
2. Degree Sequences

The concept of degrees in graphs has provided a framework for the study of various struc-
tural properties of graphs and has therefore attracted the attention of many graph theorists.
Here we deliberate on the various criteria for a non-decreasing sequence of non-negative
integers to be a degree sequence of some graph.

2.1 Degree Sequences

Let di, 1 ≤ i ≤ n, be the degrees of the vertices vi of a graph in any order. The sequence [di]
n
1

is called the degree sequence of the graph. The non-negative sequence [di]
n
1 is called the

degree sequence of the graph if it is the degree sequence of some graph, and the graph is
said to realise the sequence.

The set of distinct non-negative integers occurring in a degree sequence of a graph is
called its degree set. A set of non-negative integers is called a degree set if it is the degree
set of some graph, and the graph is said to realise the degree set.

Two graphs with the same degree sequence are said to be degree equivalent. In the graph
of Figure 2.1(a), the degree sequence is D = [1, 2, 3, 3, 3, 4] or D = [1 2 33 4] and its degree
set is {1, 2, 3, 4}, while the degree sequence of the graph in Figure 2.1(b) is [1, 1, 2, 3, 3]
and its degree set is {1, 2, 3}.

Fig. 2.1

If the degree sequence is arranged as the non-decreasing positive sequence d
n1

1 , d
n2

2 , . . .
d

nk

k
, (d1 < d2 < . . . < dk), the sequence n1, n2, . . ., nk is called the frequency sequence of the

graph.
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The two necessary conditions implied by Theorem 1.1 and Theorem 1.12 are not suffi-
cient to ensure that a non-negative sequence is a degree sequence of a graph. To see this,
consider the sequence [1, 2, 3, 4, . . . , 4, n−1, n−1]. The sum of the degrees is clearly even
and ∆ = n− 1. However, this is not a degree sequence, since there are two vertices with
degree n−1, and this requires that each of the two vertices is joined to all the other vertices,
and therefore δ ≥ 2. But the minimum number in the sequence is 1.

A degree sequence is perfect if no two of its elements are equal, that is, if the frequency
sequence is 1, 1, . . . , 1. A degree sequence is quasi-perfect if exactly two of its elements
are same.

Definition: Let D = [di]
n
1 be a non-negative sequence and k be any integer 1 ≤ k ≤ n.

Let D′ = [d′
i]

n
1 be the sequence obtained from D by setting dk = 0 and d′

i = di − 1 for the
dk largest elements of D other than dk. Let Hk be the graph obtained on the vertex set
V = {v1, v2, . . ., vn} by joining vk to the dk vertices corresponding to the dk elements used
to obtain D′. This operation of getting D′ and Hk is called laying off dk and D′ is called the
residual sequence, and Hk the subgraph obtained by laying off dk.

Example Let D = [2, 2, 3, 3, 4, 4]. Take d3 = 0. Then D′ = [2, 2, 0, 2, 3, 3]. The subgraph
Hk in this case is shown in Figure 2.2.

Fig. 2.2

2.2 Criteria for Degree Sequences

Havel [112] and Hakimi [99] independently obtained recursive necessary and sufficient
conditions for a degree sequence, in terms of laying off a largest integer in the sequence.
Wang and Kleitman [261] proved the necessary and sufficient conditions for arbitrary layoffs.

Theorem 2.1 A non-negative sequence is a degree sequence if and only if the residual
sequence obtained by laying off any non-zero element of the sequence is a degree sequence.

Proof

Sufficiency Let the non-negative sequence be [di]
n
1. Suppose dk is the non-zero element

laid off and the residual sequence [d′
i]

n
1 is a degree sequence. Then there exists a graph G′
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realising [d′
i]

n
1 in which vk has degree zero and some dk vertices, say vi j

, 1 ≤ j ≤ dk have
degree di j

−1. Now, by joining vk to these vertices we get a graph G with degree sequence
[di]

n
1. (Observe that the subgraph obtained by such joining is precisely the subgraph Hk

obtained by laying off dk).

Necessity We are given that there is a graph realising D = [di]
n
1. Let dk be the element to

be laid off. First, we claim there is a graph realising D in which vk is adjacent to all the
vertices in the set S of dk largest elements of D−{dk}. If not, let G be a graph realising
D such that vk is adjacent to the maximum possible number of vertices in S. Then there
is a vertex vi in S to which vk is not adjacent and hence a vertex v j outside S to which vk

is adjacent (since d(vk) = |S|). By definition of S, d j ≤ di. Therefore there is a vertex vh in
V −{vk} adjacent to vi, but not adjacent to v j. Note that vh may be in S (Fig. 2.3).

Fig. 2.3

Construct a graph H from G by deleting the edges v jvk and vhvi and adding the edges v jvh

and vivk. This operation does not change the degree sequence. Thus H is a graph realising
the given sequence, in which one more vertex, namely vi of S is adjacent to vk, than in G.
This contradicts the choice of G and establishes the claim.

To complete the proof, if G is a graph realising the given sequence and in which vk is
adjacent to all vertices of S, let G′ = G − vk. Then G′ has the residual degree sequence
obtained by laying off dk. q

Definition: Let the subgraph H on the vertices vi, v j, vr, vs of a multigraph G contain the
edges viv j and vrvs. The operation of deleting these edges and introducing a pair of new
edges vivs and v jvr, or vivr and v jvs is called an elementary degree preserving transformation
(EDT), or simple exchange, or 2-switching, or elementary degree-invariant transformation.

Remarks

1. The result of an EDT is clearly a degree equivalent multigraph.

2. If an EDT is applied to a graph, the result will be a graph only if the latter pair of
edges (vivs and v jvr), or (vivr and v jvs) does not exist in G.
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Theorem 2.2 (Havel, Hakimi) The non-negative integer sequence D = [di]
n
1 is graphic

if and only if D′ is graphic, where D′ is the sequence (having n−1 elements) obtained from
D by deleting its largest element ∆ and subtracting 1 from its ∆ next largest elements.

