
13. Graph Algorithms

An algorithm is a problem-solving method suitable for implementation as a computer pro-
gram. While designing algorithms we are typically faced with a number of different ap-
proaches. For small problems, it hardly matters which approach we use, as long as it
is one that solves the problem correctly. However, there are many problems, including
some problems in graph theory, for which the known algorithms take so long to compute
the solution that they are practically useless. A polynomial-time algorithm is one whose
number of computational steps is always bounded by a polynomial function of the size
of the input. The class of all such problems that have polynomial-time algorithms is de-
noted by P. For some problems, there are no known polynomial-time algorithms but these
problems do have nondeterministic polynomial-time algorithms: try all candidates for so-
lutions simultaneously and for each given candidate, verify whether it is a correct solution
in polynomial-time. The class of all such problems is denoted by NP. Clearly P ⊆ NP.
On the other hand, there are problems that are known to be in NP and are such that any
polynomial-time algorithm for them can be transformed into a polynomial-time algorithm
for every problem in NP. Such problems are called NP-complete. Thus, if anybody ever
finds a polynomial-time algorithm for an NP-complete problem, he or she would have
proved that P= NP. One of the greatest unresolved problems in mathematics and computer
science today is whether P = NP or P 6= NP [62].

In this chapter we present algorithms for five well-known graph theory problems. First,
we discuss Dijkstra’s algorithm for computing shortest paths in graphs. This algorithm
is polynomial-time and hence the problem is in P. Dijkstra’s algorithm is widely used
in practice, for example, as part of the TCP/IP protocol suite for routing internet traffic
over shortest paths. The second is Prim’s algorithm for computing minimal spanning trees
in graphs. This algorithm is obtained by a trivial modification of Dijkstra’s algorithm,
is also polynomial-time and hence the problem again is in P. Prim’s algorithm is also
widely used in practice, for example, in distribution problems and broadcasting data over
computer networks. Third, we present Fleury’s algorithm for finding Eulerian circuits
(cycles) in graphs. The critical point here is to decide whether a certain pair of subgraphs
partition the graph into two nontrivial components and the trick is to compute a tree using
Prim’s algorithm and check whether the tree spans the graph. Fleury’s algorithm is also
polynomial-time and hence the problem of finding Eulerian circuits is also in P. Fourth,
we show how to construct the De Bruijn graphs and sequences using Eulerian circuits in
polynomial-time. These graphs have recently found important applications in multihop and
fault tolerant computer networks. The fifth and final algorithm is for finding Hamiltonian

Graph Theory 367

circuits (cycles) in graphs. The algorithm is an example of a nondeterministic polynomial-
time algorithm. The problem of finding a Hamiltonian circuit in a graph is an example of
a NP-complete problem.

All algorithms are implemented in C++ and tested using Microsoft Visual C++ [158].

13.1 Dijkstra’s Algorithm for Shortest Paths

In 1956, Edsger W. Dijkstra [65, 153], was the main programmer at the Burroughs Cor-
poration in Amsterdam, where the construction of one of the earliest computers (the AR-
MAC) was on the verge of completion. In order to celebrate its inauguration they needed
a nice demonstration. It should solve a problem that could be easily stated to a predomi-
nantly lay audience. For the purpose of the demonstration, Dijkstra drew a slightly simpli-
fied map of the Dutch railroad system; someone in the audience could ask for the shortest
connection between, say, Harlingen and Maastricht, and the ARMAC would print out the
shortest route town by town. The demonstration was a great success; Dijkstra reminisces
that he could show that the inversion of source and destination could influence the com-
putation time required. The speed of the ARMAC and the size of the map were such that
one-minute computations always sufficed.

The general problem is to find shortest paths from one specified vertex to all other ver-
tices in a weighted graph, where the edge weights correspond to distances between towns.
Together, these paths will form a (not necessarily minimal) spanning tree. The main idea
of Dijkstra’s algorithm is the following; if P is a shortest path from u to z and P contains v,
then the portion of the path P from u to v must be a shortest path from u to v. This suggests
that we should determine optimal routes from u to every other vertex z in increasing order
of the distance d(u, z) from u to z. We maintain a current tentative distance and use this to
update the remaining tentative distances in tabular form. The algorithm works equally well
for directed graphs. A formal description of Dijkstra’s algorithm is the following.

13.1.1 Dijkstra’s algorithm to compute distances from u

Input A weighted graph (or digraph) and a starting vertex u. The weight of edge xy is
w(xy); let w(xy) = ∞ if xy is not an edge.

Idea Maintain the set S of vertices to which the shortest route from u is known, enlarging
S to include all the vertices. To do this maintain also a tentative distance t(z) from u to each
z not in S; this is the length of the shortest path found yet from u to z.

Initialisation Let S = {u}; d(u,u) = 0; t(z) = w(uz) for all z 6= u.

Iteration Select a vertex v outside S such that t(v) is minimum in the set {t(z)|z /∈ S}. Add
v to S. For each edge vz with z /∈ S, update t(z) to min{t(z), d(u, v)+w(vz)}.

368 Graph Algorithms

Termination Continue the iteration until S = V (G) or until t(z) = ∞ for every z /∈ S. In
the first case, all shortest paths from u have been found. In the latter case, the remaining
vertices are unreachable from u.

