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Abstract We consider the following generalization of bin packing. Each item has a
size in (0,1] associated with it, as well as a rejection cost, that an algorithm must pay
if it chooses not to pack this item. The cost of an algorithm is the sum of all rejection
costs of rejected items plus the number of unit sized bins used for packing all other
items.

We first study the offline version of the problem and design an APTAS for it.
This is a non-trivial generalization of the APTAS given by Fernandez de la Vega
and Lueker for the standard bin packing problem. We further give an approximation
algorithm of an absolute approximation ratio 3/2, where this value is best possible
unless P = NP.

Finally, we study an online version of the problem. For the bounded space vari-
ant, where only a constant number of bins can be open simultaneously, we design a
sequence of algorithms whose competitive ratios tend to the best possible asymptotic
competitive ratio. These algorithms are generalizations of bounded space algorithms
for standard bin packing. We show that our algorithms have the same asymptotic com-
petitive ratios as these known for the standard problem, for which the sequence of the
competitive ratios tends to �∞ ≈ 1.691. Furthermore, we introduce an unbounded
space algorithm which achieves a much smaller asymptotic competitive ratio. All our
results improve upon previous results of Dósa and He.
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1 Introduction

In the classical bin packing problem [5, 6, 23], a set (or sequence) of items, which
are positive numbers no larger than 1, are to be packed into unit sized bins. The sum
of items packed into one bin cannot exceed its size and the supply of such bins is
unbounded. Each item must be packed into exactly one bin, minimizing the number
of non-empty bins. However, in many applications, it is possible to refuse to pack
an item. This rejection needs to be compensated, and costs some given amount for
each item, which is called the “rejection cost” (or “rejection penalty”) of the item.
In an application where bins are disks and items are files to be saved on these disks,
the rejection cost of a file is the cost of transferring it to be saved on alternative
media. In another application, where bins are storage units, a rejection cost is paid to
a disappointed customer whose goods cannot be stored.

We call the packing problem studied in this paper BIN PACKING WITH REJEC-
TION. In this problem, an item has both a size and a rejection cost associated with
it. Each item must be either assigned to a bin or rejected. A bin is empty if no item
is assigned to it, otherwise it is used. Items that have been packed are referred to as
accepted. Unlike the standard problem where the goal is to minimize the number of
used bins, the target function in the problem with rejection is the sum of the follow-
ing two amounts. The first one is the sum of all rejection costs of rejected items. The
second one is the number of bins, which are used to pack the accepted items. The
goal is to minimize this sum. Clearly, standard bin packing is a special case of bin
packing with rejection, where all rejection costs are larger than 1.

We denote the set of items by I , where |I | = n. For an item i ∈ I , we denote its
size by pi and its rejection cost (or penalty) by ri . In this paper we study both offline
and online algorithms for bin packing with rejection. In online environments of bin
packing problems, items are received as a sequence σ . In bin packing with rejection,
every element in the sequence is a pair, consisting of the size and the rejection cost
of this element. Thus, we get a sequence (p1, r1), (p2, r2), . . . , (pn, rn), where the
elements arrive one by one. Upon arrival, an item must be either assigned or rejected.
Such a decision is irrevocable. Note that the set I contains the same elements as σ .

The bin packing problem with rejection was introduced and studied by Dósa and
He [10]. They suggested an interesting application for the offline version of the prob-
lem which is related to caching. Items are files which would need to be used in a
local system. Each file would be needed exactly once at a later time. A file can be
downloaded in advance to this local system, and stored on local web servers. The
process of downloading a file from a local server (when it is actually needed) is fast,
but stored files consume space on the servers. In this case the incurred cost results
from the cost of local servers. The second option is to download a file only when it is
actually needed, without storing it first. In the last case, a rejection cost occurs which
results from the communication time of downloading the file from an external server.
An algorithm would need to have a cost as low as possible with respect to the sum of
the two types of costs.

For an algorithm A, we denote its cost by A as well. The cost of an optimal offline
algorithm that knows the complete sequence of items is denoted by OPT. In this pa-
per we mostly consider the asymptotic competitive ratio and the asymptotic approx-
imation ratio criteria. When we discuss performance guarantees of algorithms, we
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use the term competitive for online algorithms and the term approximation for offline
algorithms. The asymptotic measures are standard measures of algorithm quality for
bin packing problems. For a given input σ , let A(σ ) be cost of algorithm A on σ . Let
OPT(σ ) be the minimum possible cost of serving all items in σ (i.e., the cost of pack-
ing a subset of the items plus the cost of rejecting all other items). The asymptotic
approximation ratio (or asymptotic competitive ratio) for an algorithm A is defined
to be R A = lim supν→∞ supσ { A(σ )

OPT(σ )
|OPT(σ ) = ν}. We also consider the absolute

approximation ratio in this paper. The absolute approximation ratio (or competitive
ratio) of A is the infimum R such that for any input, A ≤ R · OPT. If the approxima-
tion (competitive) ratio of a polynomial time offline (respectively, online) algorithm
is at most R, we say that it is a R-approximation (respectively, R-competitive), this
applies to both types of approximation and competitive ratios.

Previous Work In [10], Dósa and He studied four variants of bin packing with rejec-
tion. Specifically, these were the offline and the online variants of bin packing with
rejection, studied with respect to the absolute measure and the asymptotic measure.
For the offline problem, the approximation ratios of the algorithms shown in [10]
are 2 and 3

2 , where the latter applies only to the asymptotic measure. Moreover, it is
mentioned that unless P = NP, no algorithm can have absolute approximation ratio
of less than 3

2 , due to a simple reduction from the PARTITION problem (see problem
SP12 in [13]). Note that this reduction holds already for standard bin packing.

For the online problem, they design an algorithm of an absolute competitive ratio

of 1+√
5

2 ≈ 2.618 and an algorithm of asymptotic competitive ratio 1.75 + ε. They
show a lower bound of 2.343 on the absolute competitive ratio of any algorithm for
the first online variant, and mention that the lower bound of 1.5401 for the standard
online bin packing problem, due to van Vliet [24] is the best lower bound known for
the second variant.

As the standard bin packing problem is a special case of the problem with re-
jection, we next compare the above results with these known for the standard bin
packing problem. The offline bin packing problem admits an APTAS (Asymptotic
Polynomial Time Approximation Scheme), as was shown by Fernandez de la Vega
and Lueker [8]. This scheme returns for every given value ε > 0 an algorithm with
an asymptotic approximation ratio of 1 + ε. The algorithm has polynomial running
time if ε is seen as a constant. Karmarkar and Karp [18] designed an AFPTAS (As-
ymptotic Fully Polynomial Time Approximation Scheme) for the problem. They use
a similar (but much more complex) algorithm, to achieve a running time which also
depends on 1

ε
polynomially. A powerful tool, which is used in the APTAS of [8], is

linear grouping. The main idea of this method is to round the sizes of items into a
small number of distinct sizes. Unlike rounding methods for scheduling [14], the out-
put sizes resulting from the rounding must be representatives of real item sizes in the
input. This method of rounding in [14], which rounds values from a given range to a
closest number among a fixed sized set of values, such that no original value changes
as a result by more than a small factor, is used in our paper for the rounding of rejec-
tion penalties. Both methods are typically used for sizes that are large enough, where
small sizes are separated from the large ones and are treated separately. The resulting
set of large items has a small number of sizes, which is a function of ε. Then, valid
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assignment configurations are defined for this set of sizes, and a solution to a packing
problem can be described as a set of bins packed according to specific configurations.

As stated above, the absolute approximation ratio of an offline algorithm cannot be
expected to be smaller than 3

2 . Several algorithms are known to achieve this bound.
Specifically, the simple FIRST FIT DECREASING (FFD) algorithm, which sorts the
items according to non-increasing size, and applies FIRST FIT (each item is packed
to the earliest bin where it fits), is one of these algorithms. This result is implied by
bounds on the performance of FFD, which are given e.g. by [9, 26] and also proved
directly using a simple proof in [22]. Several other algorithms with the same approx-
imation ratio are known (see e.g. [28]).