Proof

Sufficiency Let D = [di]
n
1 be the non-negative sequence with d1 ≥ d2 ≥ . . . ≥ dn. Let G′ be

the graph realising the sequence D′. We add a new vertex adjacent to vertices in G′ having
degrees d2 −1, . . ., d∆+1−1. Those di are the ∆ largest elements of D after ∆ itself. (But the
numbers d2 −1, . . . , d∆+1 −1 need not be the ∆ largest elements in D′).

Necessity Let G be a graph realising D = [di]
n
1, d1 ≥ d2 ≥ . . .≥ dn. We produce a graph G′

realising D′, where D′ is the sequence obtained from D by deleting the largest entry d1 and
subtracting 1 from d1 next largest entries.

Let w be a vertex of degree d1 in G and N(w) be the set of vertices which are adjacent to
w. Let S be the set of d1 number of vertices in G having the desired degrees d2, . . .,dd1+1.

If N(w) = S, we can delete w to obtain G′. Otherwise, some vertex of S is missing from
N(w). In this case, we modify G to increase |N(w)∩ S| without changing the degree of any
vertex. Since |N(w)∩ S| can increase at most d1 times, repeating this procedure converts an
arbitrary graph G that realises D, into a graph G∗ that realises D, and has N(w) = S. From
G∗, we then delete w to obtain the desired graph G′ realising D′.

If N(w) 6= S, let x ∈ S and z /∈ S, so that wz is an edge and wx is not an edge, since
d(w) = d1 = |S|. By this choice of S, d(x) ≥ d(z) (Fig. 2.4).

Fig. 2.4

We would like to add wx and delete wz without changing their respective degrees. It
suffices to find a vertex y outside T = {x, z, w} such that yx is an edge, while yz is not. If
such a y exists, then we also delete xy and add zy. Let q be the number of copies of the
edge xz (0 or 1). Now x has d(x)−q neighbours outside T , and z has d(z)−1−q neighbours
outside T . Since d(x) ≥ d(z), the desired y outside T exists and we can perform the EDT
(elementary degree preserving transformation or 2-switch). q

Algorithm: The above recursive conditions give an algorithm to check whether a non-
negative sequence is a degree sequence and if so to construct a graph realising it.
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The algorithm starts with an empty graph on vertex set V = {v1, v2, . . ., vn} and at the kth
iteration generates a subgraph Hk of G by deleting (laying off) a vertex of maximum degree
in the residual sequence at that stage. If the given sequence is a degree sequence, we end
up with a null degree sequence (i.e., for each i, di = 0) and the graph realising the original
sequence is simply the sum of the subgraphs H j. If not, at some stage, one of the elements
of the residual sequence becomes negative, and the algorithm reports non-realisability of
the sequence.

An obvious modification of the algorithm, obtained by choosing an arbitrary vertex of
positive degree, gives the Wang-Kleitman algorithm for generating a graph with a given
degree sequence.

Remarks

1. There can be many non-isomorphic graphs with the same degree sequence. The
smallest example is the pair shown in Figure 2.5 on five vertices with the degree
sequence [2, 2, 2, 1, 1].

Fig. 2.5

The problem of generating all non-isomorphic graphs of given order and size in-
volves the problem of graph isomorphism for which a good algorithm is not yet
known. So also is the problem of generating all non-isomorphic graphs with given
degree sequence. In fact, even the problem of finding the number of non-isomorphic
graphs with given order and size, or with given degree sequence (and several other
problems of similar nature) has not been satisfactorily solved.

2. The Wang-Kleitman algorithm is certainly more general than the Havel-Hakimi algo-
rithm, as it can generate more number of non-isomorphic graphs with a given degree
sequence, because of the arbitrariness of the laid-off vertex. For example, not all the
five non-isomorphic graphs with the degree sequence [3, 3, 2, 2, 1, 1] can be gener-
ated by the Havel-Hakimi algorithm unlike the Wang-Kleitman algorithm.

3. Even the Wang-Kleithman algorithm cannot always generate all graphs with a given
degree sequence. For example, the graph G with degree sequence [3, 3, 3, 3, 2, 2, 2, 2,
1, 1, 1, 1] shown in Figure 2.6, cannot be generated by this algorithm. For

a. if we lay off a 3, it has to be laid off against the other 3’s and will generate a
graph in which a vertex with degree 3 is adjacent to three other vertices with
degree 3,

b. if we lay off a 2 it will generate a graph with a vertex of degree 2 adjacent to
two vertices of degree 3,



42 Degree Sequences

c. if we lay off a one it will generate a graph in which a vertex of degree one is
adjacent to a vertex of degree 3. None of these cases is realised in the given
graph G.

Fig. 2.6

However, there are other methods of generating all graphs realising a degree se-
quence D from any one graph realising D based on a theorem by Hakimi [98]. But
those will also be inefficient unless some efficient isomorphism testing is developed.

4. The graphs in Figure 2.5 show that the same degree sequence may be realised by a
connected as well as a disconnected graph. Such degree sequences are called poten-
tially connected, where as a degree sequence D such that every graph realising D is
connected is called a forcibly connected degree sequence.

Definition: If P is a graph property, and D = [di]
n
1 is a degree sequence, then D is said to

be potentially-P, if at least one graph realising D is a P-graph, and it is said to be forcibly-P
if every graph realising it is a P-graph.

Theorem 2.3 (Hakimi) If G1 and G2 are degree equivalent graphs, then one can be
obtained from the other by a finite sequence of EDTs.

Proof Superimpose G1 and G2 such that each vertex of G2 coincides with a vertex of G1

with the same degree. Imagine the edges of G1 are coloured blue and the edges of G2 are
coloured red. Then in the superimposed multigraph H, the number of blue edges incident
equals the number of red edges incident at every vertex. We refer to this as blue-red parity.
If there is a blue edge viv j and a red edge viv j in H, we call it a blue-red parallel pair.

Let K be the graph obtained from H by deleting all such parallel pairs. Then K is the null
graph if and only if G1 and G2 are label-isomorphic in H and hence originally isomorphic.
If this is not the case, we show that we can create more parallel pairs by a sequence of
EDTs and delete them till the final resultant graph is null. This will prove the theorem.