We give an implementation of Dijkstra’s algorithm in C++ below.

dijkstra.cpp

#include <iostream>

#include <fstream>

#include <string>

#include <vector>

#include <set>

using namespace std;

ifstream infile(‘‘graph.txt’’);

ofstream outfile(‘‘shortest_paths.txt’’);

int main()

cout<<‘‘Dijkstra’s Algorithm.’’<<endl;

int m,n,i,j,k;

//Read adjacency matrix of weights from graph.txt

infile>>n;

vector< vector< float> > weight;

float val;

for(i=0; i<n; i++)

{

vector< float > row;

for(j=0; j<n; j++)

{

infile>>val;

row.push_back(val);

}

weight.push_back(row);

}

//Initialize Table

const float infinity=1000000;

Graph Theory 369

vector<bool> known;

for(i=0; i<n; i++) known.push_back(false);

vector<float> d;

d.push_back(0);

for(i=1; i<n; i++) d.push_back(infinity);

vector<int> p;

for(i=0; i<n; i++) p.push_back(-1);

//Print Initial Table

outfile<<endl<<‘‘INITIAL TABLE:’’<<endl;

outfile<<endl<<‘‘Vertex : t’’;

for(i=0; i<n; i++) outfile<<i<<’\t’;

outfile<<endl<<‘‘Known :\t’’;

for(i=0; i<n; i++) outfile<<known[i]<<’\t’;

outfile<<endl<<‘‘Distance:\t’’;

for(i=0; i<n; i++) outfile<<d[i]<<’\t’;

outfile<<endl<<‘‘Path :\t’’;

for(i=0; i<n; i++) outfile<<p[i]<<’\t’;

outfile<<endl;

//Iteration

for(k=0; k<n; k++)

{

//Find min of d for unknown vertices

int min=0;

while(known[min]==true)min++;

for(i=0; i<n; i++)

if(known[i]==false && d[i]<d[min])min=i;

//Update Table

known[min]=true;

for (int j=0; j<n; j++)

{

if(weight[min][j]!=0 &&

d[j]>d[min]+weight[min][j] &&

known[j]==false)

{

d[j]=d[min]+weight[min][j];

p[j]=min;

}

370 Graph Algorithms

}

//Print Table

outfile<<endl<<‘‘TABLE No.’’<<k<<":‘‘<<endl;

outfile<<endl<<‘‘Vertex :\t’’;

for(i=0; i<n; i++) outfile<<i<<’\t’;

outfile<<endl<<‘‘Known :\t’’;

for(i=0; i<n; i++) outfile<<known[i]<<’\t’;

outfile<<endl<<‘‘Distance:\t’’;

for(i=0; i<n; i++) outfile<<d[i]<<’\t’;

outfile<<endl<<‘‘Path :\t’’;

for(i=0; i<n; i++) outfile<<p[i]<<’\t’;

outfile<<endl;

}

//Find shortest paths and spanning tree

outfile<<endl<<endl<<‘‘SHORTEST PATHS:’’<<endl;

set< vector<int> > span;

for(i=0; i<n; i++)

{

outfile<<‘‘Path=’’;

vector<int> temp;

m=i;

while(m!=-1)

{

temp.push_back(m);

m=p[m];

}

outfile<<temp[temp.size()-1]<<" ";

for(j=temp.size()-2; j>=0; j--)

{

outfile<<temp[j]<<" ";

vector<int> edge;

edge.push_back(temp[j+1]);

edge.push_back(temp[j]);

span.insert(edge);

}

outfile<<‘‘Distance=’’<<d[i]<<endl;

}

Graph Theory 371

//Print spanning tree

outfile<<endl<<‘‘SPANNING TREE:’’<<endl;

set< vector<int>>::iterator it;

for(it=span.begin(); it!=span.end(); it++)

outfile<<‘‘(‘‘<<(*it)[0]<<’’,’’<<(*it)[1]<<")"<<" ";

cout<<‘‘See shortest_paths.txt for results.’’ <<endl;system(‘‘PAUSE’’);

return 0;}

Example 13.1.2 Consider the Petersen graph with vertices labelled as shown in Figure
13.1.

Fig. 13.1 The Petersen graph with labelled vertices

Make a text file “graph.txt” as shown below and save it in the same directory as the program
“dijkstra.cpp”. The first line of the file “graph.txt” is the number of vertices and the rest is
the adjacency matrix of the labelled Petersen graph shown in Figure 13.1.

372 Graph Algorithms

graph.txt

10
0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 1 1 0 0 0
0 0 0 1 0 0 1 1 0 0

Now compile and run the program “dijkstra.cpp”. The following output file “shortest paths.txt”
is produced in the program’s directory. The output shows shortest paths from the vertex
labelled 0 to all other vertices:

shortest paths.txt

INITIAL TABLE

Vertex : 0 1 2 3 4 5 6 7 8 9
known : 0 0 0 0 0 0 0 0 0 0
Distance : 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Path : −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

TABLE No.0:

Vertex : 0 1 2 3 4 5 6 7 8 9
Known : 1 0 0 0 0 0 0 0 0 0
Distance : 0 1 ∞ ∞ 1 ∞ 1 ∞ ∞ ∞

Path : −1 0 −1 −1 0 −1 0 −1 −1 −1

TABLE No.1:

Vertex : 0 1 2 3 4 5 6 7 8 9
Known : 1 1 0 0 0 0 0 0 0 0
Distance : 0 1 2 ∞ 1 ∞ 1 2 ∞ ∞

