si+1|= ∑
uεSi

(d(u)−1)≥ (δ −1) |Si|. (4.30.2)

Since V ⊇ {x,y}
⋃

d−1
⋃

i=1

Si,

n =
d−1

∑
i=0

|Si| ≥ 2
d−1

∑
i=0

(δ −1)i =
2

δ −2

[

(δ −1)
g
2 −1

]

. q

By using arguments as in Theorem 4.30 and by replacing δ by ∆, we obtain the following
result.

Theorem 4.31

n̄(∆,g)≤























∆(∆−1)
g−1

2 −2

∆−2
, if g is odd,

2
[

(∆−1)
g
2 −1

]

∆−2
,

if g is even.

Definition: A k-regular graph with girth g and with minimum order n(k, g) is called a (k,
g)-cage.

The integer n0 =



















k(k−1)
g−1

2 −2

k−2
, i f g is odd ,

2
[

(k−1)
g
2 −1

]

k−2
, i f g is even ,

is called the Moore bound for a k-regular graph with g.

4.6 Helly Property

Definition: A family {Ai : i ∈ I} of subsets of a set A is said to satisfy the Helly property
if J ⊆ I, and Ai

⋂

A j 6= φ , for every i, j ∈ J, then
⋂

j∈J

A j 6= φ .
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The following result is reported by Balakrishnan and Ranganathan [13].

Theorem 4.32 A family of subtrees of a tree satisfies the Helly property.

Proof Let τ = {Ti : i ∈ I} be a family of subtrees of a tree T . Suppose for all i, j ∈ J ⊆
I, Ti∩Tj 6= φ . We have to prove

⋂

j∈J

Tj 6= φ . If some tree Ti ∈ τ, i ∈ J, is a single vertex tree

{v} (that is, K1), then clearly,
⋂

j∈J

Tj = {v}. So assume that each tree Ti ∈ T with i ∈ J has at

least two vertices.
We induct on the number of vertices of T . Suppose the result is true for all trees with at

most n vertices and let T be a tree with (n +1) vertices. Let v0 be an end vertex of T and u0

its unique neighbour in T . Let T ′i = Ti− v0, i ∈ J and T ′ = T − v0. By induction hypothesis,
the result is true for the tree T ′. Also, T ′i ∩T ′j 6= φ , for any i, j ∈ J. In fact, if Ti and Tj have
a vertex u (6= v0) in common then T ′i and T ′j also have u in common, whereas if Ti and Tj

have v0 in common, then Ti and Tj have u0 also in common, and so do T ′i and T ′j . Hence by
induction hypothesis,

⋂

j∈J

T ′j 6= φ and therefore
⋂

j∈J

Tj 6= φ . q

4.7 Signed Trees

The following result by Yan et al. [271] characterises signed degree sequences in signed
trees.

Theorem 4.33 Let D = [di]
n
1

be an integral sequence of n ≥ 2 terms and let D has n+

positive terms, n0 zero and n− negative terms. Let α = 1 if n+n− > 0, and α = 0, otherwise.
Then D is the signed degree sequence of a signed tree if and only if (i) to (iv) hold.

i.
n

∑
i=1

di ≡ 2n−2(mod4).

ii.
n

∑
i=1

|di| ≤ 2n−2−2n0.

iii.
n

∑
i=1

|di|+2 ∑
di>0

|di| ≤ 2n−2−4α +4p−.

iv.
n

∑
i=1

|di|+2 ∑
di>0

|di| ≤ 2n−2−4α +4p+.

Proof Note that condition (iv) for D is same as condition (iii) for −D. The necessity of
the theorem follows from the fact that m = n−1 and Lemmas 2.2, 2.3 and 2.4.

We prove the sufficiency by induction on n. For n = 2, by (i) and (iii), d1 = d2 = 1 or
−1. Therefore D is the signed degree sequence of K2 with positive edge or a negative edge.
Assume that the theorem is true for n−1. Let n≥ 3.



102 Trees

By (ii), D has at least two terms in which |di|= 1. After rearranging the terms in D or
taking −D, we may assume without loss of generality that dn = 1 and one of the following
holds.

1. |di|= 1, for 1≤ i≤ n, d1 ≥ 0 and d1 = 0, if n0 > 0.

2. d1 ≥ 2.

3. di ≤ 1 but di 6=−1 for 1≤ i≤ n and d1 = 0 and α = 1.

4. di = 1 or di ≤−2, for 1≤ i≤ n and d1 = α = 1.

For any of the above, consider the sequence D′ = [d′i]
n′

i , where n′ = n−1 and d′i = d1−1

and d′i = di, for 2≤ i≤ n−1.

Note that
n′

∑
i=1

d′i =

(

n

∑
i=1

di

)

−2≡ (2n−2)−2≡ 2n′−2(mod4), that is, (i) holds for D′. We

check conditions (ii) to (iv) for D′ according to the four cases above.

Case 1 In this case, |d′i| ≤ 1, for 1≤ i≤ n−1, we have

n′

∑
i=1

|d′i| = n′+ +n′−, ∑
d′i>0

|d′|= n′+, ∑
d′i<0

|d′i|= n′−.