As for the online problem, the currently best known upper bound on the asymp-
totic competitive ratio is 1.58889 due to Seiden [21]. The online problem has been
extensively studied with respect to the asymptotic competitive ratio. Previous results
include the following sequence of improvements. The online bin packing problem
was first investigated by Ullman [23]. He showed that the FIRST FIT algorithm has
an asymptotic competitive ratio of 17

10 . This result was then published in [17]. John-
son [16] showed that the NEXT FIT algorithm has an absolute competitive ratio of 2.
Yao [25] designed an algorithm called REVISED FIRST FIT and showed that it has
an asymptotic competitive ratio of 5

3 .
An important version of online bin packing (which is not studied in [10]) is the

bounded space model. Bounded space algorithms can only have a constant number
of bins available to accept items at any point during processing. The available bins
are also called “open bins”. The bounded space assumption is a quite natural one.
Essentially the bounded space restriction guarantees that output of packed bins is
steady, and that the packer does not accumulate an enormous backlog of bins which
are only output at the end of processing. The algorithm NEXT FIT is bounded space
since it uses a single open bin at every time.

Lee and Lee [19] developed a bounded space algorithm called the HARMONIC

algorithm. This algorithm is actually a sequence of algorithms. Each such algorithm
performs an online partition of the input into classes, where each class contains items
of similar sizes and it is packed independently of the other classes. The depth of the
partition into classes depends on the exact algorithm in the sequence. In particular,
items larger than 1

2 are separated from the other input items, and are packed into
dedicated bins, one such item per bin. Specifically, the m-th HARMONIC algorithm
(for m > 1) partitions the items into m classes and uses bounded space of at most
m − 1 open bins. For any ε > 0, there is a number m such that the HARMONIC

algorithm that uses m classes has a competitive ratio of at most (1 + ε)�∞ [19],
where �∞ ≈ 1.69103 is the sum of series (see Sect. 3.2).

Lee and Lee [19] adapted HARMONIC into the REFINED HARMONIC algorithm,
for which they showed an asymptotic competitive ratio of 273

228 < 1.63597. The
next improvements were MODIFIED HARMONIC and MODIFIED HARMONIC 2. Ra-
manan, Brown, Lee and Lee showed that the first algorithm has an asymptotic com-
petitive ratio of at most 538

333 < 1.61562 and claimed that the second algorithm has
an asymptotic competitive ratio of at most 239091

148304 < 1.61217 [20]. The main idea of
the improved algorithms is to allow combination of the items of size in ( 1

2 ,1] with
smaller items.
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Lee and Lee [19] showed there is no bounded space algorithm with a performance
ratio below �∞. Note that the algorithms mentioned above REFINED HARMONIC,
MODIFIED HARMONIC and MODIFIED HARMONIC 2 are all unbounded space adap-
tations of HARMONIC. The algorithm of Dósa and He [10], which has an asymptotic
competitive ratio which tends to 1.75, does not use bounded space, as it uses FIRST

FIT as a sub-routine. However, it is achieved by a sequence of algorithms, whose
sequence of asymptotic competitive ratios tends to 1.75 from above.

There is much less study of the absolute competitive ratio, and the existent study
focuses on the performance of simple algorithms such as NEXT FIT (which is dis-
cussed above) and FIRST FIT. Simchi-Levi [22] proved an upper bound of 1.75 on
the absolute competitive ratio of FIRST FIT. A lower bound of 5

3 on the absolute
competitive ratio of any algorithm was given by Zhang [27].

There has been a fair amount of research on variants of well known problems,
where a notion of rejection is introduced. Such studies include research on variants
of various important scheduling problems (see [1, 2, 11, 15]). Since scheduling is
strongly related to bin packing, this gives another motivation to the study of the bin
packing problem with rejection.

Our Results We first study the offline problem. We design an APTAS for bin pack-
ing with rejection which uses techniques from [8] but also from [14] and [4]. For
a given value of ε, the APTAS has cost of at most (1 + ε)OPT + 1. The APTAS
uses linear programming for the packing of items that we call small. Next, we design
an algorithm with absolute approximation ratio 3

2 . To do that, we apply the APTAS
using a constant value of ε, and combine this with a different approach and addi-
tional arguments for cases where the value OPT is small. We use linear programs
for these cases as well. Note that here the costs do not always take integer values un-
like in standard bin packing. Our (1 + ε)-approximation (in the asymptotic case) and
3
2 -approximation (in the absolute case) improve the previous results of [10] for the
two measures which are 3

2 and 2 respectively.
We continue with a study of the online problem. To be able to prove upper bounds

for online algorithms, we generalize the notion of weighting [21, 23] to algorithms
which allow rejection. We establish the best asymptotic competitive ratio for bounded
space algorithms, and show it is the same as for the problem without rejection. For
this, we adapt the HARMONIC algorithm of Lee and Lee [19] to be able to handle
the notion of rejection. We show that the adapted algorithms still have the same as-
ymptotic competitive ratios, and thus, achieve the best possible performance. Finally
we show an improved unbounded space algorithm which is a modification of MOD-
IFIED HARMONIC which can handle rejections. Both our algorithms, the rejective
variants of HARMONIC and MODIFIED HARMONIC, achieve better asymptotic com-
petitive ratios than the algorithm of [10]. Their ratios are approximately 1.69103 and
1.61562, whereas the algorithm of [10] has a competitive ratio 1.75 + ε.

Tables 1 and 2 summarize the known results and the new results of this paper, for
offline and online bin packing with rejection, with comparison to offline and online
standard bin packing.
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Table 1 Summary of results for online algorithms

Bin packing variant Asymptotic performance Absolute performance

Standard Upper bound: 1.58889 [21] Upper bound: 1.75 [22]

Lower bound: 1.5401 [24] Lower bound: 5
3 [27]

Bounded space algorithms: 1.691 [19]

With rejection Upper bound: 1.75 + ε [10] Upper bound: 1+√
5

2 ≈ 2.618 [10]

(previous work) Lower bound: 1.5401 [24] Lower bound: 2.343 [10]

With rejection Upper bound: 1.61562

(this paper) Bounded space algorithms: 1.691

Table 2 Summary of results for offline algorithms

Bin packing variant Asymptotic performance Absolute performance

Standard APTAS [8] Upper bound: 3
2 [22]

AFPTAS [18] Lower bound: 3
2 [13]

With rejection Upper bound: 1.5 [10] Upper bound: 2 [10]

(previous work) Lower bound: 3
2 [13]

With rejection APTAS Upper bound: 3
2

(this paper)

2 Offline Bin Packing with Rejection

2.1 An APTAS

To design an APTAS, we use methods similar to the well known APTAS for the
classical bin packing problem, given by Fernandez de la Vega and Lueker [8]. The
adaptation that we design here has some similarities with [4], however there are many
differences due to the different natures of the problems. In order to be able to deal
with rejection costs, we also use rounding methods which are similar to ones used for
scheduling, as in [14]. These methods allow to reduce the number of large enough
rejection penalties into a constant number. The structure of the scheme consists of a
partition of the items into large items and small items. Rounding of the large items
into a constant number of sizes is done using two steps, where the second step re-
moves a small fraction of large items from the instance. After the rounding is com-
pleted, all possible packings of the large items are created. For every such packing,
small items are combined into the packing, using some number of additional bins that
are used for small items only. In order to combine the small items, linear program-
ming is invoked. The solution of a linear program is fractional, and therefore it needs
to be modified into a valid solution. Clearly, the sizes of large items are modified into
their original sizes. Some large items are removed from the input in the process of
rounding. These items are packed into new bins. We show that the rounding steps,
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together with the additional bins that handle the small items packed fractionally, and
the large items that were removed in the second rounding step, harm the solution by
a small enough factor.

We assume that without loss of generality, each rejection cost ri satisfies ri ≤ 1.
We can make this assumption since an item of rejection cost at least 1, which is
rejected in some solution, can be placed in a bin of its own instead, and the cost of the
solution does not increase. We also assume OPT ≥ 1. In order to be able to assume
this, note that if OPT < 1 this means that all jobs are rejected, since any solution
which uses at least one bin has cost of at least 1. Therefore, we can compute the sum
of all rejection costs. If this sum is smaller than 1, then we output this solution, and
otherwise, we run the APTAS. We can always check the solution which rejects all
jobs. We give it as the output, if it turns out to be better than the result of the APTAS.
This will also be useful to get a better approximation for small values of OPT which
is done later, in Sect. 2.2.

As in [8], a first partition is done into “large items” and “small items”. Let δ be
a function of ε defined later. We require of δ to be an inverse of an integer. An item
j is considered to be large if both rj > δ and pj > δ. All other items are small. We
denote the multiset of large items by L and the multiset of small items by M . We
have I = L ∪ M .