Path : −1 0 1 −1 0 −1 0 1 −1 −1

Graph Theory 373

TABLE No.2:

Vertex : 0 1 2 3 4 5 6 7 8 9
Known : 1 1 0 0 1 0 0 0 0 0
Distance : 0 1 2 2 1 2 1 2 ∞ ∞

Path : −1 0 1 4 0 4 0 1 −1 −1

TABLE No.3:

Vertex : 0 1 2 3 4 5 6 7 8 9
Known : 1 1 0 0 1 0 1 0 0 0
Distance : 0 1 2 2 1 2 1 2 2 2
Path : −1 0 1 4 0 4 0 1 6 6

TABLE No.4:

Vertex : 0 1 2 3 4 5 6 7 8 9
Known : 1 1 1 0 1 0 1 0 0 0
Distance : 0 1 2 2 1 2 1 2 2 2
Path : −1 0 1 4 0 4 0 1 6 6

TABLE No.5:

Vertex : 0 1 2 3 4 5 6 7 8 9
Known : 1 1 1 1 1 0 1 0 0 0
Distance : 0 1 2 2 1 2 1 2 2 2
Path : −1 0 1 4 0 4 0 1 6 6

TABLE No.6:

Vertex : 0 1 2 3 4 5 6 7 8 9
Known : 1 1 1 1 1 1 1 0 0 0
Distance : 0 1 2 2 1 2 1 2 2 2
Path : −1 0 1 4 0 4 0 1 6 6

374 Graph Algorithms

TABLE No.7:

Vertex : 0 1 2 3 4 5 6 7 8 9
Known : 1 1 1 1 1 1 1 1 0 0
Distance : 0 1 2 2 1 2 1 2 2 2
Path : −1 0 1 4 0 4 0 1 6 6

TABLE No.8:

Vertex : 0 1 2 3 4 5 6 7 8 9
Known : 1 1 1 1 1 1 1 1 1 0
Distance : 0 1 2 2 1 2 1 2 2 2
Path : −1 0 1 4 0 4 0 1 6 6

TABLE No.9:

Vertex : 0 1 2 3 4 5 6 7 8 9
Known : 1 1 1 1 1 1 1 1 1 1
Distance : 0 1 2 2 1 2 1 2 2 2
Path : −1 0 1 4 0 4 0 1 6 6

Shortest paths

Path=0 Distance=0

Path=0 1 Distance=1

Path=0 1 2 Distance=2

Path=0 4 3 Distance=2

Path=0 4 Distance=1

Path=0 4 5 Distance=2

Path=0 6 Distance=1

Path=0 1 7 Distance=2

Path=0 6 8 Distance=2

Path=0 6 9 Distance=2

Spanning tree

(0, 1) (0, 4) (0, 6) (1, 2) (1, 7) (4, 3) (4, 5) (6, 8) (6, 9)

Graph Theory 375

Fig 13.2 Shortest paths from vertex 0 and a spanning tree

The output of Dijkstra’s algorithm for the Petersen graph with starting vertex 0 is shown in
Figure 13.2. In this case, the spanning tree is minimal as the reader may verify. This is not
always the case as the next example shows.

Example 13.1.3 Consider the weighted and directed graph shown in Figure 13.3.

Fig. 13.3 A weighted and directed graph

Make a text file “graph.txt” as shown below and save it in the same directory as the program
“dijkstra.cpp”. The first line of the file “graph.txt” is the number of vertices and the rest is
the matrix of weights of the labelled directed graph shown in Figure 13.3 above.

376 Graph Algorithms

graph.txt

7
0 7 0 0 0 0 0
0 0 2 0 0 0 3
0 0 0 2 0 0 4
0 0 0 0 5 0 1
0 0 0 0 0 6 0
1 0 0 0 0 0 4
7 0 0 0 1 0 0

Now run the program “dijkstra.cpp”. The following output file “shortest paths.txt” is pro-
duced in the program’s directory. The output shows shortest paths from the vertex labelled
0 to all other vertices:

shortest paths.txt

INITIAL TABLE:

Vertex : 0 1 2 3 4 5 6
Known : 0 0 0 0 0 0 0
Distance : 0 ∞ ∞ ∞ ∞ ∞ ∞

Path : −1 −1 −1 −1 −1 −1 −1

TABLE No.0:

Vertex : 0 1 2 3 4 5 6
Known : 1 0 0 0 0 0 0
Distance : 0 7 ∞ ∞ ∞ ∞ ∞

Path : −1 0 −1 −1 −1 −1 −1

TABLE No.1:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 0 0 0 0 0
Distance : 0 7 9 ∞ ∞ ∞ 10
Path : −1 0 1 −1 −1 −1 1

Graph Theory 377

TABLE No.2:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 1 0 0 0 0
Distance : 0 7 9 11 ∞ ∞ 10
Path : −1 0 1 2 −1 −1 1

TABLE No.3:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 1 0 0 0 1
Distance : 0 7 9 11 11 ∞ 10
Path : −1 0 1 2 6 −1 1

TABLE No.4:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 1 1 0 0 1
Distance : 0 7 9 11 11 ∞ 10
Path : −1 0 1 2 6 −1 1

TABLE No.5:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 1 1 1 0 1
Distance : 0 7 9 11 11 17 10
Path : −1 0 1 2 6 4 1