Let B and R denote the sets of blue and red edges in K. If viv j ∈ B, we show that we
can produce a parallel pair at viv j, so that the pair can be deleted. This would establish the
claim made above.

Now, by construction, there is a blue-red degree parity at every vertex of K. So there are
red edges vivk, v jvr in K. If vk 6= vr (Fig. 2.7(a)) an EDT in G2 switching the red edges to
viv j, vkvr produces a blue-red parallel at viv j.
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Fig. 2.7

If vk = vr, again by degree parity, at vk there are at least two blue edges. Let vkvs be one
such blue edge. Then vs is distinct from both vi and v j , for otherwise, there is a blue-red
parallel pair vivk or v jvr. Then there is another red edge vsvt , vt distinct from vi or v j .

Let vt 6= vi. The two subcases vt = v j and vt 6= v j are shown in Figure 2.7(b) and (c). In the
case of (b), one EDT of G2 switching vivk and vsvt to positions viv j and vsvk produces a blue-
red pair at viv j and vkvs. In the case of (c), one EDT of G2 switching vivk and vtvs to positions
vsvk and vtvi produces a blue-red parallel pair at vkvs (which can be deleted). Another EDT
of G2 switching the blue-red pair vt vi and v jvk to positions viv j and vsvk produces a blue-red
pair viv j.

Since in both cases we get a blue-red pair at viv j position, our claim is established and
the proof of the theorem is complete. q

Remarks In the related context of a (0, 1) matrix A (that is, a matrix A whose elements
are 0’s or 1’s), Ryser [227] defined an interchange as a transformation of the elements of

A that changes a minor of type A1 =

(

1

0

0

1

)

into a minor of the type A1 =

(

0

1

1

0

)

, or vice

versa and proved an interchange theorem which can be interpreted as EDT theorem for
bipartite graphs and digraphs.

The next result is a combinatorial characterisation of degree sequences, due to Erdos
and Gallai [73]. Several proofs of the criterion exist; the first proof given here is due to
Choudam [58] and the second one is due to Tripathi et al [246].

Theorem 2.4 (Erdos-Gallai) A non-increasing sequence [di]
n
1 of non-negative integers

is a degree sequence if and only if D = [di]
n
1 is even and the inequality
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k

∑
i=1

di ≤ k(k−1)+
n

∑
i=k+1

min(di, k) (2.4.1)

is satisfied for each integer k, 1 ≤ k ≤ n.

Proof

Necessity Evidently
n

∑
i=1

di is even. Let U denote the subset of vertices with the k highest

degrees in D. Then the sum s =
k

∑
i=1

di can be split as s1 + s2, where s1 is the contribution

to s from edges joining vertices in U , each edge contributing 2 to the sum, and s2 is the
contribution to s from the edges between vertices in U and U (where U =V −U), each edge
contributing 1 to the sum (Fig. 2.8).

s1 is clearly bounded above by the degree sum of a complete graph on k-vertices, i.e.,
k(k−1). Also, each vertex vi of U can be joined to at most min (di, k) vertices of U , so that

s2 is bounded above by
n

∑
i=k+1

min(di, k). Together, we get (2.4.1).

Fig. 2.8

Sufficiency We induct on the sum s =
n

∑
i=1

di and use the obvious inequality

min(a, b)−1 ≤ min(a−1, b), (2.4.2)

for positive integers a and b.
For s = 2, clearly K2 ∪ (n− 2)K1 realises the only sequence [1, 1, 0, 0, . . . 0] or [120n−2]

satisfying the conditions (2.4.1).
As induction hypothesis, let all non-increasing sequences of non-negative integers with

even sum at most s−2 and satisfying (2.4.1) be degree sequences.
Let D = [di]

n
1 be a sequence with sum s and satisfying (2.4.1). We produce a new non-

increasing sequence D′ of non-negative integers by subtracting one each from two positive
terms of D and verify that D′ satisfies the hypothesis of the theorem. Since the trailing
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zeros in the non-increasing sequences of non-negative integers do not essentially affect the
argument, there is no loss of generality in assuming that dn > 0, and we assume this to
simplify the expression.

To define D′, let t be the smallest integer (≥ 1) such that dt > dt+1. That is, let D be
d1 = d2 = . . . = dt > dt+1 ≥ dt+2 ≥ . . .≥ dn > 0.

If D is regular (that is, di = d > 0, for all i) then let t be n−1.

Then d′
i =







di, f or 1 ≤ i ≤ t −1 and t +1 ≤ i ≤ n−1 ,
dt −1, f or i = t ,
dn −1, f or i = n .

Clearly, D′ is a non-increasing sequence of non-negative integers and
n

∑
i=1

d′
i = s − 2 is

even.
We verify that D′ satisfies (2.4.1) by considering several cases depending on the relative

position of k and the magnitudes of dk and dn.

Case I Let k = n. Therefore,
k

∑
i=1

d′
i =

k

∑
i=1

di −2 ≤ n(n−1)−2 < n(n−1) = RHS of (2.4.1)

for D′.

Case II Let t ≤ k ≤ n−1.

Then
k

∑
i=1

d′
i =

k

∑
i=1

di −1 ≤ k(k−1)+
n

∑
i=k+1

min(di, k)−1 (since D satisfies (2.4.1))

= k(k−1)+
n−1

∑
i=k+1

min(d′
i, k)+min(dn, k)−1

≤ k(k−1)+
n−1

∑
i=k+1

min(d′
i, k)+min(dn −1, k) by (2.4.2)

= k(k−1)+
n−1

∑
i=k+1

min(d′
i, k)+min(d′

n, k)

Therefore,
k

∑
i=1

d′
i ≤ k(k−1)+

n

∑
i=k+1

min(d′
i , k).

Case III Let k ≤ t −1.

Subcase III.1 Assume dk ≤ k−1.

Then
k

∑
i=1

d′
i = kdk ≤ k(k−1) ≤ k(k−1)+

n

∑
i=k+1

min(d′
i , k),

since the second term is non-negative.