The first step is to construct a set of possible packings of the large items. For each
such packing of large items only, we add the other items in a near optimal way. The
number of packings of large items would be polynomially bounded, yet, packings are
enumerated in a way that at least one packing, which is close enough for our purposes
to an optimal packing (restricted to large items only), is tested.

Let N be the number of large items in the input (N = |L|). If the number of large
items is relatively small, that is N < 1

δ4 , we simply enumerate all possible solutions
for these large items (these are partial packings of the large items where the unpacked
items are rejected) into at most N bins. Since a packing contains at most N bins,
and each item can be either placed into one of these bins or rejected, there are at

most (N + 1)N ≤ ( 1
δ4 )

1
δ4 possible packings. Note that in this process a set of bins is

opened, where some of them possibly remain empty. At this time, the set of empty
bins is removed from the packing. We later allow the usage of empty bins and test
all possible numbers of empty bins. These additional bins are created in order to
accommodate small items.

For the case where N ≥ 1
δ4 , we perform a rounding of the rejection costs of all

items in L. This done with the goal of reducing the number of different types of
large items into a constant number. We will first reduce the number of possible rejec-
tion penalties, and later we reduce the number of possible sizes. We define intervals
(δ + iδ2, δ + (i + 1)δ2] for i = 0, . . . ,� = 1

δ2 − 1
δ

− 1. For every item j ∈ L, we
define r ′

j to be the left endpoint of the interval to which rj belongs (i.e., it is the value

rj , rounded down to the closest value δ + iδ2). Let I ′ be the adapted input. Let A(I ′)
be the cost of a solution of an algorithm A for the rounded input, and let A′(I ) be
the cost of the same solution on the original items. The only change applied on the
input is rounding of the rejection penalties of large items. Therefore, we can show the
following.
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Lemma 1 A′(I ) ≤ (1 + δ)A(I ′) and OPT(I ′) ≤ OPT(I ).

Proof To show OPT(I ′) ≤ OPT(I ) we note that given a solution to I , we convert it
into a solution to I ′ by replacing the rejection costs by the rounded ones, and the cost
can only decrease.

To show A′(I ) ≤ (1 + δ)A(I ′), note that each rejection cost decreases by at most
an additive factor of δ2 in the rounding procedure. However, since all rejection costs
that are modified are larger than δ (which holds for both the rounded and the original
costs), each rejection cost increases by a factor of at most 1 + δ when the rounded
rejection costs are replaced by the original ones. �

For 0 ≤ i ≤ �, let Ni be the number of items with rounded rejection cost δ + iδ2,
and let ai,1 ≥ · · · ≥ ai,Ni

be (the sizes of) these items. Note that N = ∑�
i=0 Ni .

We can consider only the sizes of items for each i, since they all have the same
rejection cost δ + iδ2. Therefore, in this case we can identify between items and their
sizes. For a given 0 ≤ i ≤ �, denote the multiset of item sizes by Bi . The next step
would be to reduce the number of different sizes of items with rejection cost δ + iδ2.
We use linear grouping on each such set separately. This rounding allows to reduce
the number of sizes of large items into a constant. The rounding is performed in a
way that the change in the cost of an optimal solution is small enough, and for every
rounded size, there exists an item in the original input that has this size.

Formally, we perform a linear grouping on each one of the multisets of large
items Bi = {ai,1, . . . , ai,Ni

}. Let m = 1
δ2 . We partition the sorted set of large items

into m consecutive sequences Si,j (j = 1, . . . ,m) of ki = �Ni

m
� = �Niδ

2� items
each (to make the last sequence be of the same cardinality, we define ai,t = 0 for
t > Ni ). I.e., Si,j = {ai,(j−1)ki+1, . . . , ai,(j−1)ki+ki

} for j = 1,2, . . . ,m. For j ≥ 2,
we define a modified sequence Ŝi,j which is based on the sequence Si,j as follows.
Ŝi,j is a multiset which contains exactly ki items of size ai,(j−1)ki+1, i.e., all items
are rounded up to the size of the largest element of Si,j . The set Si,1 is not rounded
and therefore Ŝi,1 = Si,1. Let L′

i be the union of all multisets Ŝi,j (L′
i = ⋃m

j=1 Ŝi,j )

and L′ = ⋃�
i=0 L′

i and let L′′
i = ⋃m

j=2 Ŝi,j , L′′ = ⋃�
i=0 L′′

i .

We find solutions for the two sets L1 = ⋃�
i=0 Si,1 = L′ \ L′′ and L′′ separately.

The items of L1 are packed each in a separate bin. The input L′′ is treated as follows.
This input contains at most T = (m − 1)(� + 1) < 1

δ4 different type of items (where
two items are of the same type if they are of the same rounded size and have the same
rounded rejection cost).

We enumerate all possible packings of the L′′ items into i bins, where 0 ≤ i ≤ N .
The input L′′ contains at most T distinct sizes of elements. We are interested in
computing all solutions of a bin packing instance with a constant number of distinct
large types. Let (b1, ρ1), . . . , (bT , ρT ) be the set of types, where δ < bj ≤ 1 is the size
of items of type (bj , ρj ) and δ ≤ ρj ≤ 1 is its (rounded) rejection cost. We represent
a multiset of items by a vector J = (u1, . . . , uT ), where uj is the number of items
of type (bj , ρj ). Let N̂ = (n1, . . . , nT ) denote an input. A pattern is a vector of non-
negative integers such that the multiset of items represented by it can fit in a single
bin, i.e. q is a pattern if

∑T
j=1 qjbj ≤ 1. Let Q be the set of all patterns. A packing
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can be described by specifying for every q ∈ Q, the number of bins yq that are packed
using pattern q .

As noted above, we remove empty bins from the packing, therefore an empty
pattern (for which qi = 0 for 1 ≤ i ≤ T ), may be considered to be a legal pattern, but
is useless. The difference between nj and the number of items of type (bj , ρj ) that
are packed in the packing are rejected items.

We now argue that |Q| ≤ (T + 1)
1
δ . A bin can contain at most 1

δ
items. To show

the bound, we can represent each bin by a list of length 1
δ
. In this list we first provide a

complete enumeration of all items of this bin, if any slots remain empty, we fill them
with “null”. There are T + 1 options for each item in the list, since an item can be
absent as well as of any size among the T possible sizes. This gives an upper bound

of (T + 1)
1
δ on the number of patterns |Q|.

A vector y ∈ N0
Q specifies a valid packing of an input N̂ into 	 bins if and only

if the following constraints hold.

∑

q∈Q

yq = 	, and for all 1 ≤ j ≤ T ,
∑

q∈Q

qjyq ≤ nj . (1)

Since for each 1 ≤ j ≤ T , there are nj −∑
q∈Q qjyq items of this type which remain

unpacked. The rejection cost of each of them is ρj and thus the cost of the entire
packing including rejection costs of rejected items is 	+∑T

j=1 ρj (nj −∑
q∈Q qjyq).

Since 	 ≤ N , we are only interested in vectors y where each component is in
the set {0, . . . ,N}. Thus, the number of vectors y to be enumerated is polynomially
bounded.

For every packing, constructed for large items, we do the following. Consider all
non-empty bins packed with large items. If the packing was created for the original
items (in the case where N is small), the packing is not changed.

Otherwise, keep the bins of L1 items unchanged. Note that a vector y defines
a packing of the L′′ items completely, these are linearly grouped items, and not the
input items. After the process of packing is completed, including the packing of small
items that are packed in the next step, we can replace the items of Ŝi,j in the packing
by items of Si,j . Clearly, the items of Si,j are never larger than the items of Ŝi,j , and
so the resulting packing is feasible.

Let 	 be the number of bins in the packing. Since the final packing cannot contain
more than n non-empty bins, we perform the following for all the following values of
d , d = 	, . . . , n. Thus, d will be the number of used bins in the resulting packing. For
each bin, which is already packed with some large items, compute the empty space
in it (that is 1 minus the sum of sizes of all items assigned to it). Denote the empty
spaces in bins z = 1, . . . , d by xz. We define xz = 1 for 	 < z ≤ d . The next goal is to
fill the gaps in the bins that are packed with large items using small items, possibly
using additional bins. We use a linear program to assign the small items fractionally
into the gaps. A basic solution to the linear program will allow to pack most of the
items integrally. The small items that remain packed fractionally will be removed and
packed into separate bins (if their size is small) or rejected (if their rejection penalty
is small).
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To assign the small items (all items of M), construct the following integer pro-
gram. Let n′ = n − N be the number of small items, and {(c1, r1), . . . , (cn′ , rn′)} be
pairs of sizes and rejection costs of these items. For 1 ≤ z ≤ d + 1 and 1 ≤ j ≤ n′,
let Xj,z be an indicator variable. If z ≤ d , the value of Xj,z is 1 if item j is assigned
to bin z and 0 otherwise. If z = d + 1 the value Xj,z is 1 if item j is rejected and 0
otherwise.