TABLE No.6:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 1 1 1 1 1
Distance : 0 7 9 11 11 17 10
Path : −1 0 1 2 6 4 1

Shortest paths

Path=0 Distance=0

Path=0 1 Distance=7

Path=0 1 2 Distance=9

378 Graph Algorithms

Path=0 1 2 3 Distance=11

Path=0 1 6 4 Distance=11

Path=0 1 6 4 5 Distance=17

Path=0 1 6 Distance=10

Spanning tree

(0, 1) (1, 2) (1, 6) (2, 3) (4, 5) (6, 4)

Fig. 13.4 Shortest paths from vertex 0 and a spanning tree

The output of Dijkstra’s algorithm for the graph of Figure 13.3 with starting vertex 0 is
shown in Figure 13.4. In this case, the spanning tree has total weight 21 and is not minimal.
Indeed, it is possible to find a spanning tree of total weight 19 in this graph, as the next
section will show.

13.2 Prim’s Algorithm for Minimal Spanning Tree

Almost simultaneously in 1957, while Dijkstra’s algorithm was just becoming widely
known, R.C. Prim [211, 249] of Bell Labs discovered an algorithm for finding a minimal
spanning tree in a weighted graph. Surprisingly, a minor modification of Dijkstra’s algo-
rithm allows us to find a minimal spanning tree. A formal description of Prim’s algorithm
is the following.

13.2.1 Prim’s algorithm to compute a minimal spanning tree from u

Input A weighted graph and a starting vertex u. The weight of edge xy is w(xy); let
w(xy) = ∞ if xy is not an edge.

Graph Theory 379

Idea Maintain the set S of vertices to which the shortest path from u is known, enlarging
S to include all the vertices. To do this maintain also a tentative distance t(z) from u to each
z not in S; this is the length of the shortest path found yet from u to z.

Initialisation Let S = {u}; d(u, u) = 0; t(z) = w(uz) for all z 6= u.

Iteration Select a vertex v outside S such that t(v) is minimum in the set {t(z)|z /∈ S}.
Add v to S. For each edge vz with z /∈ S, update t(z) to min{t(z), w(vz)}. (Note this step is
different from the corresponding step in Dijkstra’s algorithm).

Termination Continue the iteration until S = V (G) or until t(z) = ∞ for every z /∈ S. In
the first case, all shortest paths from u have been found. Together, they yield a minimal
spanning tree. In the latter case, the remaining vertices are unreachable from u and the
shortest paths together will not span the graph.

We give an implementation of Prim’s algorithm in C++ below.

prim.cpp

#include <iostream>

#include <fstream>

#include <string>

#include <vector>

#include <set>

using namespace std;

ifstream infile(‘‘graph.txt’’);

ofstream outfile(‘‘minimal_spanning_tree.txt’’);

int main()

{

cout<<‘‘Prim’s Algorithm.’’<<endl;

int m,n,i,j;

//Read adjacency matrix of weights from graph.txt

infile>>n;

vector< vector<float> > weight; {float }val;

for(i=0; i<n; i++)

{

vector<{float}> row;

380 Graph Algorithms

for(j=0; j<n; j++)

{

infile>>val;

row.push_back(val);

}

weight.push_back(row);

}

//Initialize Table

const float infinity=1000000;

vector<bool> known;

for(i=0; i<n; i++) known.push_back(false);

vector<float> d;

d.push_back(0);

for(i=1; i<n; i++) d.push_back(infinity);

vector<int> p;

for(i=0; i<n; i++) p.push_back(-1);

//Print Table

outfile<<endl<<‘‘INITIAL TABLE:’’<<endl;

outfile<<endl<<‘‘Vertex :\t’’;

for(i=0; i<n; i++) outfile<<i<<’\t’;

outfile<<endl<<‘‘Known :\t’’;

for(i=0; i<n; i++) outfile<<known[i]<<’\t’;

outfile<<endl<<‘‘Distance:\t’’;

for(i=0; i<n; i++) outfile<<d[i]<<’\t’;

outfile<<endl<<‘‘Path :\t’’;

for(i=0; i<n; i++) outfile<<p[i]<<’\t’;

outfile<<endl;

//Iteration

for(m=0; m<n; m++)

{

//Find min of d for unknown vertices

int min=0;

while(known[min]==true)min++;

for(i=0; i<n; i++)

if(known[i]==false && d[i]<d[min])min=i;

//Update Table

known[min]=true;

Graph Theory 381

for(j=0; j<n; j++)

{

if(weight[min][j]!=0 &&

d[j]>weight[min][j] &&

known[j]==false)

{

d[j]=weight[min][j];

p[j]=min;

}

}

//Print Table

outfile<<endl<<endl<<‘‘TABLE No.’’<<m<<‘‘:’’<<endl;

outfile<<endl<<‘‘Vertex :\t’’;

for(i=0; i<n; i++) outfile<<i<<’\t’;

outfile<<endl<<‘‘Known :\t’’;

for(i=0; i<n; i++) outfile<<known[i]<<’\t’;

outfile<<endl<<‘‘Distance:\t’’;

for(i=0; i<n; i++) outfile<<d[i]<<’\t’;

outfile<<endl<<‘‘Path :\t’’;

for(i=0; i<n; i++) outfile<<p[i]<<’\t’;

outfile<<endl;

}

//Print minimal spanning tree

outfile<<endl<<‘‘MINIMAL SPANNING TREE:’’<<endl;

for(i=1; i<n; i++)

outfile<<‘‘(‘‘<<i<<’’,‘‘<<p[i]<<’’) ’’;

cout<<‘‘See minimal spanning tree.txt.’’<<endl;

system(‘‘PAUSE’’);

return 0;

}

382 Graph Algorithms

Example 13.2.1 Consider the weighted graph shown in Figure 13.5.