Subcase III.2 Every d j = k, 1 ≤ j ≤ k. We first observe that dk+2 + . . .+dn ≥ 2.
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This is obvious if k+2 ≤ n−1, because dn > 0 gives dn ≥ 1 and dn−1 ≥ 1. When k+2 = n,
we have k = n−2. As k ≤ t −1, t ≥ k +1 = n−2 +1 = n−1. Since t > n−1 is not possible,
t = n−1.

The sequence D is [n−2, n−2, . . . , n−2, dn], or [(n−2)n−1dn]. Then s = (n−1) (n−2)+dn.
Since s is even, dn is even and hence dn ≥ 2. Thus, dk+2 + . . .+dn ≥ 2.

Therefore, dk+2 + . . .+dn −2 ≥ 0.

Now,

k

∑
i=1

d′
i =

k

∑
i=1

di = k.k = k2 = k2 − k+ k

= k2 − k+dk+1, (because k ≤ t −1, and d1 = . . . = dt−1 = dt,

so if dt−1 = k, then dt = k, and if dk = k, dk+1 = k).

Thus,
k

∑
i=1

d′
i ≤ k2 − k+dk+1 +(dk+2 + . . .+dn −2) = k(k−1)+

n

∑
i=k+1

min(di, k)−2,

(because min (dk+1, k) = dk+1, min (dk+2, k) = k = dk+2, . . ., min (dt, k) = k = dt , . . ., min
(dt+1, k) = dt+1 (as dt+1 < dt = k), . . ., min (dn, k) = dn (as dn < dt = k)).

Hence,
k

∑
i=1

d′
i ≤ k(k−1)+

n

∑
i=k+1

min(di, k)+min(dt, k)+min(dn, k)−2

i 6=t, n

= k(k−1)+
n

∑
i=k+1

min(d′
i , k)+min(d′

t +1, k)+min(d′
n +1, k)−2

i 6=t, n

≤ k(k−1)+
n

∑
i=k+1

min(d′
i , k)+min(d′

t , k)+1 +min(d′
n, k)+1−2

i 6=t, n

= k(k−1)+
n

∑
i=k+1

min(d′
i , k).

Subcase III.3 Let dk ≥ k+1.

i. Let dn ≥ k+1.

Then
k

∑
i=1

d′
i =

k

∑
i=1

di ≤ k(k−1)+
n

∑
i=k+1

min(di, k) (since D satisfies (2.4.1))

= k(k−1)+
n

∑
k+1

min(di, k)+min(dt , k)+min(dn, k)

i 6=t, n



Graph Theory 47

= k(k−1)+
n

∑
k+1

min(d′
i , k)+min(dt −1, k)+min(dn −1, k),

i 6=t, n

(because min(dt , k) = min(dt − 1, k) = k, min(dn, k) = min(dn − 1, k) = k, as dt ≥ k +
1, dn ≥ k+1 implies that dt −1 ≥ k, dn −1 ≥ k).

So,
k

∑
i=1

d′
i ≤ k(k−1)+

n

∑
k+1

min(d′
i , k)+min(d′

t , k)+min(d′
n, k)

i 6=t, n

= k(k−1)+
n

∑
i=k+1

min(d′
i, k).

ii. Let dn ≤ k and let r be the smallest integer such that dt+r+1 ≤ k. We verify that in
(2.4.1), D can not attain equality for such a choice of k. For, with equality, we have

k

∑
i=1

di = kdk = k(k−1)+
t+r

∑
k+1

min(di, k)+
n

∑
t+r+1

min(di, k)

= k(k−1)+(t + r− k)k+
n

∑
t+r+1

di,

because min (di,k) =







k, f or i = k+1, ..., t + r as di ≥ k+1,

di, f or i = t + r +1, ...,n as di ≤ k .

So, kdk = k(t + r−1)+
k

∑
t+r+1

di.

Then
k+1

∑
i=1

di = (k+1)dk = (k+1)

{

(t + r−1)+
1

k

n

∑
t+r+1

di

}

, (using dk from above)

= (k+1)(t + r−1)+
k+1

k

n

∑
t+r+1

di > (k+1)(t + r−1)+
n

∑
t+r+1

di

= (k+1)k− (k+ 1)k+(k +1)(t + r−1)+
n

∑
t+r+1

di

= (k+1)k+(k+ 1)(t + r− k−1)+
n

∑
t+r+1

di = (k+1)k+
t+r

∑
k+1

(k+1)+
n

∑
t+r+1

di

= (k+1)k+
n

∑
t+r+1

min (di, k+1),
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because min (di, k+1) = k+1 for i = k+1, . . ., t + r, and

min (di, k+1) = di, for i = t + r +1, . . . , n.

So,
k+1

∑
i=1

di > k(k+1)+
n

∑
k+1

min (di, k+1).

Therefore,
k+1

∑
i=1

di > k(k+1)+(k+1)+
n

∑
k+2

min (di, k+1),

which is a contradiction to (2.4.1), for D for k+1. Hence D has strict inequality for k.

Therefore,
k

∑
i=1

d′
i =

k

∑
i=1

di < k(k−1)+
n

∑
k+1

min (di, k).

Thus,
k

∑
i=1

d′
i =

k

∑
i=1

di ≤ k(k−1)+
n

∑
k+1

min (di, k)−1

= k(k−1)+
n−1

∑
i=k+1

min (di, k)+min (dt , k)+min (dn, k)−1

i 6=t

≤ k(k−1)+
n−1

∑
i=k+1

min (d′
i, k)+min (dt −1, k)+min (dn −1, k),

i 6=t

as min (dn, k)−1 ≤ min (dn −1, k), min(dt, k) = k (since dt ≥ k +1), min(dt −1, k) = k

(since dt −1 ≥ k).

Therefore,
k

∑
i=1

d′
i ≤ k(k−1)+

n

∑
k+1

min (d′
i , k).

Hence in all cases D′ satisfies (2.4.1).