We apply the upper bounds on sum of sizes of items in the bins as follows. For each
1 ≤ z ≤ d ,

∑n′
j=1 cj · Xj,z ≤ xz. We clearly have

∑d+1
z=1 Xj,z ≥ 1 for all 1 ≤ j ≤ n′,

since each item must be either assigned to at least one bin or rejected. If it is assigned
to more than one bin, one of its occurences can be removed without violating the
other constraints. If it is both assigned and rejected, it is again removed from any bin
it is assigned to.

The linear goal function is to minimize the expression
∑n′

j=1 rj · Xj,d+1. This is
the sum of rejected items, and since the number of used bins is d , the cost of an
algorithm is d plus the sum of rejection costs.

We relax the integrality constraint, and replace it with Xj,z ≥ 0. We are left with
a linear program which clearly has a solution if the original integer program does.
Solving the linear program we can find a basic solution. This basic solution has at
most d + n′ non-zero variables (as the number of constraints). Clearly, each item
j has at least one non-zero variable Xj,z and thus we get that the number of items
that are not assigned completely to a bin or completely rejected (i.e., that have more
than one non-zero variable associated with them) is at most d . These items are not
assigned according to the solution found by the linear program. Since these items are
small, for each item, either the rejection cost is at most δ, or the size it at most δ (or
both). Therefore, out of the (at most) d items we still need to assign, we reject all
items with rejection cost of at most δ, and pack the other items into bins, so that each
bin packed in this way (possibly except for the last one) contains exactly 1

δ
items. Out

of the d small items that participate in this process, let d1 be the number of rejected
small items and d − d1 the number of small items which are packed into bins.

Therefore, the additional cost for these items is at most δd1 +�δ(d −d1)� ≤ δd +1.
As an output, it is possible to choose the solution with smallest cost out of all resulting
solutions.

We next analyze the performance guarantee of the above algorithm. We make use
of the following definitions and lemma.

Consider two multisets A,B , with elements which are pairs of sizes and rejection
costs of items. We say that A is dominated by B and denote A ≤ B if there exists
an injection f : A → B with the following properties. Let a = (pa, ra) ∈ A, and let
f (a) = b = (pb, rb) ∈ B , then pb ≥ pa and rb ≥ ra .

Lemma 2 If A and B are multisets such that A ≤ B , then OPT(A) ≤ OPT(B).

Proof Any packing for B can be converted into a packing for A using two steps.
First, all items b′ ∈ B for which there is no element a′ ∈ A such that f (a′) = b′ are
removed from the instance. This can only decrease the cost because some bins may
become empty, and for some items it is no longer necessary to pay the rejection cost.
A second step replaces each other element b̂ ∈ B by the element â ∈ A such that
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f (â) = b̂. By replacing we mean that if b̂ is packed in a bin, then â is inserted into
its location, and if b̂ is rejected then â is rejected. Since in this situation pâ ≤ p

b̂
, the

resulting packing is feasible. Since râ ≤ r
b̂
, the rejection cost cannot increase. �

We analyze the cost, and prove the following theorem. It can be seen that the run-
ning time is polynomial in the size of the input. The dependence on ε is exponential
and relatively high.

Theorem 3 Algorithm FL is an APTAS.

Proof The algorithm returns a feasible solution (as all items are either placed in
bins or rejected) in polynomial time. It remains to show the asymptotic performance
guarantee of the algorithm. Let J = L′′ ∪ M . Compare this set with the set I ′ of
the original items with rounded rejection costs. We can show J ≤ I ′ as follows.
Each small item of j is mapped to its occurence in I ′. Each item of L′′ belongs
to some set Ŝi,j for j ≥ 2. We map it to one of the items of Si,j−1, which are never
smaller than ai,(j−1)ki+1. Since the cardinalities of all sets Si,j for a given value of
i are equal, such a mapping is possible. Using Lemmas 2 and 1, we can see that
OPT(J ) ≤ OPT(I ′) ≤ OPT(I ). In the case where no linear grouping was performed
(N ≤ 1

δ4 ), we simply define J = I ′.
Consider now an optimal solution for the input J and its restriction to large items

only. Let d ′ be the number of bins used for this solution. Next, remove empty bins
from the solution. Since we enumerate all possible solutions for L′′ (or for L if no
linear grouping is done), the resulting solution is one of these constructed by the
algorithm, and thus the best solution which is given as output is no worse than the
best solution computed for the given assignment of large items which is based on
OPT(J ). Among such solutions, consider the one for which d ′ bins are used in total
(i.e., the solution where the number of bins to be used by the linear program is d ′).

Since the value of a fractional solution for packing the small items in no larger
than the value of an integral solution, namely, no larger than OPT(J ), we can get an
upper bound on the cost of the output as follows.

As written above, replacing the fractional solution by an integral one results in
an additional cost of at most δd + 1. In OPT(J ), there are d ′ used bins and thus
OPT(J ) ≥ d ′. Thus the additional cost is at most δOPT(J ) + 1 ≤ δOPT(I ) + 1.

If linear grouping is done, then the cost of packing L1 is at most
∑�

i=0 ki =
∑�

i=0�δ2Ni� ≤ Nδ2 + (� + 1) ≤ Nδ2 + 1
δ2 . Since N ≥ 1

δ4 in this case, and there

are N items whose size and rejection cost are at least δ, we have OPT(I ) ≥ δN ≥ 1
δ3 .

We get that the additional cost here is at most 2δOPT(I ).
We can now complete the analysis for both cases (large or small N ). From

Lemma 1 we know that the cost of changing the rejection cost of rejected items to the
real rejection costs may increase the cost of a solution by a factor of at most 1 + δ.
Thus the total cost of our solution is at most (using δ ≤ 1) (1 + δ)((1 + 3δ)OPT(I ) +
1) ≤ OPT(I )(1+7δ)+1+δ ≤ OPT(I )(1+8δ)+1, since OPT(I ) ≥ 1. Taking δ ≤ ε

8
gives us the desired approximation. We get a solution of cost at most (1+ε)OPT +1,
using an algorithm whose running time is polynomial in n. �
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2.2 An Algorithm with an Absolute Approximation Ratio of 3
2

As mentioned earlier, the bin packing problem with rejection, if analyzed by the
absolute approximation ratio, cannot have an approximation algorithm with approx-
imation ratio smaller than 3

2 (unless P = NP). In the sequel, we design an algorithm
with this (probably best possible) absolute approximation ratio. The method we use is
this section is choosing the best solution out of solutions created by several methods.
One of these methods would be an application of the APTAS with a constant value
of ε, and the other are simple heuristics that perform well in the case where OPT is
small.

Consider first the two cases OPT < 1 and OPT ≥ 2.25. We design algorithms that
perform well for these cases and include the outputs of these algorithms in the set of
solutions out of which we choose one with smallest cost.

In the first case we showed that we can get an optimal algorithm, if one of the
possible solutions we check is the one which rejects all items. For the second case,
if we apply the APTAS with ε = 1

20 we get a solution of cost at most 21
20 OPT + 1 ≤

OPT( 21
20 + 4

9 ) < 3
2 OPT.

Therefore, we need to design algorithms which perform better in the case 1 ≤
OPT < 2.25. In this case, OPT uses at most two bins. The solution where OPT uses
zero bins in already obtained by the simple solution which rejects all items. We are
thus left with the case of one or two bins. The sum of rejection costs is therefore less
than 1.25 if one bin is used, and less than 0.25 if two bins are used.

Consider first the case where OPT has a single bin. Consider the set Y of all items
whose rejection costs are larger than 1

2 . Clearly, in a solution we are interested in, at
most two jobs of Y can be rejected. Therefore, we can enumerate all possible subsets
of at most two jobs from Y in polynomial time (O(n2)). For each such subset, we
create an optimal fractional solution as is done above. Given such a subset X such
that |X| ≤ 2, in order to create a feasible solution as we require, the complement set
Y \ X must be packed completely into a single bin. We check whether so far the
solution is feasible (i.e., the items in Y \ X indeed fit into one bin), if so, and given
this partial solution, we use a linear program as described above to assign all other
jobs (either into the single bin, or to be rejected). We get a solution where at most one
item is split between rejection and packing into the bin. We reject this item getting an
additional cost of at most 1

2 .
If OPT < 2.25, and OPT uses a single bin, then there exists a choice of X for

which the cost of the fractional packing is in the interval [1,2.25). Thus the cost of
the solution we get is at most OPT + 1

2 ≤ 3
2 OPT.