Fig. 13.5 A weighted graph

Make a text file “graph.txt” as shown below and save it in the same directory as the program
“prim.cpp”. The first line of the file “graph.txt” is the number of vertices and the rest is the
matrix of weights of the labelled graph shown in Figure 13.5.

graph.txt

8
0 7 0 5 0 0 0 3
7 0 4 0 0 0 5 0
0 4 0 6 0 5 0 0
5 0 6 0 3 0 0 0
0 0 0 3 0 3 0 2
0 0 5 0 3 0 2 0
0 5 0 0 0 2 0 1
3 0 0 0 2 0 1 0

Now compile and run the program “prim.cpp”. The following output file “minimal spanning tree.txt”
is produced in the program’s directory. The output shows a minimal spanning tree for the
graph.

Graph Theory 383

minimal spanning tree.txt

INITIAL TABLE:

Vertex : 0 1 2 3 4 5 6 7
Known : 0 0 0 0 0 0 0 0
Distance : ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Path : −1 −1 −1 −1 −1 −1 −1 −1

TABLE No.0:

Vertex : 0 1 2 3 4 5 6 7
Known : 1 0 0 0 0 0 0 0
Distance : 0 7 ∞ 5 ∞ ∞ ∞ 3
Path : −1 0 −1 0 −1 −1 −1 0

TABLE No.1:

Vertex : 0 1 2 3 4 5 6 7
Known : 1 0 0 0 0 0 0 1
Distance : 0 7 ∞ 5 2 ∞ 1 3
Path : −1 0 −1 0 7 −1 7 0

TABLE No.2:

Vertex : 0 1 2 3 4 5 6 7
Known : 1 0 0 0 0 0 1 1
Distance : 0 5 ∞ 5 2 2 1 3
Path : −1 6 −1 0 7 6 7 0

TABLE No.3:

Vertex : 0 1 2 3 4 5 6 7
Known : 1 0 0 0 1 0 1 1
Distance : 0 5 ∞ 3 2 2 1 3
Path : −1 6 −1 4 7 6 7 0

TABLE No.4:

Vertex : 0 1 2 3 4 5 6 7
Known : 1 0 0 0 1 1 1 1
Distance : 0 5 5 3 2 2 1 3
Path : −1 6 5 4 7 6 7 0

384 Graph Algorithms

TABLE No.5:

Vertex : 0 1 2 3 4 5 6 7
Known : 1 0 0 1 1 1 1 1
Distance : 0 5 5 3 2 2 1 3
Path : −1 6 5 4 7 6 7 0

TABLE No.6:

Vertex : 0 1 2 3 4 5 6 7
Known : 1 1 0 1 1 1 1 1
Distance : 0 5 4 3 2 2 1 3
Path : −1 6 1 4 7 6 7 0

TABLE No.7:

Vertex : 0 1 2 3 4 5 6 7
Known : 1 1 1 1 1 1 1 1
Distance : 0 5 4 3 2 2 1 3
Path : −1 6 1 4 7 6 7 0

Minimal spanning tree

[(1, 6) (2, 1) (3, 4) (4, 7) (5, 6) (6, 7) (7, 0)

Fig. 13.6 A minimal spanning tree for the weighted graph

The output of Prim’s algorithm for the graph of Figure 13.5 with starting vertex 0 is
shown in Figure 13.6. The spanning tree has total weight 20 and is of minimal total weight
compared to all other spanning trees.

Graph Theory 385

Example 13.2.1 It makes sense to try to compute a minimal spanning tree for a directed
graph. Consider the weighted directed graph of Figure 13.3. We claimed that the spanning
tree found by Dijkstra’s algorithm of total weight 21 is not minimal. Let us run the program
for Prim’s algorithm on the file graph.txt of Example 13.1.3. We obtain the following
output.

minimal spanning tree.txt

INITIAL TABLE:

Vertex : 0 1 2 3 4 5 6
Known : 0 0 0 0 0 0 0
Distance : 0 ∞ ∞ ∞ ∞ ∞ ∞

Path : −1 −1 −1 −1 −1 −1 −1

TABLE No.0:

Vertex : 0 1 2 3 4 5 6
Known : 1 0 0 0 0 0 0
Distance : 0 7 ∞ ∞ ∞ ∞ ∞

Path : −1 0 −1 −1 −1 −1 −1

TABLE No.1:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 0 0 0 0 0
Distance : 0 7 2 ∞ ∞ ∞ 3
Path : −1 0 1 −1 −1 −1 1

TABLE No.2:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 1 0 0 0 0
Distance : 0 7 2 2 ∞ ∞ 3
Path : −1 0 1 2 −1 −1 1

TABLE No.3:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 1 1 0 0 0
Distance : 0 7 2 2 5 ∞ 1
Path : −1 0 1 2 3 −1 3