Thus (ii) to (iv) holds for D′ as n′+ +n′− ≥ 2.

Case 2 In this case, since d1 ≥ 2 and dn = 1, we have

n′ = n−1, n′+ = n+−1, n′0 = n0, n′− = n−, α ′ = α,

n′

∑
i=1

|d′i|=
n

∑
i=1

|d′i|−2, ∑
d′i>0

|d′i|= ∑
d′i>0

|d′i|−2, ∑
d′i<0

|d′i|= ∑
d′i<0

|d′i|.

Therefore (ii) to (iv) holding for D imply that (ii) to (iv) hold for D′.

Case 3 In this case, since d1 = 0 and dn = 1, we have

n′ = n−1, n′+ = n+−1, n′
0
= n

0
−1, n′− = n−+1, α ′ ≤ α,

n′

∑
i=1

|d′i|=
n

∑
i=1

|di|, ∑
di>0

|d′i|= ∑
di>0

|d′i|−1, ∑
d′i<0

|d′i|= ∑
d′i<0

|d′i|+1.

So (ii) and (iii) holding for D imply that (ii) and (iii) hold for D′. Since d′i ≤ 1 for

1≤ i≤ n−1,
n′

∑
d′i

|d′i|= n′+. By (iii) for D and the fact that di ≤ −2 when di < 0,

n+ +6n− ≤
n′

∑
i=1

|di|+ 2 ∑
di<0

|di| ≤ 2n−2−4α +4n− = 2n+ +2n0 +6n−6,
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and so 6≤ n+ +2n0. Therefore, 3≤ n′+ +2n′
0

and then 4≤ 2n′+ +2n′
0
.

This together with (ii) for D′ and ∑
d′i>0

|d′i|= n′+ implies (iv) for D′.

Case 4 In this case, since d1 = dn = 1, therefore

n′+n−1, n′+ = n+−2, n′0 = n0 +1 = 1, n′− = n−, α ′ ≤ α,

n′

∑
i=1

|d′i|=
n

∑
i=1

|di|−2, ∑
d′i>0

|d′i|= ∑
d′i>0

|d′i|−2, ∑
d′i<0

|d′i|= ∑
di<0

|d′i|.

(iii) for D implies that (iii) holds for D′. As in the argument for Case 3, we have ∑
d′i>0

|di|= n′+

and 6≤ n++2n0. Therefore, 4≤ n′+. Adding 2 ∑
d′i>0

|d′i|= 2n′+ to the equality in (iii) for D′ and

dividing the resulting equality by 3, we get (ii) for D′ as 2n′
0
≤ 2n′+. Adding 2 ∑

d′i>0

|d′i|= 2n′+

to the equality in (ii) for D′, we get (iv) for D′ as 4α ′ ≤ 2n′
0
+2n′+.

From the above discussion, D′ satisfies (i) to (iv). By the induction hypothesis, there
exists a signed tree T ′ with the vertex set {v1, v2, . . . , vn−1} and signed degree T ′ (vi) = d′i ,
for 1 ≤ i≤ n−1. Suppose T is the signed tree obtained from T ′ by adding a new vertex vn

and a new positive edge v1v+
n , then T has a signed degree sequence D. q

Corollary Let D = [di]
n
1

be an integral sequence of n ≥ 3 terms. Let D has at least two
terms in which |di|= 1, |dn|= 1 and one of the following condition holds.

1. |di|≤ 1, for 1≤ i≤ n, di ≥ 0, and d1 = 0 if no > 0.

2. d1 ≥ 2.

3. di ≤ 1 but di 6=−1 for 1≤ i≤ n, and d1 = 0 and δ = 1

4. di = 1 or di ≤−2 for 1≤ i≤ n, and d1 = δ = 1.

Then D is the signed degree sequence of a signed tree if and only if D′= [d1−1, d2, . . ., dn−1]
is the signed degree sequence of a signed tree.

4.8 Exercises

1. Draw all unlabelled trees with seven and eight vertices.

2. Draw a tree which has radius five and diameter ten.

3. If a tree has an even number of edges, then show that it contains at least one vertex
of even degree.
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4. If the maximum degree of a vertex in a tree is ∆, then show that it has ∆ pendant
vertices.

5. If T is a tree such that every vertex adjacent to a pendant vertex has degree at least
three, then prove that some pair of pendant vertices in T has a common neighbour.

6. Show that a path is its own spanning tree.

7. Prove that every tree is a bipartite graph.

8. If for a simple graph G, m(G) ≥ n(G), prove that G contains a cycle.

9. Show that for a unicentral tree, d = 2r, and for a bicentral tree, d = 2r−1.

10. Prove that if Kr, s is a tree, then it must be a star.

11. How many spanning trees does K4 have?

12. Prove that each spanning tree of a connected graph G contains all the pendant edges
of G.

13. Prove that each edge of a connected graph G belongs to at least one spanning tree of
G.