Next, consider the case where OPT has two bins. In this case OPT ≥ 2. An opti-
mal solution contains at most two items of size in ( 1

2 ,1] which are not rejected. We
enumerate all possible subsets of at most two such items, again in polynomial time.
For every choice, the remaining items of size in this interval are rejected. The items
of size in ( 1

2 ,1] that are chosen to be packed are assigned to bins. The packing of all
other items are done by a linear program similar to the above, while all remaining
items are either added to one of the two bins, or rejected. In our case, d = 2. We
use the linear program, and get a solution where at most two items are split in some
way. Each one of these (at most two) items is of size at most 1

2 . Thus one new bin is
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sufficient to accommodate these items. If OPT < 2.25 then the cost of the fractional
packing is in the interval [2,2.25). Thus the cost of the solution we get is again at
most OPT + 1 ≤ 3

2 OPT.
We proved the following theorem.

Theorem 4 There exists a polynomial offline approximation algorithm, whose ab-
solute approximation ratio is 3

2 .

3 Online Bin Packing with Rejection

3.1 A Method for Analyzing Online Bin Packing Algorithms with Rejection

In this section we develop a framework which is useful for analyzing bin packing
algorithms with rejection. It is possible to apply the method both to offline and online
algorithms, however, in this paper we only use it for online algorithms. The method
is based on weighting, and is similar to the method used already by Ullman [23] (see
also [19, 21]). We describe the basic method briefly as our method generalizes it.

The essence of this method is to assign weights to items. The weights must be
assigned so that the cost of the algorithm, i.e., the number of used bins, is roughly
the sum of weights. A small deviation is allowed when dealing with the asymptotic
competitive ratio (or the asymptotic approximation ratio), since an additive constant
does not degrade the performance of an algorithm. As the next step, the problem
of upper bounding the asymptotic competitive ratio is reduced into that of finding
the supremum sum of weights of items which can fit into a single bin. In some cases,
a constant number k of distinct weighting functions is defined to handle several major
behaviors of the algorithm (resulting from specific types of inputs). For each outcome
of the algorithm, at least one of the k weighting functions needs to have the above
property regarding the cost of the algorithm. In this case, an upper bound on the
competitive ratio is the maximum between the k supremum sums of weights in a
single bin (for the k weight functions). The method in [21] is more complex and
generalizes the above method.

Surprisingly, the method can be generalized to deal with weights which are not
related only to the cost of packing items (i.e., to numbers of bins) but to rejection
costs as well. We assign weights to items so that the weight of a rejected item is
related to its rejection penalty. An accepted item receives a weight that is related to
the fraction of a bin that it occupies.

Let A be an online algorithm and let C be a desired competitive ratio. Let
w1, . . . ,wk be a set of functions wi : (0,1] → R

+
0 (where R

+
0 denotes the set of

non-negative real numbers). For an item j , we denote its weight with respect to the
weight function wi by wi

j .

Theorem 5 A value C is an upper bound on the asymptotic competitive ratio of al-
gorithm A if the following conditions hold.

• For every item j , and for every weight function wi , we have that wi
j ≤ Crj , that

is, for every weight function, the weight assigned to each item is no larger than C
times its rejection cost.
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• There exists a constant μ, such that for every input, there exists a value 1 ≤ i ≤ k

such that A ≤ ∑n
j=1 wi

j + μ.
• For every set of items J such that

∑
j∈J pj ≤ 1, and every 1 ≤ i ≤ k, we have

∑
j∈J wi

j ≤ C .

In order to prove the theorem, we consider the cost of the algorithm that imme-
diately translates into the sum of weights according to one of the weight functions.
Then we consider an optimal solution OPT, and partition the items into two sets ac-
cording to the behavior of OPT. Then, we can use the relation between the weights
and the cost of OPT.

Proof Given an input I of n items, let i and μ be such that A ≤ ∑n
j=1 wi

j + μ.
We let OPTrej be the set of items rejected by OPT and let OPTacc be the set of

items accepted by OPT. Furthermore, let OPTnacc be the number of bins used by
OPT for the items it accepted. We denote by OPTacc(i), the set of items assigned by
OPT to its i-th bin, for 1 ≤ i ≤ OPTnacc.

A ≤
n∑

j=1

wi
j + μ ≤

( ∑

j∈OPTrej

wk
j

)

+
( ∑

j∈OPTacc

wk
j

)

+ μ

≤
( ∑

j∈OPTrej

C · rj
)

+
( ∑

j∈OPTacc

wk
j

)

+ μ

= C ·
∑

j∈OPTrej

rj +
OPTnacc∑

i=1

( ∑

j∈OPTacc(i)

wk
j

)

+ μ

≤ C ·
∑

j∈OPTrej

rj +
OPTnacc∑

i=1

C + μ

= C ·
∑

j∈OPTrej

rj + C OPTnacc + μ.

Consider now the solution of OPT. We have OPT = ∑
j∈OPTrej

rj + OPTnacc.
Therefore, C is an upper bound on the asymptotic competitive ratio of the algo-
rithm. �

To summarize, the technique used here is therefore as follows. We assign weights
to items, so that the cost of an algorithm is roughly the sum of weights. The weights of
items cannot be much larger than their rejection costs. Then, we reduce the problem
into that of finding the maximum sum of weights of items in a single bin.

3.2 Algorithm REJECTIVE HARMONIC

We now define our adaptation of the HARMONICk algorithm of Lee and Lee [19].
The algorithm is called REJECTIVE HARMONICk (RejHk). The fundamental idea of



Algorithmica (2010) 56: 505–528 519

“harmonic-based” algorithms is to first classify items by size, and then pack an item
according to its class (as opposed to letting the exact size influence packing deci-
sions). We use a similar classification, but after classification is applied, we further
use a decision rule (based on a threshold) to identify whether the item should be
packed or rejected.

For the classification of items, we partition the interval (0,1] into sub-intervals.
We use k − 1 sub-intervals of the form Ii = ( 1

i+1 , 1
i
] for i = 1, . . . , k − 1 and one

final sub-interval Ik = (0, 1
k
]. An interval Ii is also called interval i. Each packed

bin will contain only items from one sub-interval. Items in sub-interval i that are not
rejected, are packed i to a bin for i = 1, . . . , k − 1 (except for possibly the very last
bin dedicated to this interval). The items in interval k that are not rejected are packed
using the greedy algorithm NEXT FIT. This algorithm keeps a single open bin and
packs items of interval k that are not rejected to this bin until some item does not fit.
Then a new bin is opened for interval k, and the previous bin is never used again. For
1 ≤ i ≤ k − 1, a bin which received the full amount of items (according to its type) is
closed, therefore a total of at most k − 1 bins are open or active simultaneously (one
per interval, except for ( 1

2 ,1] which does not need an active bin).
We next define the thresholds for acceptance or rejection of a new item. Given an

item a ∈ I , such that pa ∈ Ii , let sa = i. If sa < k, item a is rejected if ra ≤ 1
sa

, and
otherwise a is accepted and packed according to the algorithm above. If sa = k, item
a is rejected if ra ≤ k

k−1pa , and otherwise a is accepted and packed according to the
algorithm above.

As a first step of analyzing the algorithm, we assign weights to items. We will
use the method introduced in the previous section for the analysis. The assignment is
similar to the proof of [19], however, unlike the proof in [19], the weights we define
here depend both on the sizes of items and on their rejection costs. We use a single
weight function w, and the weight of item a ∈ I is denoted by wa .

In order to use the method, we need to assign the weights so that the three con-
ditions in Theorem 5 hold. We do the assignment so that the cost of the algorithm
satisfies RejHk ≤ ∑

a∈I wa + k − 1.
An item a which is rejected by the algorithm gets weight ra . An item a which

is accepted gets weight 1
sa

, if sa < k and k
k−1pa , if sa = k. Thus each item of sub-

intervals 1, . . . , k − 1 gets weight min{ra, 1
sa

} and each item of sub-interval k gets

weight min{ra, k
k−1pa}.