Therefore by induction hypothesis, there is a graph G′ realising D′. If vt vn /∈ E(G′), then
G′ + vt vn gives a realisation G of D. If vt vn ∈ E(G′), since d(vt |G

′) = dt −1 ≤ n−2, there is
a vertex vr such that vrvt /∈ E(G′). Also, since d(vr|G

′) > d(vn|G
′), there is a vertex vs such

that vsvn /∈ E(G′). Making an EDT exchanging the edge pair vtvn, vrvs for the edge pair vt vr,
vsvn, we get a realisation G′′ of D′ with vt vn /∈ E(G′′). Then G′′ + vtvn realises D.

Second Proof of Sufficiency (Tripathi et al.) Let a subrealisation of a non-increasing
sequence [d1,d1, . . .,dn] be a graph with vertices v1,v1, . . .,vn such that d(vi) = di for 1≤ i≤ n,
where d(vi) denotes the degree of vi. Given a sequence [d1,d1, . . .,dn] with an even sum that
satisfies (2.4.1), we construct a realisation through successive subrealisations. The initial
subrealisation has n vertices and no edges.
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In a subrealisation, the critical index r is the largest index such that d(vi) = di for 1 ≤
i < r. Initially, r = 1 unless the sequence is all 0, in which case the process is complete.
While r ≤ n, we obtain a new subrealisation with smaller deficiency dr −d(vr) at vertex vr

while not changing the degree of any vertex vi with i < r (the degree sequence increases
lexicograpically). The process can only stop when the subrealisation of d.

Let S = {vr+1, . . .,vn}. We maintain the condition that S is an independent set, which cer-
tainly holds initially. Write ui ↔ v j when viv j ∈ E(G); otherwise, vi 6↔ v j

Case 0 vr 6↔ vi for some vertex vi such that d(vi) < di. Add the edge urvi.

Case 1 vr 6↔ vi for some i with i < r. Since d(vi) = di ≥ dr > d(vr), there exists u ∈ N(ui)−
(N(vr)∪ {vr}), where N(z) = {y : z ↔ y}. If dr − d(vr) ≥ 2, then replace uvi with {uvr,vivr}.
If dr − d(vr) = 1, then since ∑ di −∑ d(vi) is even there is an index k with k > r such that
d(vk) < dk. Case 0 applies unless vr ↔ vk; replace {vrvk,uvi} with {uvr,viur}.

Case 2 v1, . . .,vr−1 ∈ N(vr) and d(vk) 6= min{r,dk} for some k with k > r. In a subrealisation,
d(vk) ≤ dk. Since S is independent, d(vk) ≤ r. Hence d(vk) < min{r,dk}, and case 0 applies
unless uk ↔ vr. Since d(vk) < r, there exists i with i < r such that uk 6↔ vi. Since d(vi) > d(vr),
there exists u ∈ N(vi)− (N(vr)∪{ur}). Replace uvi with {uvr,vivk}.

Case 3 v1, . . .,vr−1 6∈ N(vr) and vi ↔ vi for some i and j with i < j < r. Case 1 applies
unless vi,v j ∈ N(vr). Since d(vi) ≥ d(vi) > d(vr), there exists u ∈ N(vi)− (N(vr)∪ {vr}) and
w∈ N(v j)−(N(vr)∪{vr}) (possibly u = w). Since u,w 6∈N(vr), Case 1 applies unless u,w∈ S.
Replace {viv j,uvr} with {uvr,v,vr}.

If none of these case apply, then v1, . . .,vr are pairwise adjacent, and d(vk) = min{r,dk}
for k > r. Since S is independent, ∑

r
i=1 d(vi) = r(r−1)+∑

n
k=r+1 min{r,dk}. By (2.4.1), ∑

r
i=1 d1

is bounded by the right side. Hence we have already eliminated the deficiency at vertex r.
Increase r by 1 and continue. q

Tripathi and Vijay [245] have shown that the Erdos-Gallai condition characterising graphi-
cal degree sequences of length n needs to be checked only for as many k as there are distinct
terms in the sequence and not for all k, 1 ≤ k ≤ n.

2.3 Degree Set of a Graph

The set of distinct non-negative integers occurring in a degree sequence of a graph is called
its degree set. For example, let the degree sequence be D = [2, 2, 3, 3, 4, 4], then degree set
is {2, 3, 4}. A set of distinct non-negative integers is called a degree set if it is the degree
set of some graph and the graph is said to realise the degree set.

Let S = {d1, d2, . . ., dk} be the set of distinct non-negative integers. Clearly, S is the
degree set as the graph

G = Kd1+1 ∪Kd2+1 ∪ . . .∪Kdk+1,
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realises S. This graph has d1 +d2 + . . .+dk + k vertices.

Example Let S = {1, 3, 4}. Then G = K2∪K4 ∪K5 (Fig. 2.9).

Fig. 2.9

The following result is due to Kapoor, Polimeni and Wall [126].

Theorem 2.5 Any set S of distinct positive integers is the degree set of a connected
graph and the minimum order of such a graph is M +1, where M is the maximum integer
in the set S.

Proof Let S be a degree set and n0(S) denote the minimum order of a graph G realising
S. As M is the maximum integer in S, therefore in G there is a vertex adjacent to M other
vertices, i.e., n0(S) ≥ M + 1. Now, if there exists a graph of order M + 1 with S as degree
set, then n0(S) = M + 1. The existence of such a graph is established by induction on the
number of elements p of S.

Let S = {a1, a2, . . ., ap} with a1 < a2 < . . . < ap.
For p = 1, the complete graph Ka1+1 realises {a1} as degree set.
For p = 2, we have S = {a1, a2}. Let G = Ka1

VKa2−a1+1 (join of two graphs). Here every
vertex of Ka1

has degree a2 and every other vertex has degree a1 and therefore G realises
{a1, a2} (Fig. 2.10(a)).

For p = 3, we have S = {a1, a2, a3}. Then G = Ka1
V(Ka3−a2

∪H), where H is the graph re-
alising the degree set {a2−a1} with a2−a1 +1 vertices, realises {a1, a2, a3} (Fig. 2.10 (b)).