386 Graph Algorithms

TABLE No.4:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 1 1 0 0 1
Distance : 0 7 2 2 1 ∞ 1
Path : −1 0 1 2 6 −1 3

TABLE No.5:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 1 1 1 0 1
Distance : 0 7 2 2 1 6 1
Path : −1 0 1 2 6 4 3

TABLE No.6:

Vertex : 0 1 2 3 4 5 6
Known : 1 1 1 1 1 1 1
Distance : 0 7 2 2 1 6 1
Path : −1 0 1 2 6 4 3

Minimal spanning tree

(1, 0) (2, 1) (3, 2) (4, 6) (5, 4) (6, 3)

Fig. 13.7 A minimal spanning tree for the weighted directed graph

The output of Prim’s algorithm for the directed weighted graph of Figure 13.3 with
starting vertex 0 is shown in Figure 13.7. The spanning tree has total weight 19 and is of
minimal total weight compared to all other spanning trees, in particular, the spanning tree
of total weight 21 found by Dijkstra’s algorithm.

Graph Theory 387

13.3 Fleury’s Algorithm for Eulerian Circuit

The problem of finding an Eulerian circuit in a graph (possibly with multiple edges) has
been studied since Leonhard Euler’s solution [74] to the problem of the seven bridges of
Königsberg in 1736 (see Chapter 3). Lewis Carroll [263], we are told in a biography by
his nephew, was fond of asking little children to draw, in one stroke, without lifting the pen
off the paper, Figure 13.8.

Fig. 13.8 Lewis Carroll’s three-square graph

If we define all intersections of line segments as vertices then we obtain a planar graph
with 18 vertices, known as Lewis Carroll’s three-square graph. Drawing the figure in one
stroke is equivalent to finding an Eulerian circuit in the graph. Since all vertices have even
degree 2 or 4, we know that there must be such an Eulerian circuit. In Example 13.3.1,
we show how to find this Eulerian circuit in a systematic way. Lucas [153] describes an
algorithm for finding an Eulerian trail (or circuit, if one exists) due to Fleury.

13.3.1 Fleury’s algorithm

Input A graph G with one nontrivial component and at most two odd vertices.

Initialisation If G has an odd vertex, start at an odd vertex. Else start at any vertex.

Iteration From the current vertex, traverse any remaining edge whose deletion from the
remaining graph does not leave a graph with two nontrivial components. To check this, run
Prim’s algorithm and make sure that the resulting tree spans the graph.

Termination Stop when there are no more edges left to traverse.
We give an implementation of Fleury’s algorithm in C++ below. Note that this imple-

mentation is for simple graphs, but we can easily modify it to handle graphs with multiple
edges.

388 Graph Algorithms

fleury.cpp

#include <iostream>

#include <fstream>

#include <string>

#include <vector>

using namespace std;

ifstream infile(‘‘graph.txt’’);

ofstream outfile(‘‘eulerian_circuit.txt’’);

bool euler(vector<vector<int> > edge);

bool fleury(vector<vector<int> > edge, vector<int> del);

vector<vector<int> >erase(vector<vector<int> > edge, vector<int> del);

bool empty(vector<vector<int> > edge);

int main()

{

cout<<‘‘Fleury’s Algorithm.’’<<endl;

int n, i, j;

//Read adjacency matrix of edges from graph.txt

infile>>n;

vector<vector<int> > edge; int val;

for(i=0; i<n; i++)

{

vector<int> row;

for(j=0; j<n; j++)

{

infile>>val; row.push_back(val);

}

edge.push_back(row);

}

cout<<‘‘Read graph from file graph.txt...’’<<endl;

if(euler(edge))

{

cout<<‘‘Finding Eulerian circuit...’’<<endl;

vector<int> circuit; int current=0;

Graph Theory 389

circuit.push_back(current); cout<<current<<’’ ";

while(!empty(edge))

{

for(i=0; i<n; i++)

{

int previous=current;

if(edge[current][i]==1)

{

vector<int> del;

del.push_back(current);

del.push_back(i);

if(fleury(edge, del))

{

edge=erase(edge,del); current=i;

circuit.push_back(current);

cout<<current<<" ";

break;

}

}

}

}

for(i=0; i<circuit.size(); i++)

outfile<<circuit[i]<<" ";

cout<<endl<<‘‘See circuit.txt for results.’’<<endl;

}

else

cout<<‘‘No Eulerian circuit.’’<<endl;

system(‘‘PAUSE’’); return 0;

}

bool euler(vector<vector<int> > edge)

{

for(int i=0; i<edge.size(); i++)

{

int deg=0;

for(int j=0; j<edge[0].size(); j++)

deg+=edge[i][j];

390 Graph Algorithms

if(deg%2!=0) return false;

}

return true;

}

bool fleury(vector<vector<int> > edge, vector<int> del)

{

int n, i, j, k;

if(del[0]==del[1]) return false;

vector<vector<int> > edged=edge;

edged[del[0]][del[1]]=0; edged[del[1]][del[0]]=0;

n= edged[0].size();

//Initialize Table

const int infinity=1000000;

vector<bool> known;

for(i=0; i<n; i++) known.push_back(false);

vector<int> d; d.push_back(0);

for(i=1; i<n; i++) d.push_back(infinity);

vector<int> p;

for(i=0; i<n; i++) p.push_back(-1);