For the analysis, we use the following well known sequence πi , i ≥ 1, which
often occurs in bin packing. Let π1 = 2,πi+1 = πi(πi − 1) + 1 and let �∞ =∑∞

i=1
1

πi−1 ≈ 1.69103. This sequence is presented in [19]. It is not difficult to show

that 1 − ∑t
i=1

1
πi

= 1
πi+1−1 . It is shown in [19] that the sequence of asymptotic com-

petitive ratios of the algorithms HARMONICk tends to �∞ as k grows, and that no
bounded space algorithm can have an asymptotic competitive ratio smaller than �∞.
We show that the generalization RejHk has the same properties. Clearly, the lower
bound for the problem with rejection follows from the lower bound on the special
case without rejection.

Theorem 6 The asymptotic competitive ratio of RejHk tends to �∞ as k grows. No
online bounded space algorithm can have a smaller asymptotic competitive ratio.
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Proof As mentioned above, the lower bound follows directly from the lower bound
in [19] as standard online bin packing is a special case of online bin packing with
rejection (where all rejection costs are infinite). Therefore, we focus on the proof of
the upper bound.

For every k, we need to show that all conditions of Theorem 5 hold for the value
�∞ + εk , where εk → 0 as k grows. The first condition of the theorem trivially holds
since wj ≤ rj for every item.

We analyze an algorithm A = RejHk . Let Acacc(i) be the set of accepted items
of sub-interval i for 1 ≤ i ≤ k. Each bin for interval i (1 ≤ i ≤ k − 1) can contain
exactly i items, and since we have a single open bin for this interval at any time, each
such bin except for possibly the last one, contains exactly this amount. Each bin for
interval k is occupied by items of total size of at least k−1

k
(except for possibly the

last one), since a new bin is opened when an item (which has size at most 1
k

) does not
fit into it. Let Arej be the set of items rejected by A. We get,

A ≤
∑

a∈Arej

ra +
k−1∑

i=1

⌈ |Acacc(i)|
i

⌉

+
⌈ ∑

a∈Acacc(k)

pa

k

k − 1

⌉

≤
∑

a∈Arej

ra + |Acacc(1)| +
k−1∑

i=2

( |Acacc(i)|
i

+ 1

)

+
∑

a∈Acacc(k)

pa

k

k − 1
+ 1

≤
∑

a∈Arej

wa +
k∑

i=1

( ∑

a∈Acacc(i)

wa

)

+ (k − 1) =
∑

a∈I

wa + k − 1.

Next, we need to upper bound the sum of weights of a set of items which can fit
into a single bin. Since the weight of an item a never exceeds 1

sa
, for an item of size

pa = x, x ∈ ( 1
sa+1 , 1

sa
] (sa < k) and does not exceed k

k−1x, if x ≤ 1
k

, we can use the
result of [19], which states an upper bound which tends to �∞ on the sum of weights
in this case. A proof of this property also appears in [7]. For completeness, we include
a proof.

Let t be a maximal integer such that πt ≤ k. We claim that the total weight
packed in a single bin is upper bounded by

∑t
i=1

1
πi−1 + 1

πt+1−1 · k
k−1 = ∑t+1

i=1
1

πi−1 +
1

(πt+1−1)·(k−1)
. Since t is maximal, we have πt+1 > k and thus πt+1 −1 ≥ k. Therefore

the upper bound is at most �∞ + 1
(k−1)2 . This will imply that the limit of asymptotic

competitive ratios of RejHk tends to �∞ or to a smaller value. We can exclude the
possibility of a smaller value due to the lower bound of �∞ on the limit of asymp-
totic competitive ratios of any bounded space algorithm, and thus of RejHk . Therefore
proving the upper bound above is a sufficient condition.

Consider a sequence χ and assume by contradiction that the total weight of this
sequence is larger than

∑t
i=1

1
πi−1 + 1

πt+1−1 · k
k−1 . We next show that a sequence, that

contains items of sizes slightly above the values 1
πi

+ ε, is a worst case sequence.

Claim 7 For i = 1, . . . , t , χ must contain an item of size in the interval ( 1
πi

, 1
πi−1 ].
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Proof We prove the claim by induction, showing at every step that an additional item
ai such that rai ∈ ( 1

πi
, 1

πi−1 ] belongs to χ .
Assume that we already proved that χ contains items of sizes from intervals

( 1
πv

, 1
πv−1 ] for v = 1, . . . , i − 1. The weights of these items are at most 1

πv−1 ,
and thus the sum of weights of the other items in the bin is strictly larger than∑t

v=i
1

πv−1 + 1
πt+1−1 · k

k−1 . The sum of sizes of items which are already proved to ex-

ist is strictly larger than
∑i−1

v=1
1
πv

= 1− 1
πi−1 . Thus, the sum of sizes of other items is

strictly smaller than 1
πi−1 . If an item of size in ( 1

πi
, 1

πi−1 ] exists as well, we are done

with the inductive step. Otherwise, all other items are no larger than 1
πi

. The ratio of
weight to size of such items never exceeds the factor πi

πi−1 . Thus, the weight of all ad-

ditional items is strictly smaller than πi+1
πi

· 1
πi−1 = 1

πi−1 + 1
πi(πi−1)

= 1
πi−1 + 1

πi+1−1 .

We get that the total weight of all items is no larger than
∑i+1

v=1
1

πv−1 . For every value
of i, this is smaller than the sum of weights we assumed. This leads to a contradic-
tion. �

Given the set of t items which must occur, their sum of weights is
∑t

i=1
1

πi−1 . The

sum of all other items is strictly less than 1 − ∑t
i=1

1
πi

= 1
πt+1−1 . All these items are

smaller than 1
k

, thus their total weight is smaller than k
k−1 · 1

πt+1−1 . We get that the
total is smaller than assumed which is a contradiction.

We proved all properties and therefore by Theorem 5, we establish the competitive
ratio. �

3.3 Algorithm REJECTIVE MODIFIED HARMONIC

In this section we show how to design improved algorithms which use unbounded
space. As an example, we adapt one of the best algorithms known for online bin
packing to allow rejection. This algorithm MODIFIED HARMONIC was introduced
by Ramanan et al. [20]. We give a short description of this algorithm.

As HARMONIC, MODIFIED HARMONIC also classifies items by size, and packs
items according to classes. A disadvantage of HARMONIC is in the packing of items
of the sub-interval I1 = ( 1

2 ,1]. These items are packed one per bin, possibly wasting
much space in each such bin. To avoid this large waste of space, MODIFIED HAR-
MONIC and other later algorithms (see [21]) use two extra interval endpoints, of the
form 1

2 < � < 2
3 and 1 − �. Then, some small items can be combined in one bin

together with an item of size in ( 1
2 ,�]. Items larger than � (i.e., in the interval later

called I 1
1 ) are still packed one per bin as in HARMONIC. Furthermore, These algo-

rithms use parameters αi (i = 2, . . . , k − 1) which represent the fraction of items of
intervals Ii = ( 1

i+1 , 1
i
] which are supposed to be combined with an item of size in

I 2
1 = ( 1

2 ,�]. For i = 2, α2 is the fraction of items in the interval I 2
2 = ( 1

3 ,1 − �].
This fraction of items, when they arrive, is either immediately combined with such a
large item (if this large item was not combined with items of different intervals yet),
or else space is reserved for the larger item. Once such a large item arrives, it is in-
serted into a space reserved for it. The remaining bins with items of interval Ii (or I 2

2 ,
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for i = 2) still contain i items per bin. Moreover, items of the interval I 1
2 = (1−�, 1

2 ]
are not combined with larger items and are packed in pairs. The items of the last in-
terval Ik = (0, 1

k
] are not combined with larger items and are packed using NEXT

FIT. Note that keeping an exact fraction αi of the items the interval Ii (or I 2
2 , for

i = 2) packed in one way, and an exact 1 − αi fraction packed in the other way,
is impossible. Therefore, if the number of items of an interval Ii (or I 2

2 , for i = 2) is
Xi , the number of items that are to be combined with an item of size in I 2

1 is kept as
at least 
αiXi� > αiXi − 1, and the number of remaining items of the same interval
is at least (1 − αi)Xi and at most (1 − αi)Xi + 1.

MODIFIED HARMONIC (MH) is defined using four intervals of items in ( 1
3 ,1] as

above, 35 intervals Ii for i = 3, . . . ,37 and one last interval I38 = (0, 1
38 ]. It uses

� = 419
684 ≈ 0.612573.

α2 = 1

9
; α3 = 1

12
; α4 = α5 = 0;

αi = 37 − i

37(i + 1)
, for 6 ≤ i ≤ 36, and α37 = 0.