(Note that d(u) = a1 −1 +a3 −a2 +a2 −a1 +1 = a3, d(v) = a1, d(w) = a2 −a2 +a1 = a2).
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Fig. 2.10

Let every set with h positive integers, 1≤ h≤ k, be the degree set. Let S1 = {b1, b2, . . ., bk+1}
be a (k +1) set of positive integers arranged in increasing order. By induction hypothesis,
there is a graph H realising the degree set {b2−b1, b3−b1, . . . , bk−b1} with order bk−b1 +1.
The graph G = Kb1

V(Kbk+1−bk
∪H), with order bk+1 +1 realises S1 (Fig. 2.10 (c)). Clearly

by construction, all these graphs are connected.
Hence the result follows by induction. q

Note that d(ui) = b1−1+bk+1−bk +bk−b1 +1 = bk +1, d(vi) = b1, d(wi)= bi+1−b1 +b1 =
bi+1, that is d(w1) = b2, d(w2) = b3, . . . , d

(

wbk−b1+1

)

= bk − b1 + b1 = bk. Some results on
degree sets in bipartite and tripartite graphs can be seen in [262].

2.4 New Criterion

We have the following notations. Let D = [di]
n
1 be a non-decreasing sequence of non-

negative integers with 0 ≤ di ≤ n−1 for all i. Let n− p1 be the greatest integer, n− p1 − p2,

the second greatest integer and n−
k

∑
r=1

pr, the kth greatest integer in D, 1 ≤ pr ≤ n− (r −1).

Let the number of times the kth greatest integer appears in D be denoted by ak. Also, we
take

tk = n−

(

n−
k

∑
r=1

pr

)

=
k

∑
r=1

pr, 1 ≤ pr ≤ n− (r−1) and jk = 1, 2, . . . , pk+1.

The following result due to Pirzada and YinJian [208] is another criterion for a non-
negative sequence of integers in non-decreasing order to be the degree sequence of some
graph.

Theorem 2.6 A non-decreasing sequence [di]
n
1 of non-negative integers, where

n

∑
i=1

di is

even and 0 ≤ di ≤ n−1 for all i, is a degree sequence of a graph if and only if »

tk+ jk−1

∑
i=1

di ≥
k

∑
m=1

{ jk +(k−m)}am (2.6.1)
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for all tk + jk −1 +
k

∑
m=1

am ≤ n.

Note In the above criterion, the inequalities (2.6.1) are to be checked only for tk + jk −

1 +
k

∑
m=1

am ≤ n (but not for greater than n).

We now illustrate the theorem with the help of the following examples.

Example 1 Let D = [1, 2, 2, 4, 6, 6, 6, 7, 8, 8].

Here, n = 10, a1 = 2, a2 = 1, a3 = 3, a4 = 1, p1 = 2, p2 = 1, p3 = 1, p4 = 2, so t1 = 2, t2 = 3,
t3 = 4, t4 = 6.

Also, j1 = 1, j2 = 1, j3 = 1, 2.

Now, for j1 = 1,
t1+ j1−1

∑
i=1

di =
2+1−1

∑
i=1

di =
2

∑
i=1

di = 1 +2 = 3,

and
k

∑
m=1

[ jk +(k−m)]am =
1

∑
m=1

[ j1 +(1−m)]am = j1a1 = 2.

So inequalities (2.6.1) hold.

For j2 = 1,
t2+ j2−1

∑
i=1

di =
3+1−1

∑
i=1

di =
3

∑
i=1

di = 5

and
k

∑
m=1

[ jk +(k−m)]am =
2

∑
m=1

[ j2 +(2−m)]am = 2a1 +a2 = 4 +1 = 5.

So inequalities (2.6.1) hold.

For j3 = 1,
t3+ j3−1

∑
i=1

di =
4+1−1

∑
i=1

di =
4

∑
i=1

di = 9

and
3

∑
m=1

[ j3 +(3−m)]am =
3

∑
m=1

[1 +(3−m)]am = 3a1 +2a2 +a3 = 6 +2 +3 = 11.

Since the inequalities (2.6.1) do not hold (as 9 > 11 is not true), D is not the degree
sequence.

Example 2 Let D = [1, 2, 3, 4, 5, 6, 6, 7, 8, 8].

Here, n = 10, a1 = 2, a2 = 1, a3 = 2, a4 = 1, p1 = 2, p2 = 1, p3 = 1, p4 = 1, p5 = 1. So
t1 = 2, t2 = 3, t3 = 4, t4 = 5.

Also, j1 = 1, j2 = 1, j3 = 1, j4 = 1.
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For j1 = 1,
t1+ j1−1

∑
i=1

di =
2+1−1

∑
i=1

di =
2

∑
i=1

di = 3,

and
1

∑
m=1

[ j1 +(1−m)]am = a1 = 2.

Obviously the inequalities (2.6.1) hold.

For j2 = 1,
t2+ j2−1

∑
i=1

di =
3+1−1

∑
i=1

di =
3

∑
i=1

di = 6

and
2

∑
m=1

[ j2 +(2−m)]am =
2

∑
m=1

[1 +(2−m)]am = 2a1 +a2 = 4 +1 = 5 .

Here again the inequalities (2.6.1) hold.

For j3 = 1,
t3+ j3−1

∑
i=1

di =
4+1−1

∑
i=1

di =
4

∑
i=1

di = 10

and
3

∑
m=1

[ j3 +(3−m)]am =
3

∑
m=1

[1 +(3−m)]am = 3a1 +2a2 +a3 = 6 +2 +2 = 10 .

Therefore the inequalities (2.6.1) hold.

For j4 = 1, t4 + j4 − 1 = 5 + 1− 1 = 5 and a1 + a2 + a3 + a4 = 2 + 1 + 2 + 1 = 6, therefore

t4 + j4 −1 +
4

∑
m=1

am = 5 +6 = 11 > 10 and no further verification of the inequalities is to be

done.

Hence D is the degree sequence.

2.5 Equivalence of Seven Criteria

We list the seven criteria for integer sequences to be graphic.

A. The Ryser Criterion (Bondy and Murty [36] and Ryser [227]) A sequence [a1, . . . ,
ap; b1, . . . , bn] is called bipartite-graphic if and only if there is a simple bipartite
graph such that one component has degree sequence [a1, . . . , ap] and the other one
has [b1, . . . , bn]. Define f = max{i : di ≥ i} and d̃1 = di +1 if i ∈ 〈 f 〉 (= {1, . . ., f }) and
d̃1 = di otherwise. The criterion can be stated as follows.