//Iteration

for(k=0; k<n; k++)

{

//Find min of d for unknown vertices

int min=0;

while(known[min]==true)min++;

for(i=0; i<n; i++)

if(known[i]==false && d[i]<d[min])min=i;

//Update Table

known[min]=true;

for(j=0; j<n; j++)

{

if(edged[min][j]!=0 && d[j]>edged[min][j] &&

known[j]==false)

{

d[j]=edged[min][j]; p[j]=min;

}

Graph Theory 391

}

}

bool ok=true;

//Find if resulting graph has two nontrivial //components

it for(i=1; i<n; i++)

{

if(p[i]==-1)

for (int j=0; j<n; j++)

if(edged[i][j]!=0)

{ok=false; break;}

}

return ok;

}

vector<vector<int> > erase(vector< vector<int> > edge, vector<int> del)

{

vector< vector<int> > edged=edge;

edged[del[0]][del[1]]=0; edged[del[1]][del[0]]=0;

return edged;

}

bool empty(vector<vector<int> > edge)

{

for(int i=0; i<edge.size(); i++)

for(int j=0; j<edge[0].size(); j++)

if(edge[i][j]==1)

return false; return true;

}

Example 13.3.1 Consider the following labelled graph given in Figure 13.9 correspond-
ing to Lewis Carroll’s three-square puzzle.

392 Graph Algorithms

Fig. 13.9 Labelled graph corresponding to Lewis Carroll’s puzzle

Make a text file “graph.txt” corresponding to Figure 13.9.

graph.txt

18
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

Graph Theory 393

Now compile and run the program “fleury.cpp”. The following output file “eulerian circuit.txt”
is produced in the program’s directory.

0 1 3 2 10 11 5 6 3 4 7 6 12 11 14 15 7 8 17 16 14 13 10 9 0 The output shows the final
Eulerian circuit in the given graph. If we trace the actual computation of this Eulerian
circuit step by step, we obtain a solution to Carroll’s puzzle, as shown in Figure 13.10.

Fig. 13.10 Solution to Lewis Carroll’s three-square puzzle

13.4 De Bruijn Graphs

To see a good application of Eulerian circuits, we briefly consider the rotating drum prob-
lem, described as follows. Suppose the head of a rotating drum is divided into 24 = 16
sectors, with each sector labelled with either a zero or a one, as shown in Figure 13.11.

Fig. 13.11 Labelled rotating drum

394 Graph Algorithms

Can the sectors be labelled in such a way that the labels of any four consecutive sectors
uniquely determine the position of the drum? This means that the 16 possible quadruples of
consecutive binary labels on the drum should be the binary representations of the integers
0 to 15. This question was studied by N.G. de Bruijn [41] in 1946 and thus the resulting
binary circular sequences and their corresponding graphs given below are called De Bruijn
sequences and De Bruijn graphs, respectively.

We define a directed graph called G4 (the De Bruijn graph of order 4) as follows. The
vertices are all 3-bit binary strings x1x2x3 (each xi is either zero or one). Thus there are 8
vertices. Each vertex x1x2x3 has directed edges to the vertices x2x30 and x2x31. The directed
edge (x1x2x3, x2x3x4) is labelled e j , where j = x12

3 + x22
2 + x32

1 + x42
0 is the unique binary

representation of the integer j. Thus, there are 16 directed edges. The graph is shown in
the following Figure 13.12.

Fig. 13.12 G4, the De Bruijn graph of order 4

Now, G4 is Eulerian since the in-degree and out-degree of every vertex is 2. Using
Fleury’s algorithm we find the following Eulerian circuit in G4: 000, 000, 001, 011, 111,
111, 110, 100, 001, 010, 101, 011, 110, 101, 010, 100, 000. This Eulerian circuit cor-
responds to the De Bruijn sequence 0000111100101101, to be read circularly, with the
required property. This is exactly the labeling on the rotating drum shown in Figure 13.11.

Graph Theory 395

In general, we may build the De Bruijn graph of order n, denoted by Gn, and find cir-
cular De Bruijn sequences of length n corresponding to Eulerian circuits in Gn. Among
other things, this technique has recently been used to design large scale multihop and fault
tolerant computer networks [239].

13.5 Hamiltonian Circuits

A concept that is similar to Eulerian circuits but in reality quite different is that of Hamil-
tonian circuit. A hamiltonian circuit in a graph is a simple closed path that passes through
each vertex exactly once. In the mid 19th century, Sir William Rowan Hamilton [102]
tried to popularise the exercise of finding such a circuit in the graph of a dodecahedron.
While we have seen a polynomial-time algorithm for Eulerian circuits, no such algorithm
is known for Hamiltonian circuits. We give an implementation of a nondeterministic algo-
rithm in C++ below.

hamilton.cpp

#include <iostream>

#include <fstream>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

ifstream infile(‘‘graph.txt’’);

ofstream outfile(‘‘hamiltonian_circuits.txt’’);

int main()

{

cout<<‘‘Algorithm for Hamiltonian circuits.’’<<endl;

//Read adjacency matrix of from graph.txt

int i, j, k, l, m, n;

infile>>n;

vector< vector<bool> > graph;

bool edge;

for(i=0; i<n; i++)

{

vector<bool> row;

396 Graph Algorithms

for(j=0; j<n; j++)

{

infile>>edge;

row.push_back(edge);