The results of [20] imply that the asymptotic competitive ratio of MODIFIED HAR-
MONIC (for standard bin packing) is at most 538

333 < 1.61562. (In the original defini-
tion, � was used to denote 1 − �.) Note that for every interval Ii (or I 2

2 , for i = 2),
for which smaller items that are possible to be combined with a larger item in a bin,
we compute the maximum number mi of such items that can fit into the bin, leaving
an empty space of size at least �. In this calculation, the maximum size of any item
is taken into account. Thus we get m2 = m3 = 1, m6 = m7 = 2, m8 = m9 = m10 = 3,
m11 = m12 = 4, m13 = m14 = m15 = 5, m16 = m17 = m18 = 6, m19 = m20 = 7,
m21 = m22 = m23 = 8, m24 = m25 = 9, m26 = m27 = m28 = 10, m29 = m30 = 11,
m31 = m32 = m33 = 12, m34 = m35 = m36 = 13.

In the analysis we ignore incomplete bins which did not receive the full number
of items they are supposed to get. These are bins with items of size in (0, 1

2 ], that
were not supposed to be combined with larger items, and bins with items of these
sizes that are supposed to be combined with a larger item, but did not get mi items.
The number of such incomplete bins is bounded by a constant since we do not open
a new bin until the previous one receives the full amount of items. However, a bin
which received an item of size in I 2

1 but did not receive smaller items, or a bin which
has space reserved for am item of size in I 2

1 , that never arrived, cannot be ignored
since the number of such bins can be arbitrary. We note however, that after removing
incomplete bins, there cannot be both types of bins mentioned above, and we either
need to deal with “waiting” bins with an items of size in I 2

1 , or “waiting” bins with
space reserved for such an item.

We define a version of MODIFIED HARMONIC which allows rejection, and call it
REJECTIVE MODIFIED HARMONIC (MHR). This algorithm has a decision rule for
every interval. Upon arrival of an item, it is either rejected, or assigned by MH, where
items that were rejected are simply ignored by this sub-routine that runs MH.
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We therefore only need to define a rejection rule for every interval. Let x be the
size of an item, we consider all possible cases for the value of x, which are as fol-
lows.

• If x ∈ I 1
1 = (�,1], x is rejected if rj ≤ 1 and otherwise accepted.

• If x ∈ I 2
1 = ( 1

2 ,�], x is rejected if rj ≤ 2
3 and otherwise accepted.

• If x ∈ I 1
2 = (1 − �, 1

2 ], x is rejected if rj ≤ 1
2 and otherwise accepted.

• If x ∈ I 2
2 = ( 1

3 ,1 − �], x is rejected if rj ≤ 4
9 and otherwise accepted.

• If x ∈ I3 = ( 1
4 , 1

3 ], x is rejected if rj ≤ 11
36 and otherwise accepted.

• If x ∈ Ii = ( 1
i+1 , 1

i
], for the following values of i; i = 4,5,37, x is rejected if

rj ≤ 1
i

and otherwise accepted.
• If x ∈ Ii = ( 1

i+1 , 1
i
] for 6 ≤ i ≤ 36, x is rejected if rj ≤ 38

37(i+1)
and otherwise

accepted.
• If x ∈ I38 = (0, 1

38 ], x is rejected if rj ≤ 38·pj

37 and otherwise accepted.

We assign two sets of weights w1 and w2 to items as follows. The proof is similar
to the proof in [20], with differences resulting from rejections.

• A rejected item has w1
j = w2

j = rj .

• An accepted item j of an interval Ii for i = 4,5,37 is assigned weight w1
j =

w2
j = 1

i
.

• An accepted item of interval I 1
1 gets weight w1

j = w2
j = 1.

• An accepted item of interval I 2
1 gets weight w1

j = 1, w2
j = 2

3 .

• An accepted item of interval I 1
2 gets weight w1

j = w2
j = 1

2 .

• An accepted item of interval I 2
2 gets weight w1

j = 4
9 , w2

j = 5
9 .

• An accepted item of interval I3 gets weight w1
j = 11

36 , w2
j = 7

18 .

• An accepted item of interval Ii for 6 ≤ i ≤ 36 gets weight w1
j = 38

37(i+1)
, w2

j =
w1

j + 37−i
37mi(i+1)

= 38mi+37−i
37mi(i+1)

.

• An accepted item of interval I38 gets weight w1
j = w2

j = 38·pj

37 .

These weights are defined as in [20] except for rejected items and items in the
interval I 2

1 for which we defined w2
j = 2

3 . Given a rejected item i with size pi

and rejection penalty ri , consider an item j with pj = pi and rj = ∞. Note that
w1

i = w2
i ≤ min{w1

j ,w
2
j }, that is, weights and rejection rules are defined so that for a

rejected item i, the weight assigned to it never exceeds the weight that an accepted
item j of the same size would have received.

In order to analyze the competitive ratio and show that it is at most C1 = 538
333 <

1.61562 (as for the original algorithm), we show that all conditions of Theorem 5
hold. We start with the second condition. We proof this condition with w2

j = 0 in I 2
1 ,

which may only reduce the weight. The cost of rejected items is exactly their weights,
and therefore we need to prove it for packed items only.

The proof of [20] shows that the condition holds in the case where no items are
rejected, and for an item j in the interval I 2

1 , the second weight function is defined
by w2

j = 0. We give the proof here for completeness.
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For the analysis, we assume that the fraction of items for interval Ii that are to be
combined with items of size in I 2

1 is exactly αi (for i = 2 this is the fraction of items
of size in I 2

2 ). This may change the total weight by a constant factor.
To prove the condition, note that items of size in I4, I5 and I37 are packed i to a

bin, and thus their total weight is equal to the number of bins used for them (up to
a constant factor, that is caused by at most one bin for each such interval, that we
neglect in the sequel). Items of size in I38 are packed by NEXT FIT. Each such bin
(except for possibly the last one) is occupied by at least a total of 37

38 , and therefore,
the total weight of items in it is at least 1.

If all bins that were to be combined with an item of size in I 2
1 , were indeed com-

bined, we use w1. The cost of such bins is covered by these larger items, and we
need to consider the cost of bins with other items in intervals I 2

2 and Ii for i = 3 and
6 ≤ i ≤ 36. An 1 − αi fraction of the items are packed i to a bin. Thus the average

cost per item (including all items of such an interval) is 1−αi

i
. This is exactly the

definition of w1.
If all bins that received an item of size in I 2

1 received additional items, we use w2.
The cost of such bins are covered by smaller items. An 1 − αi fraction of the items
are packed i to a bin, and an αi fraction, mi to a bin. Thus the average cost per item

(including all items of such an interval) is 1−αi

i
+ αi

mi
. This is exactly the definition

of w2.
To prove the first condition, note that for each item j , either its weight is equal to

its rejection cost, or its rejection cost is at least min{w1
j ,w

2
j }. Thus we need to show

for every item that w2
j ≤ C1w

1
j and w1

j ≤ C1w
2
j . We only need to consider cases in

which the two weights are not the same. For an item j in the interval I 2
1 we have

w2
j

w1
j

= 2
3 . For an item j in the interval I 2

2 we have
w2

j

w1
j

= 1.25. For an item j in the

interval I3 we have
w2

j

w1
j

= 14
11 . For an item j in the interval Ii for 6 ≤ i ≤ 36 we

have
w2

j

w1
j

= 1 + 37−i
38mi

. This value is maximized for i = 6, since mi is monotonically

increasing. For i = 6 we have mi = 2 and thus
w2

j

w1
j

≤ 1 + 31
76 < 3

2 , and
w1

j

w2
j

≤ 3
2 .

To prove the last condition of Theorem 5, we need to consider the possible contents
of a bin, and the total weight of items in this bin. For each of the two weight functions
w1 and w2, and for a given size of an item, we consider its maximum weight, which
is, as explained above, the weight of an accepted item of this size. In all cases except
for one case, we define the weights of accepted items exactly as the definition of
weights of items in [20]. Therefore, it is possible to use the results of that paper, and
analyze only cases where an item of size in I 2

1 is present, and only according to w2.
Nevertheless, we give a full proof here for completeness.

For every interval I , where I ∈ {I 1
1 , I 2

1 , I 1
2 , I 2

2 }, or I = Ij for some 3 ≤ j ≤ 38, we
define four values τ i(I) (for i = 1,2) and φi(I) (for i = 1,2), where τ i(I) denotes
the supremum ratio between the weight of an item in interval I , according to weight
function wi (for i = 1 or i = 2) and its size, and φi(I) denotes the supremum weight
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of an item in the interval. The following definition of the functions τ 1,τ 2,φ1 and φ2

results from the definition of weights.