The integer sequence [d̃1, ..., d̃n; d̃1, ..., d̃n]is bipartite-graphic. (A)

B. The Berge Criterion (Berge [23]) Define [d̄1, . . ., d̄n] as follows: For i ∈ 〈n〉, d̄i is the
ith column sum of the (0, 1) matrix, which has for each k and dk leading terms in row
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k equal to 1 except for the (k, k)th term that is 0 and also the remaining entries are 0.
If d1 = 3, d2 = 2, d3 = 2, d4 = 2, d5 = 1, then d̄1 = 4, d̄2 = 3, d̄3 = 2, d̄4 = 1, d̄5 = 0, and
the (0, 1) matrix becomes













0 1 1 1 0

1 0 1 0 0

1 1 0 0 0

1 1 0 0 0

1 0 0 0 0













The criterion is

k

∑
i=1

di ≤
k

∑
i=1

di for each k ∈ 〈n〉. (B)

C. The Erdos-Gallai Criterion. (Bondy and Murty [36])

k

∑
i=1

di ≤ (k)(k−1)+
n

∑
j=k+1

min{k, d j} for each k ∈ 〈n〉. (C)

D. The Fulkerson-Hoffman-McAndrew Criterion (Fulkerson[83] and Grunbaum [92)

k

∑
i=1

di ≤ (k)(n−m−1)+
n

∑
i=n−m+1

di for each k ∈ 〈n〉, m ≥ 0 and k+m ≤ n. (D)

E. The Bollobas Criterion (Bollabas[29]))

k

∑
i=1

di ≤
n

∑
j=k+1

di +
k

∑
i=1

min{d j, k−1} for each k ∈ 〈n〉. (E)

F. The Grunbaum Criterion (Grunbaum [92]).

k

∑
i=1

max{k−1, di} ≤ (k)(k−1)+
n

∑
i=k+1

di for each k ∈ 〈n〉. (F)

G. The Hasselbarth Criterion (Hasselbarth [111]) Define [d′
i, . . ., d′

n] as follows. For
i ∈ 〈n〉, d′

i is the ith column sum of the (0, 1)-matrix in which the di leading terms in
row i are 1’s and the remaining entries are 0’s. The criterion is

k

∑
i=1

di ≤
k

∑
i=1

(d∗
i −1) for each k ∈ 〈 f 〉, (G)

with f = max{i : di ≥ i}.
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The following result due to Sierksma and Hoogeveen [235] gives the equivalence among
the above seven criteria.

Theorem 2.7 (Sierksma and Hoogeveen [235]) Let [d1, . . ., dn] be a positive integer se-
quence with even sum. Then each of the criteria (A)− (G) is equivalent to the statement
that [d1, . . . , dn] is graphic.

Proof Refer to Ryser [227].

2.6 Signed Graphs

A signed graph is a graph in which every edge is labelled with a‘+’ or a‘−’. An edge uv

labelled with a‘+’ is called a positive edge, and is denoted by uv+. An edge uv labelled
with a‘−’ is called a negative edge, and is denoted by uv−. In a signed graph G(V, E), the
positive degree of a vertex u is deg+(u) = |{uv : uv+ ∈ E}|, the negative degree of a vertex u

is deg−(u) = |{uv : uv− ∈ E}|, the signed degree of u is sdeg(u) = deg+(u)−deg−(u) and the
degree of u is deg(u) = deg+(u)+deg−(u). An edge uv labelled with a‘+’ is called a positive
edge, and is denoted by uv+. An edge uv labelled with a‘−’ is called a negative edge, and
is denoted by uv−.

An integral sequence [di]
n
1 is the signed degree sequence of a signed graph G = (V, E)

with V = {v1, v2, . . ., vn} if s deg(vi) = di, for 1 ≤ i ≤ n.
Chartrand et al. [50] have given the characterisation of signed degree sequences of

signed paths, signed stars, signed double stars and complete signed graphs. An integral
sequence is s-graphical if it is the signed degree sequence of a signed graph. An integral
sequence [di]

n
1 is standard if n−1 ≥ d1 ≥ d2 ≥ . . .≥ dn and d1 ≥ |dn|.

The following lemma shows that a signed degree sequence can be modified and rear-
ranged into an equivalent standard form.

Lemma 2.1 If [di]
n
1 is the signed degree sequence of a signed graph G, then [−di]

n
1 is the

signed degree sequence of the signed graph G′ obtained from G by interchanging positive
edges with negative edges.

The following necessary and sufficient condition under which an integral sequence is
s-graphical is due to Chartrand et al. [50].

Theorem 2.8 A standard integral sequence [di]
n
1 is s-graphical if and only if the sequence

[d2−1, dd1+s+1 −1, dd1+s+2, . . ., dn−s, dn−s+1 +1, . . ., dn +1] is s-graphical for some 0 ≤ s ≤
(n−1−d1)/2.

Remark We note that Hakimi’s theorem for degree sequences is a case of Theorem 2.8
by taking s = 0. This leads to an efficient algorithm for recognising the degree sequences
of a graph. But the wide degree of latitude for choosing s in Theorem 2.8 makes it harder
to devise an efficient algorithm implementation.



56 Degree Sequences

The following result due to Yan et al. [271] provides a good choice for parameter s

in Theorem 2.8. It leads to a polynomial time algorithm for recognising signed degree
sequences.

Theorem 2.9 A standard sequence D = [di]
n
1 is s-graphical if and only if Dm = [d2 −

1, dd1+m+1 −1, . . . , dd1+m+2, . . ., dn−m, dn−m+1 +1 . . ., dn +1] is s-graphical, where m is the
maximum non-negative integer such that dd1+m+1 > dn−m+1.

Proof Let D be the signed degree sequence of a signed graph G = (V, E) with V =
{v1, v2, . . .,vn} and sdeg(vi) = di, for 1 ≤ i ≤ n. For each s, 0 ≤ s ≤ (n−1−d1)/2, consider
the sequence

Ds = [d2−1, . . . , dd1+s+1 −1,dd1+s+2, . . ., dn−s, dn−s+1 +1, . . .,dn +1].