}

graph.push_back(row);

}

int count=0;

vector<int> vertex;

for(k=0; k<n; k++)

vertex.push_back(k);

cout<<‘‘\nStarting search...\n’’;

bool found=false, circuit=true;

while(next_permutation(vertex.begin(),vertex.end())

)

{

if(vertex[0]!=0) break;

for(l=0; l<n; l++)

circuit=

circuit*graph[vertex[l%n]][vertex[(l+1)%n]];

switch(circuit)

{

case true:

found=true;

count++;

cout<<endl

<<count

<<‘‘ Hamiltonian Circuits found:’’<<endl;

outfile<<endl

<<count

<<‘‘ Hamiltonian Circuits found:’’

<<endl;

for(m=0; m<n; m++)

{

cout<<vertex[m]<<‘‘ ’’;

outfile<<vertex[m]<<‘‘ ’’;

}

Graph Theory 397

cout<<endl; outfile<<endl;

break;

default:

break;

}

circuit=true;

}

if(!found)

{

cout<<‘‘\nNo Hamiltonian Circuits found.\n’’;

outfile<<‘‘\nNo Hamiltonian Circuits found.\n’’;

}

cout<<‘‘\nSee hamilton_circuits.txt.’’

<<endl;

system(‘‘PAUSE’’);

return 0;

}

Example 13.5.1 We consider the graphs of the five platonic solids, all of which are
known to be Hamiltonian. First, consider the simplest of the platonic graphs, the tetrahe-
dron:

Fig 13.13 Labelled graph of the tetrahedron

Make a text file “graph.txt” as shown below and save it in the same directory as the program
“hamilton.cpp”. The first line of the file “graph.txt” is the number of vertices and the rest
is the adjacency matrix of the labelled tetrahedron graph shown in Figure 13.13.

398 Graph Algorithms

graph.txt

4
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Now compile and run the program. We find five Hamiltonian circuits: 0 1 3 2, 0 2 1 3, 0 2
3 1, 0 3 1 2, 0 3 2 1. Next, consider the graph of the octahedron:

Fig. 13.14 Labelled graph of the octahedron

The file “graph.txt” for the octahedron graph is shown below:

graph.txt

6
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0

Now run the program. We find 31 Hamiltonian circuits: 0 1 2 3 5 4, 0 1 2 4 3 5, 0 1 3 2 4
5, 0 1 3 5 4 2, 0 1 5 3 2 4, 0 1 5 3 4 2, 0 1 5 4 3 2, 0 2 1 3 4 5, 0 2 1 3 5 4, 0 2 1 5 3 4, 0 2 3
1 5 4, 0 2 3 4 5 1, 0 2 4 3 1 5, 0 2 4 3 5 1, 0 2 4 5 3 1, 0 4 2 1 3 5, 0 4 2 3 1 5, 0 4 2 3 5 1, 0
4 3 2 1 5, 0 4 3 5 1 2, 0 4 5 1 3 2, 0 4 5 3 1 2, 0 4 5 3 2 1, 0 5 1 2 3 4, 0 5 1 3 2 4, 0 5 1 3 4
2, 0 5 3 1 2 4, 0 5 3 4 2 1, 0 5 4 2 3 1, 0 5 4 3 1 2, 0 5 4 3 2 1.

Next, consider the graph of the cube.

Graph Theory 399

Fig. 13.15 Labelled graph of the cube

graph.txt

8
0 1 0 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1
0 0 1 0 1 0 1 0

Now run the program. We find 12 Hamiltonian circuits: 0 1 2 3 4 7 6 5, 0 1 2 7 6 5 4 3, 0
1 6 5 4 7 2 3, 0 1 6 7 2 3 4 5, 0 3 2 1 6 7 4 5, 0 3 2 7 4 5 6 1, 0 3 4 5 6 7 2 1, 0 3 4 7 2 1 6
5, 0 5 4 3 2 7 6 1, 0 5 4 7 6 1 2 3, 0 5 6 1 2 7 4 3, 0 5 6 7 4 3 2 1. Next, consider the graph
of the icosahedrons, given in Figure 13.16.

400 Graph Algorithms

Fig. 13.16 Labelled graph of the icosahedron

graph.txt

12
0 1 1 0 0 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 1 1 0 0
0 1 0 1 0 1 0 0 0 1 1 0
1 1 0 0 1 0 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 1 1
1 0 1 0 0 0 1 0 1 0 0 1
0 0 1 1 0 0 0 1 0 1 0 1
0 0 0 1 1 0 0 0 1 0 1 1
0 0 0 0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1 1 0

Now, it gets interesting. The program runs for quite a few minutes! We find 2560 Hamil-
tonian circuits: 0 1 2 3 4 5 6 10 9 8 11 7, . . . , 0 7 11 10 9 8 3 2 1 4 5 6. Finally, consider
the graph of the dodecahedron, the original inspiration for Hamilton [212], given in Figure
13.17.

Graph Theory 401

Fig. 13.17 Labelled graph of the dodecahedron

The file “graph.txt” for the dodecahedron graph is shown below:

graph.txt

20
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0

402 Graph Algorithms

Depending on the speed of your computer, the program will now run for quite a few hours,
and perhaps even days. One of the Hamiltonian circuits we found was: 0 1 2 3 4 5 6 7 8 9
10 11 12 19 18 17 16 15 14 13.