• If I = Ii for i ∈ {4,5,37}, then τ 1(I) = τ 2(I) = i+1
i

, and φ1(I) = φ2(I) = 1
i
.

• If I = I 1
1 , then τ 1(I) = τ 2(I) = 1

�
= 684

419 ≈ 1.63246, and φ1(I) = φ2(I) = 1.
• If I = I 2

1 , then τ 1(I) = 2, τ 2(I) = 4
3 , φ1(I) = 1 and φ2(I) = 2

3 .
• If I = I 1

2 , then τ 1(I) = τ 2(I) = 1
2(1−�)

= 342
265 ≈ 1.29, and φ1(I) = φ2(I) = 1

2 .

• If I = I 2
2 , then τ 1(I) = 4

3 , τ 2(I) = 5
3 , φ1(I) = 4

9 , and φ2(I) = 5
9 .

• If I = I3, then τ 1(I) = 11
9 , τ 2(I) = 14

9 , φ1(I) = 11
36 , and φ2(I) = 7

18 .

• If I = Ii for 6 ≤ i ≤ 36, then τ 1(I) = 38
37 , τ 2(I) = 38mi+37−i

37mi
, φ1(I) = 38

37(i+1)
,

and φ2(I) = 38mi+37−i
37mi(i+1)

.

Note that for i ≥ 19, mi ≥ 7, and 37 − i ≤ 18, so τ 2(I) < 41
37 .

For 12 ≤ i ≤ 18, mi ≥ 4, and 37 − i ≥ 25, so τ 2(I) ≤ 177
148 .

Otherwise, mi ≥ 2, and 37 − i ≤ 31, so τ 2(I) < 54
37 < 3

2 .
• If I = I38, then τ 1(I) = τ 2(I) = 38

37 , and φ1(I) = φ2(I) = 1
37 .

We next find an upper bound on the total weight that can be packed into one bin
according to each one of the two weight functions. Consider therefore a given packed
bin.

If the bin contains no items of size in ( 1
2 ,1], since for τ 1(I) ≤ 3

2 for all intervals
I /∈ {I 1

1 , I 2
1 }, the total weight of all items in the bin, according to w1, is no larger

than 3
2 . As for w2, the only intervals in which τ 2(I) > 3

2 (in additional to I 1
1 ) are

I 2
2 and I3. Let n1 and n2 be the numbers of items in a bin of size in these intervals,

respectively. Since τ 2(I) ≤ 3
2 in all smaller intervals, we get a total weight of at most

n1
5
9 + n2

7
18 + (1 − n1

3 − n2
4 ) 3

2 = 3
2 + n1

18 + n2
72 . We have n1 + n2 ≤ 3 and n1 ≤ 2. The

cases n1 = 0 and n1 = 1 give a total weight of less than 1.6. The case n1 = 2 and
n2 = 0 gives 29

18 < 538
333 . In the case n1 = 2 and n2 = 1, the remaining space in the bin

is less than 1
12 , for such items τ 2(I) ≤ 177

148 , so we get a total weight of less than 1.6
again.

Therefore, we need to consider a bin that contains an item of size in ( 1
2 ,1].

Consider the function w1 first. All items of size in ( 1
2 ,1] have a weight of 1. The

remaining space for additional items is therefore smaller than 1
2 . If all additional items

are no larger than 1
5 , using the property τ i(I) ≤ 6

5 for the relevant intervals, we get a
total weight of at most 1.6.

If the bin contains an item of size in I 1
2 , its weight is 1

2 , and the remaining space
is less than 77

684 . Using the values of τ 1, the total weight of these items is at most 77
666 ,

and the total weight is no larger than 538
333 .

If the bin contains an item of size in I 2
2 , its weight is 4

9 , and the remaining space
is less than 1

6 . Using the values of τ 1, the total weight of these items is at most 19
111 ,

and the total weight is no larger than 538
333 .

Otherwise, the bin may contain one or two items of size in ( 1
5 , 1

3 ] (but at most one
item of size in ( 1

4 , 1
3 ]). However, if there are no items of size in I4, the value of τ 1 for

all possible intervals is at most 11
9 , which gives a total weight of at most 29

18 < 538
333 .
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Therefore, it is left to consider the three cases: two items of size in I4, two items,
where one item has size in I4 and the other item has size in I3, and finally, the case
of one item in I4.

The total weight of these items in the three cases are two items of sizes in I4 and
I3 are 1

2 , 5
9 and 1

4 , respectively, where the space left for other items, in these three
cases is 1

10 , 1
20 , and 3

10 . In the first two cases, τ 1 = 38
37 for all intervals of items in

(0, 1
10 ], so the total weights are 593

370 < 538
333 and 5351

3330 < 538
333 . In the last case, τ 1 ≤ 6

5 ,
and we get a total weight of at most 1.61.

Next, we consider only w2. Consider first the case that the item of size larger than
1
2 has size in I 2

1 . Such a bin can contain in addition only items smaller than 1
2 . For all

such intervals, τ 2(I) ≤ 5
3 . Thus an upper bound on the total weight in the bin with

respect to w2 is 2
3 + 1

2 · 5
3 = 3

2 .
Next, consider the case where an item that the item of size larger than 1

2 has size
in I 1

1 . The remaining space for other items is smaller than 1 − � = 265
684 ≈ 0.3874. If

all these items are no larger than 1
4 , then for all such intervals, τ 2(I) ≤ 3

2 . Thus an
upper bound on the total weight in the bin with respect to w2 is 1 + 3

2 · 265
684 < 1.6.

If an item of size in I3 is present in the bin, the remaining space for smaller items
is smaller than 94

684 . For these items τ 2(I) ≤ 3
2 , so we get a total weight of at most

1 + 7
18 + 141

684 = 1091
684 < 1.6.

Otherwise, an item of size in I 2
2 and weight 5

9 is present in the bin. The remaining
space for other items is smaller than 37

684 . If all additional items are no larger than 1
19 ,

then τ 2(I) < 41
37 for their intervals, and the total weight is at most 1+ 5

9 + 37·41
684 < 538

333 .
Otherwise, an item of size in I18 and weight 13

222 is present, and the remaining space
for additional items is smaller than 1

684 . For such items τ 2 = 38
37 , so we get a total

weight of 1 + 5
9 + 13

222 + 1
666 = 538

333 .
Since all conditions hold for C1 = 538

333 we establish the following theorem.

Theorem 8 The asymptotic competitive ratio of REJECTIVE MODIFIED HARMONIC

is at most C1 = 538
333 .

4 Concluding Remarks

In this paper, we studied offline and online bin packing with rejection.
Offline bin packing with rejection turned out to be similar enough to standard bin

packing in the sense that it is possible to provide an algorithm with an absolute ap-
proximation ratio of 3

2 and an APTAS. The running times of these algorithms are
unfortunately relatively high. Some subsequent work on the subject can be found in
[3, 12]. Specifically, an approximation scheme, which uses a different approach, and

has a reduced running time, is given in [3]. Our APTAS creates at most n(O( 1
ε
)
O( 1

ε )
)

packings of large items, and a linear programming instance with O(n2) variables and
O(n) constraints is solved for each one, whereas the APTAS of [3] has a running time

of n
O( 1

ε2 )
. Recently, the complexity of the problem was resolved and an AFPTAS is
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given in [12], using some methods of the current work, together with new techniques
for dealing with small items. The design of a simple and efficient heuristic with an
absolute approximation ratio of 3

2 is left as an open problem. Note that the heuris-
tics of Dósa and He [10] are very efficient and have a worst case running time of
O(n logn), while our heuristic is based on the APTAS, and though its running time
is polynomial in n, the exponent of n is extremely large.

As for online bin packing with rejection, this case also turned out to be similar
enough to standard bin packing. It seems possible to adapt most online algorithms
for the standard problem into algorithms for the problem with rejection, without any
loss in the asymptotic competitive ratio. This paper did not deal with the absolute
competitive ratio. For that model, there is clear evidence that the problem with re-
jection is very different from the standard problem. An upper bound of 1.75 on the
absolute competitive ratio of FIRST FIT for standard bin packing was proved in [22].
However, Dósa and He [10] proved a lower bound of 2.343 on the absolute competi-
tive ratio of any online algorithm for bin packing with rejection.
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