By Theorem 2.8, Ds is s-graphical for some s. We may choose s such that |s−m| is
minimum. Suppose G′ = (V ′, E ′) is a signed graph with V ′ = {v2, v3, . . .,vn} whose signed
degree sequence is Ds.

If s < m, then da > db by the choice of m, where a = d1 +s+2 and b = n−s. Since da > db,
there exists some vertex vk of G′ different from va and vb and satisfies one of the following
conditions.

i. vav+
k is a positive edge and vbv−k is a negative edge.

ii. vav+
k is a positive edge and vb is not adjacent to vk

iii. va is not adjacent to vk and vbv−k is a negative edge

For (i), remove vav+
k

and vb v−
k

to G′, and for (ii), remove vav+
k

from G′ and add a new
positive edge vbv+

k
to G′ and for (iii), remove vbv−

k
from G′ and a new negative edge vav−

k
to

G′. These modifications result in a signed graph G′′ whose signed degree sequence Ds+1.
This contradicts the minimality of |s−m| .

If s > m, then dd1+s+1 = dn−s+1, and therefore, dd1+s+1 − 1 < dn−s+1 − 1. An argument
similar to the above leads to a contradiction in the choice of s. Therefore, s = m and Dm is
s-graphical.

Conversely, suppose Dm is the signed degree sequence of a signed graph G′ = (V ′, E ′)
in which V ′ = {v2, v3, . . ., vn}. If G is the signed graph obtained from G′ by adding a new
vertex v1 and new positive edges v1v+

i for 2 ≤ i ≤ d1 + m + 1 and new negative edges v1v−j
for n−m+1 ≤ j ≤ n, then D is the signed degree sequence of G. q

In a signed graph G = (V, E) with |V |= n, |E|= m, we denote by m+ and m− respectively,
the numbers of positive edges and negative edges of G. Further, n+, n0 and n− denote
respectively, the numbers of vertices with positive, zero and negative signed degrees.

The following result is due to Chartrand et al. [50].

Lemma 2.2 If G = (V, E) is a signed graph with |V | = n, |E| = m, then k = ∑
v∈V

s deg(v) ≡

2m(mod4), m+ = 1
4
(2m+ k) and m− = 1

4
(2m− k).
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The next result is due to Yan et al [271].

Lemma 2.3 For any signed graph G = (V, E) without isolated vertices, ∑
v∈V

|sdeg(v)|+

2n0 ≤ 2m.

Proof First, each |sdeg(v)| = | deg+(v)− deg−(v)| ≤ deg+(v)+ deg−(v). Since G has no
isolated vertices, 2 ≤ deg+(v)+ deg−(v) when sdeg(v) = 0. Thus,

∑
v∈V

|s deg (v)|+2n0 ≤ ∑
v∈V

(deg+(v)+deg−(v)| = 2m+ +2m− = 2m. q

Lemma 2.4 For any connected signed graph G =(V, E), ∑
v∈V

|s deg (v)|+2 ∑
sdeg(v)<0

|sdeg(v)| ≤

6m+4−4α −4n+−4n0, where α = 1 if n+n− > 0 and α = 0 otherwise.

Proof Consider the subgraph G′ = (V ′, E ′) of G induced by those edges incident to ver-
tices with non-negative signed degrees. We have,

∑
sdeg(v)>0

|sdeg (v)| ≤ 2 (number of positive edges in G′) −

(number of negative edges in G′) ≤ 3m+−|E ′|.

Since G is connected, each component of G′ contains at least one vertex of negative
signed degree except for the case of G′ = G.

Therefore, n+ +n0 −1 +α ≤ |E ′|. Thus,

∑
sdeg(v).0

|sdeg(v)|+n+ +n0 −1 +α ≤ 3m+ = 3

(

1

2
m+

1

4
∑
v∈V

sdeg(v)

)

.

Hence, ∑
v∈V

|sdeg(v)|+ 2 ∑
sdeg(v)<0

|sdeg(v)| ≤ 6m+4−4α −4n+−4n0. q

For any integer k, k copies of viv j means k copies of positive edges viv
+
j if k > 0, no edges

if k = 0 and k copies of negative edges viv
−
j if k < 0. The next result for signed graphs with

loops or multiple edges is due to Yan et al. [271].

Theorem 2.10 An integral sequence [di]
n
1 is the signed degree sequence of a signed if

and only if
n

∑
i=1

di is even.

Proof The necessity follows from Lemma 2.2.

Sufficiency Let
n

∑
i=1

di be even. Then the number of odd terms is even, say di = 2ei +1 for

1 ≤ i ≤ 2k and di = 2ei for 2k+1 ≤ i ≤ p. Then [d1, d2, . . . , dn] is the signed degree sequence
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of the signed graph with vertex set {v1, v2, . . ., vn} and edge set {−d3 = 1
2

n

∑
i=1

di copies of

v1v2}∪ {d2 + d3 −
1
2

n

∑
i=1

di copies of v2v3}∪{d1 + d3 −
1
2

n

∑
i=1

di copies of v1v3}∪ {di copies of

v3vi : 4 ≤ i ≤ n}. q

Various results on signed degrees in signed graphs can be found in [259], [263], [264]
and [266].

2.7 Exercises

1. Verify whether or not the following sequences are degree sequences.

a. [1, 1, 1, 2, 3, 4, 5, 6, 7 ], b. [1, 1, 1, 2, 2, 2 ],
c. [4, 4, 4, 4, 4, 4 ], d. [2, 2, 2, 2, 4, 4 ].

2. Show that there is no perfect degree sequence.

3. What conditions on n and k will ensure that kn is a degree sequence?

4. Give an example of a graph that can not be generated by the Wang-Kleitman algo-
rithm.

5. Draw the five non isomorphic graphs with degree sequence [3, 3, 2, 2, 1, 1].

6. Show that a graph and its complement have the same frequency sequence.

7. Construct a graph with a degree sequence [3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] by using
Havel-Hakimi algorithm.


